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What can Al do for me?

Evaluating Machine Learning Interpretations in Cooperative Play
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ABSTRACT

Machine learning is an important tool for decision making, but
its ethical and responsible application requires rigorous vetting
of its interpretability and utility: an understudied problem, par-
ticularly for natural language processing models. We propose an
evaluation of interpretation on a real task with real human users,
where the effectiveness of interpretation is measured by how much
it improves human performance. We design a grounded, realistic
human-computer cooperative setting using a question answering
task, Quizbowl. We recruit both trivia experts and novices to play
this game with computer as their teammate, who communicates its
prediction via three different interpretations. We also provide de-
sign guidance for natural language processing human-in-the-loop
settings.

CCS CONCEPTS

« Human-centered computing — Natural language interfaces;
Collaborative interaction.

KEYWORDS

interpretability; natural language processing; question answering

ACM Reference Format:

Shi Feng and Jordan Boyd-Graber. 2019. What can Al do for me?: Evaluating
Machine Learning Interpretations in Cooperative Play. In 24th International
Conference on Intelligent User Interfaces (IUI '19), March 17-20, 2019, Marina
del Rey, CA, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3301275.3302265

1 INTRODUCTION

The field of machine learning (ML) is making rapid progress, with
models surpassing human performance on many tasks, such as
image classification [22], playing video games [45], and playing
Go [59]. However, a drop-in replacement for humans—even as-
suming that it is achievable—is not always the ideal integration of
machine learning into real-world decision making. In sensitive areas
such as medicine and criminal justice, the computational objectives
of ML models cannot yet fully capture the factors one must consider
when making a decision, such as fairness and transparency. In some
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other areas such as natural language processing, the strengths of
humans and computers are sometimes complimentary. Humans are
excellent at reasoning about what we consider “common sense”,
while some tasks in this category such as disambiguating word
senses are still difficult for computers [48]. Tasks like deceptive
review detection is difficult and time consuming for humans while
simple linear ML models achieve high accuracy with little process-
ing time [35]. On tasks such as simultaneous interpretation where
humans are still far superior than computers, experts can still be
assisted on some aspects of the task: interpreters often find certain
content such as technical terms, names of people and organizations,
and numbers difficult to translate, while computers find that easy.
The integration of ML can be more effective and efficient when
humans and computers cooperate.

Cooperation is only effective when the two parties communi-
cate well with each other. One direction of this communication,
from humans to computers, is well-studied: ML models can be im-
proved with human feedback using reinforcement learning [63]
and imitation learning [54, 55]. The other direction of the commu-
nication, from ML models to humans, presents different challenges:
a standard classification model outputs a prediction (e.g., an ob-
ject class given an image), but without any justification. Although
the prediction can be presented with a confidence score (a value
between zero and one), humans struggle to interpret and act on
numbers [50, 51]; moreover, due to over-fitting, confidence scores
from a neural models can be much higher than the actual prediction
uncertainty [20].

To bridge the gap between human and ML models in a cooperative
setting, interpretation methods explain the model predictions in
a more expressive, human-intelligible way. In a human-centered
setting where humans make the final decision, these methods help
users decide to trust the model prediction or not. In Section 2 we
discuss the existing work of interpreting ML models.

Progress in ML research largely relies on rigorous evaluations,
which often relies on standard datasets, for example ImageNet [9]
for image classification and Penn Treebank [43] for language mod-
eling. Although interpretability is valued as a laudable goal, it re-
mains elusive to evaluate. We do not have such standard dataset
for interpretability—it is not clear what the ground truth should
be. As Lipton [41] argues, there is no clear agreement on what
interpretability means; there is no definitive answer to what inter-
pretation is most faithful to the model and useful for humans at the
same time. Secondly, it is not realistic to evaluate interpretability
without humans, the eventual consumer of interpretations [47].
Previous work focuses on how humans can use interpretations
to help the model do its job better; for example, interpretations
generated by Local Interpretable Model-Agnostic Explanations [52,
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LIME] help humans do feature engineering to improve downstream
predictions of a classifier; in other work interpretations are used to
help humans debug ML models [13, 53].

Kleinberg et al. [30] propose a different perspective and ask how
ML can improve human decision making. Applying this thinking,
we measure interpretability by asking what ML can do for humans
through interpretations: they should augment [32] human intel-
ligence. This concept resonates with the seminal work of mixed-
initiative user interface [24], which emphasizes user interfaces
where the human and the computer can drive towards a shared
goal and ones that enhance human ability [2].

Interpretations come in many forms; we focus on three pop-
ular options among the interpretable ML community: visualizing
uncertainty, highlighting important input features, and retrieving
relevant training examples. We measure how they help humans
on the tasks at hand and focus on answering the question “how
effective can interpretations communicate model predictions to
humans”. The other question is “how faithful an interpretation is
to the model”. Section 3 discusses our choice of model to answer
the first question; we leave the second question to future work, but
discuss in Section 7 how our framework, interface, and experiments
can be directly applied.

