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ABSTRACT
Human-in-the-loop topic modeling allows users to guide the
creation of topic models and to improve model quality without
having to be experts in topic modeling algorithms. Prior work
in this area has focused either on algorithmic implementation
without understanding how users actually wish to improve the
model or on user needs but without the context of a fully in-
teractive system. To address this disconnect, we implemented
a set of model refinements requested by users in prior work
and conducted a study with twelve non-expert participants to
examine how end users are affected by issues that arise with a
fully interactive, user-centered system. As these issues mirror
those identified in interactive machine learning more broadly,
such as unpredictability, latency, and trust, we also examined
interactive machine learning challenges with non-expert end
users through the lens of human-in-the-loop topic modeling.
We found that although users experience unpredictability, their
reactions vary from positive to negative, and, surprisingly, we
did not find any cases of distrust, but instead noted instances
where users perhaps trusted the system too much or had too
little confidence in themselves.

INTRODUCTION
Topic modeling helps users understand vast document collec-
tions when there are too many documents or too little time to
read individual documents: a journalist processing the reports
surrounding breaking news or a legal team finding interest-
ing e-mails during discovery. Topic modeling automatically
discovers the themes (topics) in large corpora of unstructured
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text [7] by modeling the intuition that groups of words that
form a common theme appear more often together than not;
the discovered topics are sets of words (e.g., “football, touch-
down, NFL, . . . ”), and each document can contain multiple
topics. However, traditional topic models can include poor
quality topics [30] or can be misaligned with a domain expert’s
understanding of the corpus [23]. Pre-processing techniques
and parameter tuning [36] can improve model quality, but typi-
cally require many time-consuming iterations and can only be
performed by an algorithm expert. Human-in-the-loop topic
modeling (HL-TM) aims to solve these problems by allowing
end users who are not experts with topic modeling algorithms
to directly refine the model (e.g., changing which words are
included in a topic, or merging or splitting topics).

HL-TM has largely implemented topic model refinements
based on what algorithm developers assume users want, as
well as algorithm concerns, such as which refinements are
the most straightforward to implement [23, 10, 21, 26]. In
contrast, Lee et al. [27] employed a user-centered approach to
identify a set of topic refinement operations that users expect
to have in a HL-TM system. However, because no existing im-
plementation supported the set of refinement operations (e.g.,
add a topic word, change word order, merge topics), they used
Wizard-of-Oz refinements: the resulting topics were updated
superficially—not as the output of a data-driven statistical
model (the goal of topic models). Thus, this study is limited,
as it ignores the common interactive machine learning issues
that arise in a fully interactive system—such as, unpredictabil-
ity, latency, and complexity—that can affect user experience
and impact how users interact with a HL-TM system.

To address these limitations we implemented a broad set of re-
finements operations [27, 31] in a single system: add word, re-
move word, remove document, change word order, split topic,
merge topics, and add to stop words. Unlike in Lee et al. [27],
where refinements were immediately applied only in the in-
terface and were not saved to the backing model, in our study



participants chose when to “save” and update the backing
model with their refinements. We evaluated this fully interac-
tive, user-centered HL-TM system with 12 participants who
were not experts in topic modeling. This system is also fast
enough to support (and study) interactive use of fine-grained
topic modifications, unlike prior systems [21, 10, 23] (e.g.,
early HL-TM systems took 5−50 seconds for each update [23],
whereas ours took .09− .63 seconds to update after saving dur-
ing the user study). In addition to observing how participants
employed the refinements to improve a topic model, we quali-
tatively assessed overall experience and the potential impacts
of common interactive machine learning challenges, such as
unpredictability and latency.

Participants subjectively and objectively improved topic model
quality using the given refinements. Similar to Lee et al. [27],
simple refinements, such as remove word and change word or-
der were most common, however, unlike Lee et al. [27], usage
did not align perfectly with perceived utility, as participants
found change word order to be one of the least useful refine-
ments. Our fully interactive system also exposed previously
hidden issues: unexpected results from using refinements and
an inability to track model changes. Participants also varied in
when and why they saved their local updates to the underlying
model. Additionally, participants who had more trust in the
system (or perhaps less confidence in themselves) were not as
frustrated by unpredictability as others.

This work makes the following contributions: (1) efficient
asymmetric prior-based implementation of a broader set of
user-centered refinement operations than has been previously
implemented in a single system; (2) extension of a previous,
limited HL-TM user study [27] to this fully interactive system;
(3) understanding of how interactive machine learning issues
such as unpredictability, trust, and lack of control impact
HL-TM usage and design; and (4) design principles for user-
centered HL-TM systems.

BACKGROUND
Topic modeling automatically identifies the themes or topics
that occur in a collection of documents. A common approach
is Latent Dirichlet Allocation (LDA) [4], which is a generative
statistical model that models each document as a distribution
of topics and each topic as a distribution of words. Here,
we provide a brief background of LDA and existing HL-TM
systems. We also discuss design challenges for interactive
machine learning systems more generally.

Latent Dirichlet Allocation
LDA [4] is a generative model, which assumes that each docu-
ment d is generated from a fixed set of k topics. Each topic is
a multinomial distribution, φz, over the vocabulary, V . Each
instance of a word, or token, wi, is generated by sampling a
topic assignment zi from the document’s topic distribution θd ,
followed by sampling the selected topic’s distribution φzi , to
generate a token wi.

