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Abstract

Effective text classification requires experts
to annotate data with labels; these training
data are time-consuming and expensive to
obtain. If you know what labels you want,
active learning can reduce the number of
labeled documents needed. However, estab-
lishing the label set remains difficult. An-
notators often lack the global knowledge
needed to induce a label set. We intro-
duce ALTO: Active Learning with Topic
Overviews, an interactive system to help
humans annotate documents: topic mod-
els provide a global overview of what la-
bels to create and active learning directs
them to the right documents to label. Our
forty-annotator user study shows that while
active learning alone is best in extremely
resource limited conditions, topic models
(even by themselves) lead to better label
sets, and ALTO’s combination is best over-
all.

1 Introduction

Many fields depend on texts labeled by human ex-
perts; computational linguistics uses such annota-
tion to determine word senses and sentiment (Kelly
and Stone, 1975; Kim and Hovy, 2004); while so-
cial science uses “coding” to scale up and systeme-
tize content analysis (Budge, 2001; Klingemann et
al., 2006).

Classification takes these labeled data as a train-
ing set and labels new data automatically. Creat-
ing a broadly applicable and consistent label set
that generalizes well is time-consuming and dif-
ficult, requiring expensive annotators to examine

large swaths of the data. Effective NLP systems
must measure (Hwa, 2004; Osborne and Baldridge,
2004; Ngai and Yarowsky, 2000) and reduce an-
notation cost (Tomanek et al., 2007). Annotation
is hard because it requires both global and local
knowledge of the entire dataset. Global knowledge
is required to create the set of labels, and local
knowledge is required to annotate the most useful
examples to serve as a training set for an automatic
classifier. The former’s cost is often hidden in mul-
tiple rounds of refining annotation guidelines.

We create a single interface—ALTO (Active
Learning with Topic Overviews)—to address both
global and local challenges using two machine
learning tools: topic models and active learning
(we review both in Section 2). Topic models ad-
dress the need for annotators to have a global
overview of the data, exposing the broad themes of
the corpus so annotators know what labels to cre-
ate. Active learning selects documents that help the
classifier understand the differences between labels
and directs the user’s attention locally to them. We
provide users four experimental conditions to com-
pare the usefulness of a topic model or a simple
list of documents, with or without active learning
suggestions (Section 3). We then describe our data
and evaluation metrics (Section 4).

Through both synthetic experiments (Section 5)
and a user study (Section 6) with forty participants,
we evaluate ALTO and its constituent components
by comparing results from the four conditions in-
troduced above. We first examine user strategies
for organizing documents, user satisfaction, and
user efficiency. Finally, we evaluate the overall
effectiveness of the label set in a post study crowd-
sourced task.



Topic words Document Title
metropolitan, car-
rier, rail, freight,
passenger, driver,
airport, traffic, tran-
sit, vehicles

A bill to improve the safety of mo-
torcoaches, and for other purposes.

violence, sexual,
criminal, assault,
offense, victims,
domestic, crime,
abuse, trafficking

A bill to provide criminal penalties
for stalking.

agricultural, farm,
agriculture, rural,
producer, dairy,
crop, produc-
ers, commodity,
nutrition

To amend the Federal Crop Insur-
ance Act to extend certain supple-
mental agricultural disaster assis-
tance programs through fiscal year
2017, and for other purposes.

Table 1: Given a dataset—in this case, the US con-
gressional bills dataset—topics are automatically
discovered sorted lists of terms that summarize seg-
ments of a document collection. Topics also are
associated with documents. These topics give users
a sense of documents’ main themes and help users
create high-quality labels.

2 Topic Overviews and Active Learning

ALTO,1 a framework for assigning labels to docu-
ments that uses both global and local knowledge
to help users create and assign document labels,
has two main components: topic overview and ac-
tive learning selection. We explain how ALTO uses
topic models and active learning to aid label induc-
tion and document labeling.

Topic Models Topic models (Blei et al., 2003)
automatically induce structure from a text corpus.
Given a corpus and a constant K for the number of
topics, topic models output (i) a distribution over
words for each topic k (φk,w) and (ii) a distribution
over topics for each document (θd,k). Each topic’s
most probable words and associated documents
can help a user understand what the collection is
about. Table 1 shows examples of topics and their
highest associated documents from our corpus of
US congressional bills.