We choose the testbed for our interpretability evaluation from
the natural language domain—a question answering task called
Quizbowl [6]. As we discuss in Section 3, in addition to being a
challenging task for M1, it is also an exciting game that is loved by
human trivia enthusiasts. Furthermore, it is a task where humans
and ML have complementary strengths, so effective collaboration
with interpretations has great potential.

We recruit both Quizbowl enthusiasts and turkers from Amazon
Mechanical Turk (novices in comparison) to play Quizbowl on an
interactive interface, provide them different combinations of the
interpretations, and measure how their performance changes. These
different user groups reveal imperfections in how we communicate
the way a computer answers questions. Experts have enough world
and task expertise to confidently overrule when the computer is
wrong; however, as we will discuss in Section 6, novices are too
trusting: they play more aggressively with computer assistance, but
are not able to discern useful help from the misleading ones as well
as the experts. In Section 7, we propose how to can explore new
interpretations and visualizations to help humans more confidently
interpret ML algorithms.

2 RELATED WORK

2.1 Human-AI Cooperation

Explainability is a central problem of applied A1, with research
stretching back to the days of expert systems [64]. The recent surge
of interest in this area is the result of the success of ML models based
on neural networks, a.k.a. deep learning [37]. These complicated
models have stupendous predictive power, but at the same time brit-
tle, best demonstrated by the existence of adversarial examples [15],
where small perturbation to the input leads to significant change
in the model output. From a practical standpoint, the inscrutabil-
ity of these models makes it difficult to integrate into real world
decision-making in high risk areas such as urban planning, disease
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diagnosis, predicting insurance risk, and criminal justice. The fair-
ness, accountability, and transparency of machine learning remain
a concern [66], which is reflected in the “right to explanation” in
European Union’s new General Data Protection Regulation [11,
GDPR].

Thus, ML model predictions need explanations. Efforts includ-
ing the Explainable A1 (xAI) initiative [19] led to the conceptual-
ization of a series of human-Ar cooperation paradigms, including
human-aware A1 [7], and human-robot teaming [67]. As an ex-
ample, Schmidt and Herrmann [58] recognize the importance of
interpretability when interacting with autonomous vehicles. Such
need motivated the ML community to develop interpretation meth-
ods for deep neural models [4, 60, inter alia].

The HCI community has a rich body of research towards mak-
ing computers more usable, for example in interaction design [28]
and software learnability [18]. To borrow insights from the human
side, Miller [44] provides an overview of social science research
regarding how people define, generate, select, evaluate, and present
explanations. Still, interpreting ML models has its unique challenges.
Krause et al. [34] compare different ML models under one visual-
ization method, partial dependency. Smith et al. [61] and Lee et
al. [38] focus on the interpretation of topic models. In contrast,
we compare interpretation of classification models across various
forms, making our framework more generalizable to other tasks
and interpretation methods.

2.2 Interpretation of Machine Learning Models

Interpretations can take on several different forms. We focus on
interpretation in the form of uncertainty, important input features,
and relevant training examples. Some ML models provide canonical
interpretations. For models such as decision trees and association
rule lists [36, 39], the interpretation is built in the prediction itself.
However, most state-of-the-art models in vision and language—
domains with the widest range of applications—are deep neural
models with hundreds of thousands of parameters. Next we intro-
duce previous work on interpreting both simpler linear models and
more complicated neural networks, in each of the three forms.

Conveying Uncertainty. Augmenting the prediction from a neural
network classifier with a confidence score (a value between zero and
one) conveys the uncertainty of the model. In a cooperative setting,
the uncertainty helps humans decide to trust the model or not [3, 57].
To make it more informative, we can also display the confidence for
the classes other than the top one [42]. Confidence of simple linear
models are usually well-calibrated, but estimating uncertainty for
a deep neural model is challenging: due to overfitting, they are
over-confident and require careful calibration [12, 20].

Highlighting Important Features. Model predictions can be ex-
plained by highlighting the most salient features in the input, typ-
ically visualized by a heat map. For a linear classifier, the most
salient features are the ones with the largest corresponding coeffi-
cients; For non-linear classifiers, the relevance of a feature can be
calculated by the gradient of the loss function w.r.t. that feature [60].
Alternatively, one can locally approximate a non-linear classifier
with a simpler linear model, then use the coefficients to explain the
predictions from the non-linear model [52].
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Interpretation by Example. We can explain a prediction on a
test example by finding the most influential training examples.
Various metrics exist for finding important training examples, such
as distance in the representation space which is natural to linear
models, clustering algorithms and their deep variation [49], and
influence functions [33] for non-linear models.

As we discuss in Section 3, although our experiments use a
linear classifier, our method can be generalized to evaluating these
methods designed for neural models (Section 7).