The multinomial distributions θd and φz are drawn from Dirich-
let distributions that encode sparsity—how many words you
expect to see in a topic or how many topics in a document—
and can also incorporate expert knowledge from users. Below,

we show how to adjust the Dirichlet hyperparameters, α and
β , to encode user information about documents (α) and topics
(β ).

Given this model, we need to find the distribution that best
explains our observed documents. Griffiths and Steyvers [17]
propose a collapsed Gibbs sampling based method. In col-
lapsed Gibbs sampling, the probability of a topic assignment
z = t in document d given an observed token, wi, and the other
topic assignments, z_, is

P(z = t |z_,w) ∝ (nd,t +α)
nw,t +β
nt +V β

. (1)

Here, z_ are the topic assignments of all other tokens, nd,t
is the number of times topic t is used in document d, nw,t
is the number of times token w is used in topic t, and nt
is the marginal count of the number of tokens assigned to
topic t. For traditional topic models, the Gibbs sampler assigns
latent topics Z for all tokens in the corpus, going over all
the documents in the corpus repeatedly until the algorithm
converges.

The state of the sampler represents the algorithm’s best guess
of the topic assignments for every token. Adding a human in
the loop requires the user to be able to inject their knowledge
and expertise into the sampling equation to guide the algorithm
to better topics.

Human-in-the-loop Topic Modeling
Compared to traditional tools that visualize static topic mod-
els [15, 13, 9], HL-TM provides mechanisms to allow end
users to refine changing topic models. Numerous tools have
been designed around this concept, each implementing a vari-
ety of refinements, but without extensive user studies on real
world-tasks to show the refinement implementations match
user expectations. Andrzejewski et al. [3], building on Boyd-
Graber et al. [6], introduced a statistical framework for users
to specify pairs of words that should or should not belong to
the same topic through “must-link” and “cannot-link” con-
straints. This framework has been extended by numerous
HL-TM tools [23, 11, 33]; however, this approach limits the
possible set of refinements that can be supported and does
not match users expectations in that end users typically do
not think of specifying model refinements as pairwise word
correlations [27].

Other HL-TM tools take alternative approaches, such as
UTOPIAN [10], which uses nonnegative matrix factorization
and supports creating, splitting, and merging topics, in addi-
tion to changing word weights. Lund et al. [28] also uses a
fast matrix-factorization approach but only supports a limited
set of interactions. ConVisIT [21] uses fragment quotation
graphs and supports splitting and merging topics. Finally, Dis-
tillery [31] uses informative priors to support merging and
removing topics, as well as adding and removing topic words
and adding to stop words. However, no prior implementation
supports the complete set of refinement operations requested
by users [27].



Interactive Machine Learning Design Challenges
Interactive machine learning—also known as mixed-initiative
or human-in-the-loop systems—incorporate human input to
produce an output or a decision. Designers of these must
account for challenges inherent in machine learning, which
deviates from traditional user interface design. While user
interfaces should provide immediate updates [29], be pre-
dictable [18], ensure the user feels in control, and reduce short
term memory load [34], interactive machine learning systems
are commonly slow, unpredictable, share control between user
and system, and are complex [2, 19].

Prior work has examined how predictability, control, and ac-
curacy affect the user experience. Gajos et al. [14] showed
that increasing predictability and accuracy lead to improved
satisfaction, while Kangasraasio et al. [24] showed that al-
lowing users to see the predicted effects of an action before
committing to it can improve task performance and acceptance.
Similarly, users of PeerFinder—a tool that recommends simi-
lar students based on academic profiles—were more confident
and engaged when given more control even with the negative
effect of added complexity [12]. In this work, we explore how
users are affected by complexity, unpredictability and lack of
control in HL-TM.

REFINEMENT IMPLEMENTATION
Prior work [27, 31] identified a set of refinements that users
expected to be able to use in a HL-TM system. There is no
implementation for the broad set of user preferred refinements,
so Lee et al. [27] simulated refinements using a Wizard-of-
Oz method. To truly evaluate user experience with a fully
functional HL-TM system, we implemented seven refinements
requested by users: add word, remove word, change word
order, remove document, split topic, merge topic, and add to
stop words.

These refinements include the six top refinements identified,
but not implemented, by Lee et al. [27], except for merge
words. Merge words was discussed in that study as a means
for organizing topic words in the interface rather than a deeper
specification that should be implemented in the model. We
also included two refinements that were not suggested by users
in Lee et al. [27], perhaps due to that study’s method: merge
topics did not arise because users only refined individual topics
and add to stop words may have been overlooked because the
study used a generic corpus with a well-curated stop words
list.

Refinement Implementation
When a user provides feedback to a topic model, we view this
as correcting an error the model made. We can thus divide
this feedback into two broad classes: forgetting bad things the
model learned and injecting new knowledge into the model.
Forgetting is accomplished by invalidating the topic-word
assignments for targeted word types. This is equivalent to the
model seeing that word for the very first time, allowing it to
make better decisions. In tandem with forgetting, injecting
provides hints that encourage the algorithm to make better
decisions going forward.

Injecting information happens through modifying the Dirichlet
parameters for each document, α , and each topic, β .1 Re-
call the Gibbs sampling conditional probability P(z = t |z_,w)
(1), which has two parts: how much a document likes a
topic—(nd,t +αd,t)—and how much a topic likes a word—
(nw,t + βw,t). The priors are added to the topic assignment
counts; thanks to the conjugacy of multinomial and Dirich-
let distributions, these priors are sometimes called “pseudo-
counts”. Our HL-TM takes advantage of this by creating pseu-
docounts to encourage the changes users want to see in the
topic.