Our hypothesis is that showing documents
grouped by topics will be more effective than hav-
ing the user wade through an undifferentiated list
of random documents and mentally sort the major
themes themselves.

Active Learning Active learning (Settles, 2012)
directs users’ attention to the examples that would

1Code available at https://github.com/
Foroughp/ALTO-ACL-2016

be most useful to label when training a classifier.
When user time is scarce, active learning builds a
more effective training set than random labeling:
uncertainty sampling (Lewis and Gale, 1994) or
query by committee (Seung et al., 1992) direct
users to the most useful documents to label.

In contrast to topic models, active learning pro-
vides local information: this document is the one
you should pay attention to. Our hypothesis is that
active learning directing users to documents most
beneficial to label will not only be more effective
than randomly selecting documents but will also
complement the global information provided by
topic models. Section 3.3 describes our approaches
for directing user’s local attention.

3 Study Conditions

Our goal is to characterize how local and global
knowledge can aid users in annotating a dataset.
This section describes our four experimental con-
ditions and outlines the user’s process for labeling
documents.

3.1 Study Design

The study uses a 2 × 2 between-subjects design,
with factors of document collection overview (two
levels: topic model or list) and document selection
(two levels: active or random). The four conditions,
with the TA condition representing ALTO, are:

1. Topic model overview, active selection (TA)
2. Topic model overview, random selection (TR)
3. List overview, active selection (LA)
4. List overview, random selection (LR)

3.2 Document Collection Overview

The topic and list overviews offer different over-
all structure but the same basic elements for users
to create, modify, and apply labels (Section 3.4).
The topic overview (Figure 1a) builds on Hu et
al. (2014): for each topic, the top twenty words
are shown alongside twenty document titles. Topic
words (w) are sized based on their probability φk,w
in the topic k and the documents with the high-
est probability of that topic (θd,k) are shown. The
list overview, in contrast, presents documents as a
simple, randomly ordered list of titles (Figure 1b).
We display the same number of documents (20K,
where K is the total number of topics) in both the
topic model and list overviews, but the list overview
provides no topic information.



Main Interface
(a) Topic Overview

(TA and TR)

(b) List Overview 
(LA and LR)

OR

Figure 1: Our annotation system. Initially, the user sees lists of documents organized in either a list format
or grouped into topics (only two topics are shown here; users can scroll to additional documents). The
user can click on a document to label it.

Classifier Label (if available)

Raw
Text

User Label

Figure 2: After clicking on a document from the
list or topic overview, the user inspects the text and
provides a label. If the classifier has a guess at the
label, the user can confirm the guess.

3.3 Document Selection

We use a preference function U to direct users’
attention to specific documents. To provide con-
sistency across the four conditions, each condition
will highlight the document that scores the highest
for the condition’s preference function. For the
random selection conditions, TR and LR, document
selection is random, within a topic or globally. We
expect this to be less useful than active learning.
The document preference functions are:

User-Labeled Documents

Classifier-Labeled Documents
Selected Document

Figure 3: After the user has labeled some docu-
ments, the system can automatically label other
documents and select which documents would be
most helpful to annotate next. In the random selec-
tion setting, random documents are selected.

LA: LA uses traditional uncertainty sampling:

ULA
d = HC [Yd] , (1)

where HC [yd] = −∑
i P (yi|d)logP (yi|d) is the

classifier entropy. Entropy measures how confused
(uncertain) classifier C is about its prediction of a
document d’s label y. Intuitively, it prefers docu-
ments the classifier suggests many labels instead
of a single, confident prediction.
LR: LR’s approach is the same as LA’s except we
replace HC [yd] with a uniform random number:

ULR
d ∼ unif(0, 1). (2)

In contrast to LA, which suggests the most uncer-
tain document, LR suggests a random document.