2.3 Evaluation of Interpretation

A fair and accurate assessment of interpretations is crucial for
improving the understability of A1 and consequently human-ar
cooperation. Although interpretation methods have rigorous math-
ematical formulations, some even axiomatically derived [62], it
remains unclear how we can evaluate the efficacy of these methods
on real tasks with real users. Lipton [41] argues that there is no clear
agreement on what interpretability means: looking at ML models
alone, no definitive answer exists as in what would be the best
interpretation in both faithfulness to the model and usefulness to
humans.

As it is widely accepted that machine learning models should be
evaluated beyond natural examples, e.g., in adversarial settings [15,
26], the evaluation of interpretation should not be limited to being
visually pleasing. Indeed, interpretations can be fragile under small
input perturbations [14, 29], unfaithful to the model [1, 12, 23], and
create a false sense of security [27].

Conditioning a more realistic setting, Doshi-Velez and Kim [10]
provide an ontology of various evaluations of interpretation with a
human in the loop. Following this framework, Narayanan et al. [47]
conduct one such evaluation with synthetic tasks and hand-crafted
interpretations to study their desirable cognitive properties.

We focus on application-grounded evaluation—real tasks with
real users. This setting best aligns with what interpretations are
intended for—improving human performance on the end task. How-
ever, application-grounded evaluation is also challenging because
it requires real tasks and motivated real users. The task needs a
large pool of willing human testers, and ideally one that challenges
both humans and computers. As we discuss in the next section,
Quizbowl is a task that satisfies these conditions.

3 INTERPRETATION TESTBED: QUIZBOWL

This section introduces Quizbowl, our testbed for evaluating the
three forms of interpretations. We discuss how the task suits our
purposes, which model to use, and how we generate the interpreta-
tions.

3.1 Quizbowl and Computer Models

Quizbowl is both a challenging task for machine learning [6] and
a trivia game played by thousands of students around the world
each year. Each question consists of multiple clues, presented to the
players word-by-word, verbally or in text. The ordering of Quizbowl
clues is pyramidal—difficult clues at the beginning, easy clues at the
end, and the challenge is to answer with as few clues as possible. For
a question with n words, the players have n chances to decide that
this is all the information I need to answer the question. The player can
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do so by buzzing before the question is fully read, which interrupts
the readout so the player provide an answer. Whoever gets the
answer correct first wins that question and receives ten points.!
But when players buzz and answer incorrectly, they lose five points.
Success in Quizbowl requires a player to not only be knowledgeable
but also balance between aggressiveness and accuracy [21].
Quizbowl challenges humans and computers in different ways [6,
68]. Computers can memorize every poem and book ever written,
making it trivial to identify quotes. Computers can also memorize
all of the reflex clues that point to answers (e.g., if you hear “phos-
phonium ylide”, answer Wittig) and apply them without any higher

reasoning. Humans can chain together evidence (“predecessor of
the Queen who pardoned Alan Turing”) and solve wordplay (“opera
about an enchanted woodwind instrument”). Thus, Quizbowl is
representative of tasks where human-computer cooperation has
huge potential [65]. This also makes Quizbowl] a suitable testbed
for interpretation methods designed to better interface humans and
computers.

Thus, instead of trying to beat humans with computers, we team
them together and use their cooperation to measure the effective-
ness of interpretations. In our cooperative setting, instead of having
a model to decide when to buzz in, the human needs to decide when
the system has a good guess. When answering a Quizbowl question—
which takes many steps, the human constantly interacts with the
model, which provides many opportunities to evaluate the inter-
pretability of models. Every word provides new evidence that can
change the underlying interpretation and convince the human that
the system has a good answer to offer. Furthermore, the compet-
itiveness of Quizbowl encourages humans to use the help from
the computers as much as possible, avoiding a degenerate scenario
where the users solve the task on their own. It also attracts a large
pool of enthusiastic participants, which is crucial for application-
grounded evaluations. Sesction 5 discusses the cooperation in detail.

As mentioned in Section 1, we focus on the comparison between
three forms of interpretation, using one method for each form. But
which method to use? Linear models provide canonical interpre-
tations: important features and relevant training examples can be
identified based on the coefficients. On the other hand, neural mod-
els do not have canonical interpretations: all interpretations are
approximations, which by definition are not completely faithful to
the model [56].

Luckily in the case of Quizbowl, we have linear models with
performance on par or better than neural models. QANTA [25] is a
simple, powerful, and interpretable system for Quizbowl. A stripped-
down, minimal version of it is provided to participants in the N1Ps
2017 Human-Computer Question Answering competition [5]. We
use the guesser of QANTA, which has a linear decision function built
on ElasticSearch [16, Es]. As the name implies, guesser generates
guesses for what the answer to a question could be. Despite its sim-
plicity, Es-based systems perform very well on Quizbowl, defeating
top trivia players.?