The refinement operations are:

1. Add word: to add the word w to topic t we forget w from
all other topics and encourage the Gibbs sampler to assign
topic t for all of the word’s tokens, wi. For the former,
we forget the tokens’ topic assignments. For the latter, we
increase the prior of w in t by the difference between the
topic-word counts of w and topic’s top word w′ in topic t
(i.e., nw′,t −nw,t ).

2. Remove word: to remove the word w from topic t we need
to forget all the word’s tokens wi from t and discourage
the Gibbs sampler from reassigning t to the word w. To
discourage the sampler from assigning w to t with a high
probability, we assign a very small prior,2 ε , to w in t.

3. Change word order: to reorder word w2 to appear before
word w1 in topic t we need to ensure that w2 is ranked
higher than w1 in the topic t. To enforce this, we increase
the prior of w2 in t by the difference between the topic-
word counts (i.e. nw1,t − nw2,t). Intuitively, this operation
resembles providing supplemental counts to w2 so that it
ranks higher than w1 in the topic.

4. Remove document: in LDA, each document can be repre-
sented as a probability distribution over topics. To remove
the document d from topic t, we forget the topic assignment
for all words in the document d and assign a very small
prior,2 ε , to the topic t in αd .

5. Merge topic: merging topics t1 and t2 means the model will
have a combined topic that represents both t1 and t2. We
assign t1 to all tokens that were previously assigned to t2.
This effectively deletes t2 from the model and decrements
the number of topics.

6. Split topic: to split topic t the user provides a subset of
the topic’s words, or seed words, which need to be moved
from the original topic, t, to a new topic, tn. To implement
this, we invalidate the original topic assignment of all seed
words, create a new topic by incrementing the number of
topics, and assign a large prior for each of the seed words,
ws, in the new topic, tn. The Gibbs sampler’s job is to sort
which words land in which of the new child topics.

7. Add to stop words: adding the word w to global stop words
removes w from all topics. We exclude that w from the
vocabulary, V . This ensures that the Gibbs sampler will
ignore all occurrences of w in the corpus.

1To implement these refinement operations, we make use of the
vector interpretation (rather than scalar) of these priors. Thus, αd is a
K dimensional vector for each document d and φk is a V dimensional
vector for each topic k.
2We use ε = 0.000001 for our experiments.



Interface
The HL-TM user interface (Figure 1) represents a topic model
as a list of topics on the left panel, each displayed as their
first three words. Selecting any topic in the list shows the
full topic view in the right panel, which consists of the top
20 topic words and snippets of the top 40 topic documents.
Documents are ordered by their probability for the topic t
given the document d, or p(t |d). Each word, w, is ordered
and sized by its probability for the topic t, or p(w | t); this
simple word list representation provides users a quick topic
understanding [1, 35]. Hovering or clicking on topic words
highlights the word in the displayed document snippets.

Users refine the topic model using simple interactive mecha-
nisms. We require users to click “save” to incorporate their
specified refinements instead of applying them immediately
because the system does not support reverting the model after
an update (we discuss batch vs. immediate refinements in
Discussion and Future Work). Instead, the interface displays
intermediate feedback, such as bold and italicized words, rep-
resenting users’ specified refinements before saving, and any
or all of the outstanding refinements can be undone. When
users press “save”, their specifications are incorporated into
the model (Refinement Implementation).

QUALITATIVE EVALUATION OF A HL-TM SYSTEM
Our fully interactive user-centered HL-TM system focuses on
topic model novices. Participants explored and refined a model
built from a Twitter corpus of complaints about airlines, fol-
lowed by a semi-structured interview. The study focused on a
broad set of operations in a fully interactive system (compared
to [27]), as well as understanding how interactive machine
learning challenges–predictability, complexity, and latency–
complicate topic modeling. For refinements in HL-TM, we
divide predictability into control and stability, where control is
how much the user’s refinement is reflected after the model up-
dates (e.g., a specified word is added to the topic), and stability
is how many other changes not specified by the user appear in
the model (e.g., other unspecified words are added). Instability,
in particular, is a concern with HL-TM: small changes to the
model can propagate in unexpected ways.

Method
The study protocol included a training task to familiarize users
with topic modeling, a test task to refine a topic model, and a
semi-structured interview on the experience.

Participants
We recruited twelve participants (five male, seven female)
from campus e-mail lists. They were on average 30.5 years
old (SD= 10.3) and fluent English speakers. Educational back-
grounds included human-computer Interaction (5), informa-
tion management (2), education (1), mechanical engineering
(1), computer science (1), psychology (1), and international
government (1). Experience with topic modeling varied (nine
with no experience, three with limited) as did experience with
data science or machine learning (seven with no experience,
three limited, two significant). Each participant got a $15
Amazon gift card. We refer to participants as P1–P12.