TA: Dasgupta and Hsu (2008) argue that clustering
should inform active learning criteria, balancing
coverage against classifier accuracy. We adapt their
method to flat topic models—in contrast to their
hierarchical cluster trees—by creating a composite
measure of document uncertainty within a topic:

UTA
d = HC [yd] θd,k, (3)

where k is the prominent topic for document d.
UTA
d prefers documents that are representative of a

topic (i.e., have a high value of θd,k for that topic)
and are informative for the classifier.
TR: TR’s approach is the same as TA’s except we
replace HC [Yd] with a uniformly random number:

UTR
d = unif(0, 1)θd,k. (4)

Similar to TA, UTR
d prefers documents that are rep-

resentative of a topic, but not any particular docu-
ment in the topic. Incorporating the random com-
ponent encourages covering different documents in
diverse topics.

In LA and LR, the preference function directly
chooses a document and directs the user to it. On
the other hand, UTA

d and UTR
d are topic dependent.

TA emphasizes documents that are both informative
to the classifier and representative of a topic; if a
document is not representative, the surrounding
context of a topic will be less useful. Therefore,
the factor θd,k appears in both. Thus, they require
that a topic be chosen first and then the document
with maximum preference, U , within that topic can
be chosen. In TR, the topic is chosen randomly. In
TA, the topic is chosen by

k∗ = arg max
k

(mediand(HC [yd] θd,k). (5)

That is the topic with the maximum median U .
Median encodes how “confusing” a topic is.2 In
other words, topic k∗ is the topic that its documents
confuse the classifier most.

3.4 User Labeling Process
The user’s labeling process is the same in all four
conditions. The overview (topic or list) allows users
to examine individual documents (Figure 1). Click-
ing on a document opens a dialog box (Figure 2)
with the text of the document and three options:

1. Create and assign a new label to the document.
2. Choose an existing label for the document.

2Outliers skew other measures (e.g., max or mean).

3. Skip the document.

Once the user has labeled two documents with
different labels, the displayed documents are re-
placed based on the preference function (Sec-
tion 3.3), every time the user labels (or updates
labels for) a document. In TA and TR, each topic’s
documents are replaced with the twenty highest
ranked documents. In LA and LR, all documents
are updated with the top 20K ranked documents.3

The system also suggests one document to con-
sider by auto-scrolling to it and drawing a red box
around its title (Figure 3). The user may ignore
that document and click on any other document.
After the user labels ten documents, the classifier
runs and assigns labels to other documents.4 For
classifier-labeled documents, the user can either
approve the label or assign a different label. The
process continues until the user is satisfied or a time
runs out (forty minutes in our user study, Section 6).
We use time to control for the varying difficulty of
assigning document labels: active learning will se-
lect more difficult documents to annotate, but they
may be more useful; time is a more fair basis of
comparison in real-world tasks.

4 Data and Evaluation Metrics

In this section, we describe our data, the machine
learning techniques to learn classifiers from exam-
ples, and the evaluation metrics to know whether
the final labeling of the complete documents col-
lection was successful.

4.1 Datasets
Data Our experiments require corpora to com-
pare user labels with gold standard labels. We ex-
periment with two corpora: 20Newsgroups (Lang,
2007) and US congressional bills from GovTrack.5

For US congressional bills, GovTrack provides
bill information such as the title and text, while
the Congressional Bills Project (Adler and Wilker-
son, 2006) provides labels and sub-labels for the
bills. Examples of labels are agriculture and health,
while sub-labels include agricultural trade and
comprehensive health care reform. The twenty

3In all conditions, the number of displayed unlabeled doc-
uments is adjusted based on the number of manually labeled
documents. i.e. if the user has labeled n documents in topic
k, n manually labeled documents followed by top 20 − n
uncertain documents will be shown in topic k.

4To reduce user confusion, for each existing label, only the
top 100 documents get a label assigned in the UI.

5https://www.govtrack.us/



top-level labels have been developed by consen-
sus over many years by a team of top political
scientists to create a reliable, robust dataset. We
use the 112th Congress; after filtering,6 this dataset
has 5558 documents. We use this dataset in both
the synthetic experiments (Section 5) and the user
study (Section 6).