ILike previous work, we only consider toss-up/starter questions.
Zhttps://youtu.be/bYFqMINXayc
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3.2 Interpretation of a Question Answering
Model

Our goal is to see which forms of interpretation are most helpful to
the users, and a linear model with natural interpretations makes
this easy. Our Es-based Quizbowl model supports three forms of
interpretations, each corresponding to a class of methods widely
studied in recent literature as mentioned in the previous section.
Given a question never seen in the training set, Es mainly uses tf-idf
features to find the most relevant training example, which is either
a Wikipedia page or a previously seen Quizbowl question, and then
uses the label of that document as the answer.

To convey the uncertainty of model predictions, we augment the
top ten guesses from our model with their corresponding scores.
Unlike regular classification models, Es does not output a prob-
ability distribution over all possible answers. Its scores measure
the relevance between the question and training examples, but are
not normalized. We keep the scores unnormalized to stay true to
the model. Despite its simplistic form, these scores provide strong
signal about model uncertainty, for example, a large gap between
the top two scores usually indicate a confident prediction.

Interpretation by example—getting the evidence—is straightfor-
ward with our Es-based model. The prediction is the label of the
most relevant documents, so the extracted documents are naturally
the most salient training examples. We can further identify the
most important words in each retrieved training example, using
the highlight Ap13. This gives us evidence highlights. The player can
make a better decision of whether to trust the computer prediction
by judging how relevant the evidence is to the question.

To highlight important input features—generating question high-
lights—we build on the previous evidence highlights. The most im-
portant words in the question naturally emerge when we compare
the question against the most salient training example. Specifically,
we go through the question and find words that appear highlighted
in the evidence. Question highlights inform the player whether the
computer is looking at the right keywords in the question.

Although generating question highlights depends on evidence
highlights, the former can be displayed without the later. We discuss
how we control which interpretation to display in the next two
sections.

4 INTERFACE DESIGN

We design our Quizbowl interface (Figure 1) to visualize the three
interpretations described in the previous section. This section in-
troduces the visualizations, placement, and interactivity of the in-
terface.

To make Quizbowl players feel at home, we follow the general
framework of Protobowl.com, a popular Quizbowl platform that
many players actively use for practice. The Question area is in
the center, and the question is displayed word-by-word in the text
box. A Buzz button is located close above the question area, and
to further reduce the distraction from the question area, players
can also buzz in using the space key. After buzzing, the player have
eight seconds to enter and select an answer from a drop-down
menu.

3https://www.elastic.co/guide/en/elasticsearch/reference/current/
search-request-highlighting. html

Shi Feng and Jordan Boyd-Graber

Guesses

# Guess Score
1 Congo River 01987
2 Zambezi 01121
3 Yukon River 0.0956
4 Irrawaddy River 0.0904
5 Amazon River 0.0864

Guesses show the answers the computer is considering along
with the associated score. Top ten answers are sorted according to
their score (the system prefers higher scores). This helps convey
when the model is uncertain (e.g., if all of the guesses have a low
score).

Evidence

for Congo River

the Lualaba and the Chambeshi Rivers . It is navigable downstream

Falls lies on this river , and after it reaches Kisangani , it is no longer
from Kisangani , except for the area

To inform the player of how the model’s prediction is supported
by training examples, Evidence shows the relevant snippets of
the most salient training examples for the top guess. It is located
below the question area and has the same width to provide a direct
comparison against the input question. Each line of the text area
shows the snippet of one selected document.

Question

Its central basin is known as “the cuvette,” and its navigable portion
begins at Kisangani. It receives the Luapula and Lualaba Rivers, from
whose effluence at Boyoma Falls this river receives its

We use Highlight to visualize the most salient words in both the
input question and the evidence snippets. These words are selected
for the top guess. As introduced in the previous section, we first
highlight important words in the training example snippets using
an API of Es, then find their appearances in the input and highlight
those too.

Multiple interpretations can be shown in combination. The com-
bination of highlight and evidence has a compounding effect: when
both are enabled, players see highlighted words in both the ques-
tion and the evidence (for example in Figure 1); when highlight
is enabled without evidence, players only see highlights in the
question.

Our design goal is to minimize distraction from the question
area while boosting the competitiveness of the player. So we place
the question area in the middle and have all interpretations around
it. It is difficult to ensure that different forms of interpretations
are exposed to the users equally, as some forms (e.g., evidence) are
inherently less intuitive to visualize. However, all interpretations
must be implemented in an interface for a real-world evaluation; we
discuss the limitations of our design and future work in Section 7.
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Guesses Settings
# Guess Score Guesses
1 CongoRiver 01987 Question Highlights
2 Zambezi 0121 Evidence

3 Yukon River 0.0956
4 Irrawaddy River 0.0904
5 AmazonRiver 0.0864

Evidence

. for Congo River
@ Instructions

« Press space tobuzz
* Press enter to

Its central basin is known as “the cuvette,” and its navigable portion
begins at Kisangani. It receives the Luapula and Lualaba Rivers, from
whose effluence at Boyoma Falls this river receives its

the Lualaba and the Chambeshi Rivers . It is havigable downstream 1 -15
from Kisangani , except for the area

Players
1 active
# Score Name

Summer Dew

submit Falls lies on this river , and after it reaches Kisangani , it is no longer

« Use autocomplete to called the Lualaba . This

Figure 1: Screenshot of the interface. Question is displayed in the middle area word-by-word, with question highlights dis-
played in the same panel. Guesses are listed in the panel on the left. Evidence is in the panel below.