Dataset and Topic Model
We used a separate dataset and model for the training and test
tasks. For training we generated a model with 10 topics from
a dataset of 2,225 BBC news articles corresponding to stories
in five topical areas (business, entertainment, politics, sports,
tech) from 2004−2005 [16]. For the test we used the Twitter
US Airline Sentiment dataset from Kaggle,3 which includes
14,485 total tweets from February 2015 directed to six popu-
lar airlines (American, Delta, Southwest, United, US Airways,
Virgin America). The dataset includes manually applied labels
organizing the tweets into “positive” (2,363 tweets), “neu-
tral” (3,099 tweets), and “negative” (9,178 tweets) sentiment
categories. We modeled the 9,178 negative sentiment tweets
with 10 topics using a standard stop words list4 and 300 Gibbs
sampling iterations. For each subsequent update during the
task, 30 Gibbs sampling iterations were run. Table 1 shows
the initial set of topics (henceforth T1–T10). We automatically
computed topic quality for each topic using a topic coherence
metric based on Normalized Pointwise Mutual Information [5,
NPMI] with Wikipedia as the reference corpus [25].

Procedure
Sessions were designed to take one hour, but in practice took
up to 90 minutes, and they were conducted remotely with au-
dio and screen-capture recording. We introduced participants
to topic modeling and to the HL-TM tool using the training
topic model. The interviewer described each refinement opera-
tion and asked the participant to practice sample operations.

Participants then reviewed the raw tweets of the test dataset
in a csv file and were told to imagine they had been asked to
organize these tweets to identify different classes of airline
complaints. They then opened the HL-TM tool with the test
topic model (Figure 1) and were instructed that an initial model
of 10 topics had been generated to help summarize the tweets,
but that they may notice flaws and may need to refine the
model. The interviewer asked a few introductory questions
about the model and the tool, then instructed participants to
think aloud while refining the model using the tool until they
felt it best categorized the tweets into types of complaints.
Participants were given a maximum of 20 minutes for the
task, and afterwards they answered semi-structured interview
questions about the task, model, and tool.

Data and Analysis
We logged user interaction with the HL-TM tool, including
the state of the model at each iteration, when the user pressed
“save”, and refinement usage. The task audio was also tran-
scribed and coded along with the responses for the post-task
interview. Coding followed a thematic analysis approach [8] to
uncover the overarching themes represented by more specific
codes within the data. The codebook was organized into five
themes containing a total of 40 codes: challenges (10 codes),
tool requests (10), refinement requests (8), save strategies (6),
and refinement strategies (6). To determine agreement, two
researchers independently coded transcripts for a random par-
ticipant. Of 21 instances, the researchers agreed on the codes
for 12 and disagreed on nine. Disagreements were resolved
3https://www.kaggle.com/crowdflower/twitter-airline-sentiment
4https://raw.githubusercontent.com/mimno/Mallet/master/stoplists/en.txt



Figure 1. User interface for the HL-TM tool. A list of topics (left) are represented by topics’ first three topic words. Selecting a topic reveals more detail
(right): the top 20 words and top 40 documents. Hovering or clicking on a word highlights it within the documents. Users can refine the model using
simple mechanisms: click “x” next to words or documents to remove them, select and drag words to re-order them, type new words from the vocabulary
into the input box and press “enter” to add them, select a word and click the trash can to add it to the stop words list, or click “split” and “merge” (to
the right of the topic words) to enter into split and merge modes.

and codes clarified through discussion, and a second round
of coding on transcripts for a different random participant
achieved better agreement (researchers agreed on codes for
14 of 15 instances). One researcher then coded the remaining
transcripts.

Findings: Simplicity and Improvement
We discuss findings related to refinement and save strategies,
ability to improve the topic model, and challenges faced in
using a fully functional HL-TM system.

Users prefer simple refinements
Like Lee et al. [27], simple refinements, such as remove word,
change word order, and add word to stop words were the most
commonly used. While perceived utility aligned with usage in
Lee et al. [27], which is not surprising as refinements did not
affect the model, there were two misaligned cases in our study:
change word order and add word (Table 2). Change word
order was the second most common refinement, yet only two
of the 10 participants who used it in the task thought it was one
of the most useful; alternatively, add word was only the fourth
most common refinement, yet all six participants who used it
thought it one of the most useful. These refinements provide
varied control; we discuss this discrepancy in Discussion and
Future Work.

Detailed refinements usage and strategies
We recorded which refinements participants used. The most
common refinement, remove word, was used by 11 partici-
pants a total of 270 times, followed by change word order
(10 participants, 136 times), add to stop words (seven partic-
ipants, 90 times), and add word (six participants, 41 times).

Other refinement operations were used by only three or fewer
participants (Table 2).

When we asked participants the strategies they used, we got
similar answers: remove irrelevant words (9 participants), re-
move typos (2), skip bad topics (2), group common words (2),
change word order to name (2), move irrelevant words to the
end of the list (1) , and pinpoint refine (1). To remove irrelevant
words, participants were not consistent, instead employing
both remove word and add to stop words. For example, P6
described that he would, “first remove all similar words (e.g.,
make/makes) in each topic and then put all generic words in
the stop words list.” Two participants described using change
word order not only to fix the relative importance of words,
but to name a topic, which they did by dragging three de-
scriptive words to the front of the word list (each topic was
represented by its top three words in the topic list on the left of
the interface). A more expected usage of change word order
came from P4, who said, “I reordered the airline names to go
to the end as I was not interested in what airlines attracted
complaints.” For dealing with poor quality topics, two par-
ticipants described their strategy to ignore bad topics, while
one participant described a pinpoint refinement strategy in
which she would choose a single topic word from a seemingly
random topic and then use add word and remove word to make
the topic more about that single word. Finally, we also noted
cases of participants using refinements to explore the model.
For example, P10 used the add word refinement to see if words
showed up in the topic’s documents, by first adding a word and
then hovering over it to see it highlighted in the documents.
P10 would then undo the added word if it did not appear in
any of the top documents.