The 20 Newsgroups corpus has 19, 997 docu-
ments grouped in twenty news groups that are fur-
ther grouped into six more general topics. Ex-
amples are talk.politics.guns and sci.electronics,
which belong to the general topics of politics and
science. We use this dataset in synthetic experi-
ments (Section 5).

4.2 Machine Learning Techniques

Topic Modeling To choose the number of topics
(K), we calculate average topic coherence (Lau et
al., 2014) on US Congressional Bills, between ten
and forty topics and choose K = 19, as it has the
maximum coherence score. For consistency, we
use the same number of topics (K = 19) for 20
Newsgroups corpus. After filtering words based
on TF-IDF, we use Mallet (McCallum, 2002) with
default options to learn topics.

Features and Classification A logistic regres-
sion predicts labels for documents and provides
the classification uncertainty for active learning.
To make classification and active learning updates
efficient, we use incremental learning (Carpenter,
2008, LingPipe). We update classification param-
eters using stochastic gradient descent, restarting
with the previously learned parameters as new la-
beled documents become available.7 We use cross
validation, using argmax topics as surrogate labels,
to set the parameters for learning the classifier.8

The features for classification include topic prob-
abilities, unigrams, and the fraction of labeled doc-
uments in each document’s prominent topic. The
intuition behind adding this last feature is to allow
active learning to suggest documents in a diverse

6We remove bills that have less than fifty words, no as-
signed gold label, duplicate titles, or have the gold label GOV-
ERNMENT OPERATIONS or SOCIAL WELFARE, which are
broad and difficult for users to label.

7Exceptions are when a new label is added, a document’s
label is deleted, or a label is deleted. In those cases, we train
the classifier from scratch. Also, for final results in Section 6,
we train a classifier from scratch.

8We use blockSize= 1

#examples minEpochs=100,
learningRate=0.1, minImprovement=0.01,
maxEpochs=1000, and rollingAverageSize=5.
The regression is unregularized.

range of topics if it finds this feature a useful indi-
cator of uncertainty.9

4.3 Evaluation Metrics
Our goal is to create a system that allows users to
quickly induce a high-quality label set. We com-
pare the user-created label sets against the data’s
gold label sets. Comparing different clusterings is a
difficult task, so we use three clustering evaluation
metrics: purity (Zhao and Karypis, 2001), rand
index (Rand, 1971, RI), and normalized mutual
information (Strehl and Ghosh, 2003, NMI).10

Purity The documents labeled with a good user
label should only have one (or a few) gold labels
associated with them: this is measured by cluster
purity. Given each user cluster, it measures what
fraction of the documents in a user cluster belong
to the most frequent gold label in that cluster:

purity(Ω,G) =
1

N

∑

l

max
j
|Ωl ∩Gj |, (6)

where L is the number of labels user creates,
Ω = {Ω1,Ω2, . . . ,ΩL} is the user clustering of
documents, G = {G1, G2, . . . , GJ} is gold clus-
tering of documents, and N is the total number of
documents. The user Ωl and gold Gj labels are in-
terpreted as sets containing all documents assigned
to that label.

Rand index (RI) RI is a pair counting measure,
where cluster evaluation is considered as a series
of decisions. If two documents have the same gold
label and the same user label (TP) or if they do not
have the same gold label and are not assigned the
same user label (TN), the decision is right. Other-
wise, it is wrong (FP, FN). RI measures the percent-
age of decisions that are right:

RI =
TP + TN

TP + FP + TN + FN
. (7)

Normalized mutual information (NMI) NMI is
an information theoretic measure that measures
the amount of information one gets about the gold
clusters by knowing what the user clusters are:

NMI(Ω,G) =
2I(Ω,G)

HΩ + HG
, (8)

9However, final classifier’s coefficients suggested that this
feature did not have a large effect.

10We avoided using adjusted rand index (Hubert and Ara-
bie, 1985), because it can yield negative values, which is not
consistent with purity and NMI. We also computed variation
of information (Meilă, 2003) and normalized information dis-
tance (Vitányi et al., 2009) and observed consistent trends. We
omit these results for the sake of space.



where Ω and G are user and gold clusters, H is
the entropy and I is mutual information (Bouma,
2009).