5 SETUP

This section explains how human players and the computer guesser
play in cooperation. To ensure accuracy and unbiasedness, we
control what interpretations each player sees instead of letting
them choose.

5.1 Data and Participants

We collect 160 new questions for this evaluation that had not been
previously seen by the Quizbowl community to avoid bias in play-
ers’ exposure to questions.

We recruit 40 experts (Quizbowl enthusiasts) by advertising on
an online forum, and 40 novices using MTurk. Experts are free to
play as many questions as they want (but each player can only
play a question once), and we encourage them to play more by
offering monetary prizes for those who finish the whole question
set. We require novices to each answer at least twenty questions and
require a positive score at the end (according to standard Quizbowl
scoring rules) to encourage good faith responses. Online Quizbowl
platforms such as Protobowl.com are usually anonymous, so we do
not collect any information about the participants other than an
email address for collecting prizes (optional).

5.2 Human-AI Cooperation on Quizbowl

Unlike previous work where Quizbowl interfaces are used for com-
puters to compete with humans [6, 21], our interface aims at human-
AI cooperation. We let a human player form a team with a computer
teammate and put the human in charge. As the question is displayed
word-by-word, the computer periodically updates its guesses and
interpretations (every 4 words in our experiments); at any point
before the question is fully read, the human can decide to buzz,
interrupt the readout, and provide an answer. The interpretations
should help the human better decide whether to trust the com-
puter’s prediction or not.

We have two different experimental settings. In the simpler, non-
competitive novice setting, we have a single turker interact with
the interface, with the computer guesser as teammate, but without
opponents.

The competitive expert setting better resembles real Quizbowl
games, and the players in this setting are experts that enjoy the
game. To encourage them to play to the best of their ability, we
simulate the Quizbowl setting as closely as possible (for novices
the simple task is already taxing enough without competition). In a
real Quizbowl match, players not just compete against themselves
(can I get the question right?) but also with each other (can I get
the question right before Selene does?). Quizbowl’s pyramidality
encourages competition: difficult clues at the start of the question
help determine who knows the most about a subject. Our inter-
face resembles Protobowl.com, a popular online Quizbowl platform
where players play against each other (but without the computer
teammate). The computer generates the same output (both predic-
tion and interpretations), but human players might have access to
different interpretations, e.g., David sees evidence while Selene sees
question highlights. Next section discusses the setup in detail.

Our experiment in the expert setting was possible thanks to
Quizbowl!’s enthusiast community. It was because Quizbowlers
love to play this game and to improve their skills by practicing, that
they were willing to learn our interface, team up with the computer,
and compete under this slightly irregular setting. This provided us
new perspectives of how users from a wider range of skill levels
use interpretations, compared to many previous work that only
had non-expert turkers [8, 31, 61].

5.3 Controlling Which Interpretations to Show

Each of the three interpretations can be turned on or off, so we have
in total 2 X 2 X 2 = 8 conditions, including the null condition where
all interpretations are hidden. To compare within-subjects (players
vary greatly based on their innate ability), we vary the interpreta-
tions a player sees randomly. We sample the enabled combination
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Effect of interpretations

guesses
highlight
evidence
guesses+highlight >
guesses+evidence
highlight+evidence

351n0N

Visualization
®E combo loss

-

everything K = combo gain
evidence
guesses highlight
highlight guesses
evidence o
guesses+highlight — B
guesses+evidence I .
highlight+evidence —
everything ]
Effect

Figure 2: Coefficients of the linear regression showing the
effects of interpretations, for novices (above) and experts
(below). Higher value means an interpretation improves
player accuracy. In addition to the individual interpreta-
tions, combo gain and combo loss capture the additional ef-
fect of combining multiple interpretations. Highlight and
Evidence are effective for both novices and experts; combin-
ing leads to more positive effect for experts than novices,
potentially because experts can process more information
in limited time.

with the goal of having, in expectation, a uniform distribution over
players, questions, and interpretation combinations. For player P at
question Q, we sample from an eight-class categorical distribution,
with the parameter of each combination C set to N — #(C, P), where
#(C, P) is the number of times player P has seen the interpretation
combination C and N is the expected count of each combination (in
our case the number of questions divided by eight). In the expert
setting, interpretations are sampled independently for each player,
and players may (and usually do) see different interpretations. For
all experiments, we only allow each player to answer each question
once.