Table 1. Initial test topic model of 10 topics generated for the negative tweets from the airline Twitter corpus. Topics are represented by their top words.
Observed topic coherence calculated by NPMI, which deems topics to be of higher quality if they contain words that appear more frequently together
than apart in a reference corpus.

Topic ID NPMI Topic Words
T1 .031 hold, usairways, americanair, call, back, phone, hours, wait, change, minutes
T2 .014 southwestair, virginamerica, ticket, united, amp, fly, website, boarding, time, guys
T3 .024 flight, usairways, delayed, hrs, hours, late, miss, made, delay, connection
T4 .045 united, bag, bags, luggage, lost, baggage, check, find, airport, time
T5 .015 jetblue, http, time, united, email, long, jfk, give, amp, guys
T6 .029 americanair, usairways, people, weather, due, day, airport, hotel, issue, issues
T7 .022 united, plane, gate, waiting, hour, seat, sitting, crew, delay, min
T8 .009 usairways, americanair, make, problems, days, travel, refund, miles, told, booking
T9 .030 service, customer, united, usairways, worst, airline, experience, agents, staff, flying
T10 .025 flight, cancelled, southwestair, flightled, americanair, flights, today, flighted, late, tomorrow

Table 2. List of refinements ordered by in-task usage with count of par-
ticipants that selected the specified refinement as one of the most useful
or least useful refinements. Simple, word-level refinements are both the
most commonly used and judged to be most useful (except for change
word order: only two of the 10 participants who used it found it to be
most useful).

Refinement Most
Useful

Least
Useful

Used
By

Total
Usage

Remove word 5 1 11 270
Change word order 2 1 10 136
Add to stop words 3 0 7 90
Add word 6 1 6 41
Remove document 0 3 3 20
Merge topic 2 3 2 5
Split topic 1 5 1 1

When and why do users choose to save their changes?
Users refine the topic model by applying refinements and then
separately clicking “save”. Before saving, users can undo
some or all of their changes. To understand when participants
choose to save and because the HL-TM system does not support
undo after saving, the system did not enforce a particular save
strategy, such as after every refinement or a set number of
refinements. Instead, participants could specify a series of
local refinements, but these would only be applied to the model
once they clicked “save”, which they could do at any time.
Save usage varied substantially (min = 0, max = 42, avg = 14,
SD = 12); see Table 3.

Users were asked about strategies for when to click “save”:
after each refinement (4 participants), after each topic modified
(2), after a batch of refinements (2), when sure (2). These
varied strategies suggest that HL-TM should allow users to
choose when to save their refinements. Additionally, two
participants forgot to save, and another was afraid to save,
which suggests that systems should remind users to save and
support undo. “Save” counts and strategy feedback (Table 3).

P8 saved the most frequently (42 times) and described his
strategy as saving after each refinement, saying, “I always
press the save button when I make any refinements.” P9 saved
28 times, saying, “only when I am very sure about the result, I

Table 3. Save strategies described by participants and the number of
times each participant saved during the task, ordered from most to least
iterations. There was no dominant strategy: save usage and strategy
varied across participants.

Participant Iterations Save Strategy
P8 42 After each refinement
P9 28 When sure

P12 19 After a batch of refinements
P2 19 After each topic modified
P7 18 After a batch of refinements

P10 16 After each refinement
P11 15 When sure
P4 9 After each topic modified
P5 8 After each refinement
P1 3 Forgot to save
P6 1 Forgot to save
P3 0 Afraid to save

would press the save button.” In contrast, P6 and P1 reported
that they forgot to save, and four other participants stated that
remembering to save was one of the main challenges of using
the tool. P12 wondered, “if moving the [save] button over from
the side would have helped me remember [to save].” Finally,
P3 was afraid to save, saying, “I didn’t want to start from
scratch.” She suggested that having a history of refinements
that could have been rolled back might mitigate timidity.

Did users improve the model?
To determine if participants improved the initial topic model
using the HL-TM tool, we measured the quality of the initial
topic model and the final topic models using qualitative and
quantitative methods.

All participants started with the same model. We computed
topic quality for the initial model and final models using a
topic coherence metric based on NPMI [25]. The average
topic coherence for the 10 topics of the initial model was .024
(min = .01, max = .04, SD = .01) (per-topic coherence shown
in Table 1). The average topic coherence for the final model
for each participant ranged from .021 to .037 (M = .027, SD=
.005), which a paired t-test showed a significant improvement
from the refinement process, t(10) = 2.89, p = .037.



Participants gave their satisfaction with the topic model before
and after the task on a scale from one to seven, with one being
not at all satisfied and seven being very satisfied. The average
subjective model satisfaction increased from 4.7 (SD = 1.29)
before the task to 5.2 (SD = 0.83) after the task. While this
increase was not statistically significant by a Wilcoxen signed
rank test (Z = −1.04, p = .15), six of the 12 participants
commented unprompted after the task that their final model
provided a good organization of the complaints. For example,
P5 said, “I’m overall happy with the [final] model and I like
that I can use the tool to make the changes that I want.”