While purity, RI, and NMI are all normalized
within [0, 1] (higher is better), they measure dif-
ferent things. Purity measures the intersection be-
tween two clusterings, it is sensitive to the number
of clusters, and it is not symmetric.

On the other hand, RI and NMI are less sensitive
to the number of clusters and are symmetric. RI

measures pairwise agreement in contrast to purity’s
emphasis on intersection. Moreover, NMI measures
shared information between two clusterings.

None of these metrics are perfect: purity can
be exploited by putting each document in its own
label, RI does not distinguish separating similar
documents with distinct labels from giving dissimi-
lar documents the same label, and NMI’s ability to
compare different numbers of clusters means that
it sometimes gives high scores for clusterings by
chance. Given the diverse nature of these metrics,
if a labeling does well in all three of them, we can
be relatively confident that it is not a degenerate
solution that games the system.

5 Synthetic Experiments

Before running a user study, we test our hypothe-
sis that topic model overviews and active learning
selection improve final cluster quality compared
to standard baselines: list overview and random
selection. We simulate the four conditions on Con-
gressional Bills and 20 Newsgroups.

Since we believe annotators create more specific
labels compared to the gold labels, we use sub-
labels as simulated user labels and labels as gold
labels (we give examples of labels and sub-labels in
Section 4.1). We start with two randomly selected
documents that have different sub-labels, assign
the corresponding sub-labels, then add more labels
based on each condition’s preference function (Sec-
tion 3.3). We follow the condition’s preference
function and incrementally add labels until 100
documents have been labeled (100 documents are
representative of what a human can label in about
an hour). Given these labels, we compute purity, RI,
and NMI over time. This procedure is repeated fif-
teen times (to account for the randomness of initial
document selections and the preference functions
with randomness).11

11Synthetic experiment data available at http:
//github.com/Pinafore/publications/tree/
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Figure 4: Synthetic results on US Congressional
Bills and 20 Newsgroups data sets. Topic models
help guide annotation attention to diverse segments
of the data.

Synthetic results validate our hypothesis that
topic overview and active learning selection can
help label a corpus more efficiently (Figure 4).
LA shows early gains, but tends to falter eventu-
ally compared to both topic overview and topic
overview combined with active learning selection
(TR and TA).

However, these experiments do not validate
ALTO. Not all documents require the same time or
effort to label, and active learning focuses on the
hardest examples, which may confuse users. Thus,
we need to evaluate how effectively actual users
annotate a collection’s documents.

6 User Study

Following the synthetic experiments, we conduct a
user study with forty participants to evaluate ALTO

(TA condition) against three alternatives that lack
topic overview (LA), active learning selection (TR),
or both (LR) (Sections 6.1 and 6.2). Then, we con-
duct a crowdsourced study to compare the overall

master/2016_acl_doclabel/data/synthetic_
exp
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Figure 5: User study results on US Congressional
Bills dataset. Active learning selection helps ini-
tially, but the combination of active learning selec-
tion and topic model overview has highest quality
labels by the end of the task.

effectiveness of the label set generated by the par-
ticipants in the four conditions (Section 6.3).

6.1 Method

We use the freelance marketplace Upwork to re-
cruit online participants.12 We require participants
to have more than 90% job success on Upwork,
English fluency, and US residency. Participants are
randomly assigned to one of the four conditions
and we recruited ten participants per condition.

Participants completed a demographic question-
naire, viewed a video of task instructions, and then
interacted with the system and labeled documents
until satisfied with the labels or forty minutes had
elapsed.13 The session ended with a survey, where
participants rated mental, physical, and temporal
demand, and performance, effort, and frustration
on 20-point scales, using questions adapted from
the NASA Task Load Index (Hart and Staveland,
1988, TLX). The survey also included 7-point
scales for ease of coming up with labels, usefulness
and satisfaction with the system, and—for TR and

12http://Upwork.com
13Forty minutes of activity, excluding system time to clas-

sify and update documents. Participants nearly exhausted the
time: 39.3 average minutes in TA, 38.8 in TR, 40.0 in LA, and
35.9 in LR.