6 RESULTS

With data collected from game plays, our primary goal is deter-
mine if the interpretations are helpful or not, and how experts and
novices used them differently. We first do a regression analysis
to quantitatively determine how much each condition affects the
accuracy of the players; then we break down the results to see how
the players behave differently under the conditions, specifically
how aggressive they are; we also look at specific cases where some
interpretation consistently succeeded or failed to convince multiple
players of the model prediction.

After filtering players who answer very few questions, we arrive
at 30 experts that answer 1983 questions, and 30 novices that answer
600 questions. Turkers usually stopped after answering the required
twenty questions, but many experts kept on playing. Among all
players, seven experts answer all 160 questions.
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Effect of player ability
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Figure 3: Effect of player ability (above) and question dif-
ficulty (below) from the regression analysis. Solid horizon-
tal lines show the bias term that captures the baseline accu-
racy without any help from the computer; dashed lines show
the effect of combining all interpretations. Experts have a
higher average accuracy; they are also less affected by inter-
pretations.

6.1 Regression Analysis

Whether a player can answer a question correctly is determined
by several factors: the player’s innate skill, the difficulty of the
question, the aid of some interpretation, or the competitive level (in
expert setting). To tease apart these factors we follow Narayanan et
al. [47] and apply a regression analysis.

We describe these factors using the four sets of features listed in
Table 1. To capture the player’s innate skill and the difficulty of the
question, we include the IDs of both in the feature set. Each combi-
nation of interpretations has its own features, for example, guesses,
evidence, and guesses+evidence are three independent features. For
game condition, the first feature is the relative position in the ques-
tion when the player buzzed (to understand how interpretations
affect buzzing position as an outcome instead of feature, we use
a separate analysis); for the expert setting, we also include extra
features to capture the competitiveness: number of active players
and the current accuracy of the top active player.

The we use a linear model to predict whether the player can
answer the question correctly. Specifically, for each game record,
we extract the features and feed the vector as input to the linear
model, which then predicts the probability of a positive result; to
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Figure 4: Average buzzing position (relative to question
length) of novices (above) and experts (below), with and
without each interpretation. The goal is to buzz as early as
possible. Vertical bars show the baseline buzzing position
without any interpretation. Experts are better and more con-
sistent. Among the interpretations, Highlight is most effec-
tive in helping both novices and experts answer faster.
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Figure 5: The distribution of buzzes of novices on correct
guesses (left) and wrong guesses (left); colors indicate if each
interpretation is enabled; positions are normalized by ques-
tion length. With interpretations, novices are significantly
more aggressive, but also get more questions correct earlier.
Highlight is the most effective.

train the model, we compare the prediction against the ground
truth, and update the model with gradient descent. We train this
model on the game play data, for experts and novices separately.
The coefficients of the linear model then explains the importance
of the corresponding features: the probability of a positive result in-
creases with features with positive coefficients, which means these
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Aggressiveness of expert buzzes
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Figure 6: The distribution of buzzes of experts on correct
guesses (left) and wrong guesses (left); colors indicate if each
interpretation is enabled; positions are normalized by ques-
tion length. Experts are not significantly more aggressive
with interpretations, but they did get more answers correct
earlier.

none, guesses, highlight, evidence,
guesses + highlight,

Interpretation -
®) guesses + evidence,

highlight + evidence,

guesses + highlight + evidence
Player (30) player IDs

(separate for experts and novices)

Question (160) | question IDs

buzzing position

(relative to question length),

number of active players (expert only),
current accuracy of the top

active player (expert only)

Table 1: Our four sets of features used in regression analysis.
Numbers in the parentheses indicate the number of features
in that set.

Others (3)

features help the players. Similarly negative coefficient means the
features hurt the player accuracy. To understand which interpre-
tations are most helpful to Quizbowl players, we inspect the sign
and magnitude of their corresponding coefficients.

Figure 2 shows the effect of interpretations based on regression
coefficients: a high positive weight means the interpretation is use-
ful, zero means it is ineffective, and negative means it is harmful. It
is not guaranteed that the strengths of multiple interpretations are
combined when they are displayed at the same time. This is due
to confounding factors such as information load—the player might
feel distracted when too much information is displayed on the inter-
face and thus perform worse. The additional effects of combining
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interpretations are “combo gain” and “combo loss” (Figure 2). For
example, combining guesses and evidence has a negative effect on
novices; the loss is computed by comparing the “guesses+evidence”
coefficient with the arithmetic sum of the “guesses” and “evidence”
coefficients.

The interpretation that helps novices is not the same as what
helps experts. For experts, highlight is the most helpful individual
interpretation, while for novices, evidence is the most helpful. For
experts, the combination of highlight and evidence achieves extra
gain, which is reasonable because this combination adds highlights
to the evidence, making the contrast more intuitive. However, the
same combination does not show additional benefit for novices,
potentially due to information overload.

We hypothesize that the main difference between experts and
novices is that experts can use evidence more effectively. Question
highlighting requires less multitasking than evidence: players have
to look away from the question they need to answer to take in
the evidence. Quizbowl players likely know when they can glance
down to related training data and can also determine whether the
training data are helpful.