Participants gave the best and worst topics in the initial model
(Table 1). Most participants agreed the best topics were T4 (4
participants), T3 (3), T1 (3), and T9 (3) and the worst topics
were T5 (8), T6 (3), and T8 (2), which correlates with the
observed topic coherence. The three best topics by NPMI are
T4 (NPMI=.045), T1 (.031), and T9 (.030), while the three
worst topics are T8 (.009), T2 (.014), and T5 (.015).

What challenges do users face?
To understand how general interactive machine learning
challenges affect users of HL-TM, we coded four common
challenges—tracking complex changes, instability, lack of
control, latency—and identified challenges with our system.
Participants also stated which challenges were most and least
frustrating during the task. Of the four common challenges,
tracking complex changes was the most frustrating, followed
by instability, lack of control, and latency was the least frus-
trating challenge.

Tracking complex changes
When users click “save”, the algorithm updates the model, and
the resulting model may have substantial changes. To explore
whether participants could track these changes, they rated
their agreement with the statement, “I was able to remember
what the model looked like before my updates” on a scale
from one, meaning no agreement, to seven, meaning complete
agreement (Figure 2, D) and discussed how this affected them.
The average response was 3.7 out of 7 (SD = 1.7), and four of
the 12 participants said this was the most frustrating challenge
while one said it was the least.

Five participants said not being able to remember what the
model looked like hurt their performance. For example, P9
said, “a moment ago, I was satisfied with this topic, but now
it’s gone, and I don’t think I am, but I can’t remember,” and
P3 and P8 felt the lack of “undo” intensified this challenge.
P3 said, “I think this is a big issue–I’d like to know if I’m cap-
turing the true data–and be able to step back to early versions
of the model before saving,” and P8 said, “I don’t know what
I have done sometimes, and there are no ways to go back . . . ”.
Four participants mentioned a similar challenge, that it was
hard to tell what changed in the model after an update, such
as P10, who “had to brush through all the words to confirm
if [his specified] change occurred,” and P5, who “did not
understand it at first, that the model actually changes, as there
was no feedback or indication.” Finally, three participants
requested a long-term history view of the model, such as P3,
who suggested “having a history of refinements.”

Stability
A user interface should be predictable to support user confi-
dence and understanding [18]; however, interactive machine
learning often violates this principle [2] as these systems com-
bine hidden knowledge—such as previously learned models
or data—with users’ instructions. We describe system pre-
dictability as a combination of stability (no changes other
than those specified occur) and control (the change occurs as
specified).

We asked if participants agreed with the statement, “no
changes other than the refinements I made occurred when I
clicked update” on a scale from one, or no agreement, to seven,
or complete agreement (Figure 2, C). The average response
was 4.1 out of seven (SD = 2.0), and three of 12 participants
said instability was the most frustrating challenge while no
participants said it was the least.

There was a large variance for not only whether users per-
ceived instability but also their reactions to it. After the task,
eight of 12 participants mentioned they had perceived insta-
bility. Of those, two participants found this to be positive.
For example, P6 observed an unspecified change when “new
words were added on to the list to replace the ones I removed.
It made the model better.” P2 noted that after removing some
words from a topic there was “some slight surprise at seeing
words that I had not chosen show up, but I was pretty satisfied
on looking at the results.” Three participants felt neutral about
the instability. For example, P7 said, “[instability] did not
impact” his ability to perform the task, and P4 said, “when I
removed some keywords, other keywords came up. I wasn’t
paying enough attention to this to determine if it helped or
harmed.” Finally, three participants had negative reactions,
such as P9, who was unsure of what had changed in the model
after an update, but stated, “. . . but I remember being happy
with the topic and when that changed it made me unhappy.”
This participant also requested the ability to freeze a topic,
meaning it would not be changed as other refinements were
made.

Control
Similar to the challenge of instability, users should always be
in control of user interfaces [34]; however, interactive machine
learning is by definition a collaboration between algorithm
and user [19]. In this collaboration, we define “control” as
whether the user’s refinements are incorporated into the model
as expected. For example, if a user removes a word from a
topic, the word should not be in the topic after the update.

To explore whether participants felt in control of the system,
they stated on a seven-point scale whether they agreed with the
statement, “the refinements I made were applied as expected
when I clicked update” from not agreeing at all to completely
agreeing (Figure 2, B) and discussed how this affected their
task. The average response was 5.6 out of seven (SD = 1.0),
meaning overall users found the system to be fairly control-
lable. One of the 12 participants said lack of control was the
most frustrating challenge and one said it was the least.

However, during the task seven participants noted frustration
with the lack of control with the interface, and five participants
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Figure 2. Counts for responses on a scale from one to seven for participants’ agreement with statements related to latency (A), lack of control (B),
instability (C), and tracking complex changes (D), with seven meaning they did not experience it and one that they did. Most participants found that
the system updated quickly and refinements were applied as expected, while there was substantial variance for if participants could remember what the
model looked like before updating or if they felt the updated model included other changes than those specified.

specifically observed that change word order was uncontrol-
lable. P4 tried to drag important words to the front of the topic
list and stated that, “the reordering didn’t always get accepted,”
and P8 tried to drag unimportant words to the end of the list
and said, “I tried to move this word and it just goes back up.”

Latency
Prior work in interactive machine learning calls for rapid in-
teraction cycles [2] to minimize attention loss [22] and reduce
short-term memory load [34]. However, many interactive sys-
tems do not provide real-time updates: this latency—the user
has to wait while the algorithm is performing an update—is
typically related to the size of the data and complexity of
the computation. For example, an early HL-TM implementa-
tion [23] took 5 to 50 seconds to update the model based on
refinement operations.