To understand how much variance players display in their skill
and questions in their difficulty, we show their corresponding co-
efficients (Figure 3). The solid horizontal line shows the baseline
accuracy of that player group without any interpretation (the bias
term—or the intercept—of the linear model). Experts show a higher
baseline accuracy, which is not surprising since they are experts;
they also show a larger variance in accuracy within the group, po-
tentially due to the competitive environment; they are also more
sensitive to the difference in question difficulty. To compare these
factors against the interpretations, we show with the dashed hor-
izontal line the combination of all three interpretations. Experts
are less sensitive to the interpretations, potentially due to a higher
confidence in their own guesses.

6.2 How Interpretations Change Player
Behavior

The regression analysis provides a quantitative comparison between
all interpretations in how they affect the player accuracy. However,
accuracy alone does not tell the full story of how they play the game.
This section describes how each interpretation affects the behavior
of the players and how the effect differs for novices and experts.
Ideal players should be both aggressive and accurate: seeing very
few words and answering correctly. Interpretations should help
them reach this goal.

Figure 4 show the average buzzing position of each player group
with and without each interpretation. Novices buzz much later than
experts when no interpretation is enabled (comparing the solid
vertical bars), but buzz at about the same point as experts when
interpretations are enabled, despite a lower accuracy (Figure 3).
This suggests that the novices are too trusting in the computer
teammate, and end up playing too aggressively for their skill level.

We see a similar trend when we plot the density of buzzing
positions (experts in Figure 6 and novices in Figure 5). In all set-
tings, the density shifts earlier: players are more aggressive with
interpretations, especially for novices, which is consistent with Fig-
ure 4. The interpretations allow players to answer correctly earlier.

Shi Feng and Jordan Boyd-Graber

Question:

(This essay) was composed after its author refused to pay a poll
tax to support the Mexican-American war, and its ideology
inspired Martin Luther King, Jr. and Mohandas Gandhi.
Evidence:

him to pay six years of delinquent poll tax. Thoreau refused
because of his opposition to the Mexican-American War and
slavery, and he spent a night in jail because of this refusal.

Figure 7: Interpretations that help players answer a ques-
tion on Civil Disobedience correctly. With the shown part
of the question, three experts answer correctly with the evi-
dence; no expert answer correctly without.

Question:

A book by this man was first published with a preface by An-
dreas Osiander titled Ad Lectorem.

Evidence:

the Ad Lectorem preface to Copernicus’s book was not actu-
ally by him.

Figure 8: Interpretations that fail to convince players.
Three expert players, when presented with the interpreta-
tion (some question text and evidence omitted), rejected the
computer’s correct guess (Copernicus) and answered differ-
ently.

Especially for novices with highlights, the distribution of correct
buzzing positions shifts significantly earlier in the questions.
Although novices are helped by visualizations, these visualiza-
tions are not enough to help them discern useful help from mis-
leading help. Novices are too aggressive at the start of the question
with visualizations: they trust the predictions of the system too
much. While experts mentally tune out bad suggestions, novices
are less discerning. Visualizations thus must also convey whether
they should be trusted, not just what answer they are suggesting.

6.3 Successes and Failures of Interpretations

We now examine specific cases where interpretations help or hurt
players.

Figure 7 shows an example where interpretations enable players
to answer correctly. A total of twelve expert players answered the
question, and eight answered correctly. The earliest an expert can
answer correctly without the evidence was at 72% of the question,
while the three experts with the evidence all answer correctly before
50%. With the evidence and highlight, players can infer from the
keywords that the author is Thoreau and that the guess is likely
correct. The computer shows a salient training example and is
effective in convincing the players that the retrieved evidence is
correct.

Figure 8 shows a failure to convince, where the combination of
highlight and evidence fails to convince the player of the computer’s
correct guess: three expert players rejected the computer’s predic-
tion and provided different answers, relatively early in the ques-
tion (before 50%). The information provided by the evidence is that
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Copernicus has a book with a preface named Ad Lectorem, this piece
of evidence strongly supports the computer’s guess Copernicus.
However, it is expressed differently than the question, with an
unrelated but confusing “not” in the middle of the sentence.

7 DISCUSSION

The evaluation we present is grounded in a realistic setting, but also
task-specific. This section discusses how our method can be directly
applied to other settings, its limitations, and how we can incorporate
other components such as an eye tracker to our framework for a
more fine-grained assessment of interpretability.

7.1 Forms and Methods of Interpretation

Interpretations take on many forms, and within each form we have
multiple methods to generate the interpretation. For example, to
highlight salient input features for image classification, we can use
variants of input gradient [4, 60]. To optimize the generalizability
of our results (despite being task-specific) and demonstrate the
flexibility of our method, we focus on a comparison between forms
of interpretation. To select one method of each form, we choose
a high-performance linear model for its canonical interpretations.
Our evaluation framework, including the interface and the regres-
sion analysis, can be directly applied to a different comparison—one
between multiple methods of the same form. This comparison is
particularly useful in the case of neural models, where all existing
interpretations are some approximation, and the evaluation of how
faithful they are to the model is crucial.

7.2 Intrinsic and Extrinsic Evaluation

Our approach is an extrinsic evaluation [47]. The task is played
by thousands who compete in regularly. Using Quizbowl allows a
contextual, motivated evaluation of whether an interpretation is
useful. In contrast, intrinsic evaluation relies on the interpretation
alone. It is more direct but limited. In tasks where no ground-truth
explanation is available, the most tractable and commonly used
method is to construct ground-truth using a simpler model as a
benchmark for interpretability. For example, weights of linear mod-
els are used for evaluating input highlight explanations [40, 46].
This is restricted to tasks where the benchmark model performs
similarly to the complex model that requires interpretation, and it
does not work in application-grounded setting (Section 3).

Extrinsic evaluations are hard to design, as they are affected by
more factors, especially humans’ trust. When a user does not trust
the model and ignores it, the difference in the performance is not
affected by the explanations at all. Narayanan et al. [47] uses “alien”
tasks to enforce trust, tasks that humans do not have knowledge
of. Our approach, in contrast, considers trust as an inherent part
of the cooperation: good interpretations should be consistent and
intuitive to convince humans to use it.

7.3 Generalizing to Other Tasks

Our method can be applied to natural language tasks other than
Quizbowl, although Quizbowl!’s characters make it uniquely suit-
able. To use our interface for some other text classification task, for
example sentiment analysis or spam detection, one can convert the
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task into an incremental version where the input is shown word-by-
word. Time limitation or competition can be added to encourage
the users to pay attention to visualizations [47]. One task related to
Quizbowl has wide real world application: simultaneous interpreta-
tion (or simultaneous translation, not to be confused with model
interpretation). Interpreters need to trade off between accuracy
and delay, much like Quizbowlers need to balance accuracy and ag-
gressiveness. The underlying mechanism of the QANTA buzzer [21]
also resembles how simultaneous translation systems handle this
trade-off [17].

7.4 Limitations

First, because we compare visualizations individually and in com-
binations, their placement is fixed to avoid confusing the players.
The fixed placement leads to uneven exposure to the users, so they
might pay less attention to some visualizations than others. If we
focus on individual visualizations, one way to resolve this issue is
to display the interpretation in a single fixed location, for example
below the question area. This would lead to a fair display of dif-
ferent visualizations without confusing the users. However, one
single location might not suit all visualizations: for example, input
highlight should collocate with the input, while evidence is best
displayed next to the input for comparison.

Visualizations displayed on our interface change from question
to question, and the randomization (Setup) might confuse the users.
Before answering questions, each user sees a tutorial that walks
through the components of the interface, but this can be improved
by a set of warm-up questions to familiarize the users of the in-
teraction, which we will implement in future studies. In addition,
we can randomly sort the questions instead of the visualizations,
so the users see the same layout for multiple questions, reducing
context switches and consequently the cognitive load.

Another limitation of our study is that, when a player’s per-
formance improves with some interpretation, we cannot tell how
much of that improvement comes from the player using that in-
terpretation. We cannot derive causality from correlation. The key
missing factor is how much attention the player gave the interpre-
tation, and how much the decision is based on that. The attention
the player gave each interpretation could be measured using an eye
tracker, and we leave this to future work.

7.5 Future Work

While we focus on broad categories of interpretations to reveal that
some visualizations are more effective than others (e.g., highlighting
is more useful than guess lists), we can also use this approach
to evaluate specific highlighting methods in a task-based setting.
This can help reveal how best to choose spans for highlighting,
which words are best suited for highlighting, and how to convey
uncertainty in highlighting.

While our evaluation focuses on the downstream task, we can
expand our analysis to measure how much users look at visualiza-
tions and in what contexts (e.g., with an eye tracker). This would
reveal situational usefulness of visualization components; if, for
example, highlighting were only useful to distinguish when two
guesses had similar scores, we could decrease cognitive load by
only showing highlights when needed.
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A tantalizing extension is to make these modifications auto-
matically, using the reward of task performance to encourage a
reinforcement learning algorithm to adjust interface elements to
optimize performance: such as changing font sizes, setting buttons
for users to explicitly agree or disagree with model predictions, or
modifying the highlighting strategy.

8 CONCLUSION

We propose and demonstrate an evaluation of interpretation meth-
ods in a human-A1 cooperative setting. We focus on the natural
language domain and use a question answering task derived from
a popular trivia game, Quizbowl. Our experiments with both ex-
perts and novices reveal how they trust and use interpretations
differently, producing a more accurate and realistic evaluation of
machine learning interpretability. Our results highlight the impor-
tance of taking the skill level of the target user into consideration,
and suggests that, combining interpretations more intelligently
and adapting to the user, we can further improve the human-ar1
cooperation.
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