Our refinement implementation is efficient by design, and the
data set used in this user study was relatively small (both in
document size and length), therefore the algorithm updated
almost instantaneously during the task (.09− .63 seconds). No
participant said that latency was the most frustrating challenge
while two participants said it was the least frustrating, and
the average response was 6.3 out of seven (SD = 0.8) for
participants agreement with the statement, “after clicking the
update button, the model updated quickly” (Figure 2, A).

However, for a more realistic corpus size or alternative re-
finement implementation, latency becomes a challenge. We
asked participants to describe how their ability to perform the
task would be affected had the wait time been 10 seconds, 30
seconds, two minutes, or 10 minutes. Most participants felt 10
seconds would be an acceptable time to wait: five participants
felt that waiting 10 seconds would have no effect on the task
and two participants felt that this longer wait time would have
a positive effect, for example, P5 stated that waiting longer

“would be better for me to realize that the tweets have changed.”
For a 30 second wait time, two participants felt this would be
an acceptable wait time without any changes to the interface,
whereas four participants said that changes to the interface

would be required for this longer wait time. P7 worried this
wait would further hinder the ability to remember what the
model looked like before updating, and P3 thought this would
further affect save strategy, suggesting that it would instead be

“better to not ‘save’ changes, but to have highlights to show
what it ‘might’ look like once saved.” Most participants felt
that both two minutes and 10 minutes would be unacceptable
wait times.

Trust and confidence
Trust is a primary design challenge for intelligent systems [32,
20]. An entire sub-field of machine learning focuses on in-
terpretability to build trust and promote adoption of these
systems. Surprisingly, we did not see participants mistrust-
ing the HL-TM system. While users are quick to distrust a
classification system that produces easily identifiable, incor-
rect classifications, topic models have less obvious incorrect
answers.

However, participants sometimes put too much trust in the
system or lacked self-confidence. For example, P10 was con-
fused about a topic word, saying, “if the system coughed it up,
there must be a reason for it, right?” Some participants lacked
confidence in their refinements: P7 said that remove document
is the least useful refinement, because, “I don’t feel comfort-
able removing a document.” And when P5 added words to a
topic, she said, “it’s putting my words on top . . . I’ve added too
many words, which have gone to the top of the list, so either
the algorithm thinks it’s important or it’s because I’ve added
them,” followed by, “I don’t think that it should always give
more importance [to my added words], because I could be
wrong!” This challenge has a direct connection to the issues
of instability and lack of control, which we discuss in more
detail in Discussion and Future Work.

What other requests do users have for the system?
Many participants wanted a better understanding of the model
and the data. For example, two participants requested a better
model overview, such as P7, who wanted to “see the entire list
of the top 20 words for each topic on one screen to allow for



making bulk, faster changes.” Additionally, three participants
wanted to view words or documents across topics, such as
P12 who suggested, “a note or color to indicate that a certain
term appears only in this topic and not in the others.” Two
participants requested enhancing the word in context feature,
such as by scrolling to the selected word or filtering to only
documents containing the word. Three participants wanted to
view more documents than the 40 shown, and two participants
wanted to view the total number of documents for a topic.

Similar to the merge word operation identified by
Lee et al. [27], six participants requested a refinement to add
phrases (instead of just single words), and four participants
requested a refinement to group synonyms and plurals. As an-
ticipated, participants used the add to stop words refinement,
and two participants requested an enhancement to the stop
words functionality, such as being able to view the stop words
list and remove words that have been added to it. However,
seven participants noted confusion between the add to stop
words and remove word refinements, which should be clarified
in future interface design. For example, P5 said, “removing a
word feature is similar to the delete feature, which got me a
bit confused,” and P9 said, “I got confused between removing
keywords from a particular [topic] and the overall [topics],
so I made mistakes in the beginning.” To help better organize
the view, three participants wanted to name topics, noting that
it would be a useful way to remember what the topics are
about, and two participants wanted to reorder topics in the
list. Finally, two participants wanted to delete a topic if it was
particularly bad.

Summary
Participants were frustrated by their inability to track how
the model changed throughout the refinement process. While
participants perceived system instability, they had varied re-
actions (positive and negative). On the other hand, users did
not experience substantial latency or lack of control. We did
not find any cases where users distrusted the system, but users
perhaps trusted the system too much or had too little confi-
dence in themselves. Participants specifically requested the
ability to undo changes after saving and to curate the topic
model view, such as by re-ordering the topic list, removing
poor quality topics, and naming topics. Participants also re-
quested multi-word refinements, such as adding phrases and
grouping synonyms.

DISCUSSION AND FUTURE WORK
We outline implications for future HL-TM system design, dis-
cuss open questions related to interactive machine learning,
and provide a reflection on our HL-TM implementation.

Design Recommendations
Provide richer history: Participants voiced concerns with
their inability to remember the history of the model, and four
of 12 participants said they were unable to tell how the model
has changed after an update. HL-TM interfaces should strive
to support visualization of short term and long term model
changes; users want to track how the model changed through-
out the refinement process. This was the most consistent and
most frustrating issue in the study.

Support undo: When possible, HL-TM should support revert-
ing to prior states of the model: some noted that this made
them afraid to save during the task, while others specifically
requested an undo functionality.

Allow users to choose when to save, but remind them to do
so: We had anticipated needing a separate save action to allow
users to confirm refinements (lacking undo) and to counteract
latency, but we also noted users who created refinements as a
data exploration tool without the intent of having them update
the model. Thus, HL-TM systems should allow users to choose
when to save their refinements to the model instead of forcing
a save. However, because users forget to save, additional
information should be provided in the interface to remind users,
such as a more prominent count of outstanding refinement
operations or a visual cue that displays if they have not saved
recently.

Freeze topics to protect from instability: Users complained
of instability when topics that were once high quality or about
a particular thing had changed. A process, such as freezing
a topic, suggested by one participant as a mechanism to hold
a particular topic constant during subsequent updates, is a
promising solution to this problem and should be incorporated
in future design.

Support multi-word refinements: Participants requested the
ability to add phrases and group synonyms. Group synonyms
could be implemented as the merge word refinement discussed
in Lee et al. [27], not as an update to the underlying model,
but as a way of organizing words in the interface. On the other
hand, add phrases should be implemented in the interface as
an extension to add word (as requested by participants), but
would likely require a more complex modeling approach that
supports n-grams as opposed to single tokens.

Clarify difference between adding a word to stop words
and removing it from a single topic: Future design should
explicitly delineate between removing a word from all topics
(and the modeling process entirely), add to stop words, and
removing a word from a single topic, remove word, as many
participants confused the two operations during the task.

Support user-curated model view: Three participants re-
quested named topics. Two other participants used change
word order for ad hoc topic naming. As this operation is not
always applied as expected, providing a controllable topic
naming functionality will improve user experience. Partici-
pants also requested other techniques for curating their model
view, which should be incorporated in the design of future
systems, such as the ability to re-order the topic list and to
remove poor quality topics entirely.

Open Questions
This is the first system to efficiently implement a full suite of
refinements desired by users in prior work [27, 31], enabling
the study of true human-in-the-loop interactions of a compre-
hensive HL-TM system. We enumerate open questions about
HL-TM design that follow from our findings.

Trust vs. instability and control: Users were not bothered
by instability or lack of control either because they trusted



the system or had little confidence in themselves. Specifically,
users with limited confidence blamed themselves for creating
poor refinements (i.e., when the change did not happen as
anticipated). If system builders do not want novice users to
feel like the “junior partner” in the human-machine collab-
oration, future work should explore whether ensuring users
understand the teaming aspect of these systems can improve
their experience and make unpredictability more acceptable
(and sometimes welcome, as it can drive discovery).

Trust, control, and refinement: Lee et al. [27] studied refine-
ment usage without a refinement implementation, meaning
users did not see the full effect of their refinements on the
model. In that study, remove document was a commonly
used refinement, however, that is not the case in our study.
Before the study participants worried that it may take too
long to determine which documents to remove, while after-
wards noted they lacked confidence to remove a document.
Although Lee et al. [27] considered that refinements that take
too long would hurt usage, lack of trust or confidence in HL-
TM is a new challenge to consider.

Change word order was commonly used, but frustrating to
users, while add word was used less, yet all participants who
used it thought it was useful. This discrepancy highlights the
difference in control of the two refinements: change word
order was unpredictable and thus frustrating, but add word
always worked on the first try.

Save strategy and instability: When users save after a batch
of refinements (as opposed to a single requirement) their in-
tentions are clearer. This in turn minimizes instability as the
system has more information to incorporate into the model.
On the other hand, each refinement may have cascading ef-
fects, and a batch of refinements could therefore appear to
be more unstable than a single refinement. We did not find
a relationship between users’ described save strategies and
their perceived system instability. Future work should explore
the relationship with a specific focus on how much informa-
tion users provide to the system and whether this information
affects the system’s stability and how users react.

Algorithm Reflection
This work proposes an asymmetric prior-based HL-TM im-
plementation. We implemented seven refinement operations
using the proposed algorithm, which can be easily extended
to other refinements, such as creating a new topic using seed
words or deleting a topic. One limitation of this algorithm is
the difficulty to specify word order constraints. For example,
if a user wants to change a word’s position from rank eight to
two in the word list, the algorithm cannot reliably maintain the
exact user provided word order. We argue that topic models
are probabilistic models and during parameter estimation they
can ignore user provided feedback if the underlying data does
not support the user’s hypothesis. For example, if a user wants
to add a word to a topic that only shows up a few times in
the corpus, the model might not put that word in the list of
top ranked words for that topic. Another limitation of our
algorithm is with the split topic refinement; our proposed im-
plementation cannot reliably generate a good quality topic if
the user provides only very few or unrelated seed words.

CONCLUSION
Prior work in HL-TM either implemented refinement opera-
tions without first understanding the needs of end users [23,
21, 10] or identified the refinement operations that users wish
to do [27], but did not implement them. This work is the first
to examine user experience with a fully-functional HL-TM sys-
tem that contains the refinements users want. Specifically, we
validate prior results, such as refinement usage and effective-
ness, and explore how these and user experience are affected
by previously hidden issues, such as unpredictability, trust,
and lack of control. We also present suggestions, such as the
need to visualize complex model changes and support undo.
Non-expert end users used the system to refine a topic model
and we explored how these users perceived and were affected
by common challenges in interactive machine learning, such
as latency, unpredictability, and trust. Participants improved a
topic model using the tool and identified additional refinement
and tool suggestions that should guide HL-TM development.
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