F p
Overview Selection Overview Selection

final purity 81.03 7.18 < .001 .011
final RI 39.89 6.28 < .001 .017

final NMI 70.92 9.87 < .001 .003
df(1,36) for all reported results

Table 2: Results from 2 × 2 ANOVA with ART

analyses on the final purity, RI, and NMI metrics.
Only main effects for the factors of overview and
selection are shown; no interaction effects were
statistically significant. Topics and active learning
both had significant effects on quality scores.

TA—topic information helpfulness. Each partici-
pant was paid fifteen dollars.14

For statistical analysis, we primarily use 2 × 2
(overview× selection) ANOVAs with Aligned Rank
Transform (Wobbrock et al., 2011, ART), which is
a non-parametric alternative to a standard ANOVA

that is appropriate when data are not expected to
meet the normality assumption of ANOVA.

6.2 Document Cluster Evaluation
We analyze the data by dividing the forty-minute
labeling task into five minute intervals. If a par-
ticipant stops before the time limit, we consider
their final dataset to stay the same for any remain-
ing intervals. Figure 5 shows the measures across
study conditions, with similar trends for all three
measures.

Topic model overview and active learning both
significantly improve final dataset measures.
The topic overview and active selection conditions
significantly outperform the list overview and ran-
dom selection, respectively, on the final label qual-
ity metrics. Table 2 shows the results of separate
2× 2 ANOVAs with ART with each of final purity,
RI, and NMI scores. There are significant main ef-
fects of overview and selection on all three metrics;
no interaction effects were significant.

TR outperforms LA. Topic models by them-
selves outperform traditional active learning strate-
gies (Figure 5). LA performs better than LR; while
active learning was useful, it was not as useful as
the topic model overview (TR and TA).

LA provides an initial benefit. Average purity,
NMI and RI were highest with LA for the earliest
labeling time intervals. Thus, when time is very

14User study data available at http://github.com/
Pinafore/publications/tree/master/2016_
acl_doclabel/data/user_exp



M ± SD [median]
purity RI NMI

TA 0.31 ± 0.08 [0.32] 0.80 ± 0.05 [0.80] 0.19 ± 0.08 [0.21]
TR 0.32 ± 0.09 [0.31] 0.82 ± 0.04 [0.82] 0.21 ± 0.09 [0.20]
LA 0.35 ± 0.05 [0.35] 0.82 ± 0.04 [0.81] 0.27 ± 0.05 [0.28]
LR 0.31 ± 0.04 [0.31] 0.79 ± 0.04 [0.79] 0.19 ± 0.03 [0.19]

Table 3: Mean, standard deviation, and median
purity, RI, and NMI after ten minutes. NMI in partic-
ular shows the benefit of LA over other conditions
at early time intervals.

limited, using traditional active learning (LA) is
preferable to topic overviews; users need time to
explore the topics and a subset of documents within
them. Table 3 shows the metrics after ten minutes.
Separate 2× 2 ANOVAs with ART on the means of
purity, NMI and RI revealed a significant interaction
effect between overview and selection on mean NMI

(F (1, 36) = 5.58, p = .024), confirming the early
performance trends seen in Figure 5 at least for
NMI. No other main or interaction effects were
significant, likely due to low statistical power.

Subjective ratings. Table 4 shows the average
scores given for the six NASA-TLX questions in
different conditions. Separate 2× 2 ANOVA with
ART for each of the measures revealed only one
significant result: participants who used the topic
model overview find the task to be significantly
less frustrating (M = 4.2 and median = 2) than
those who used the list overview (M = 7.3 and
median = 6.5) on a scale from 1 (low frustra-
tion) to 20 (high frustration) (F (1, 36) = 4.43,
p = .042), confirming that the topic overview helps
users organize their thoughts and experience less
stress during labeling.

Participants in the TA and TR conditions rate
topic information to be useful in completing the
task (M = 5.0 and median = 5) on a scale from
1 (not useful at all) to 7 (very useful). Over-
all, users are positive about their experience with
the system. Participants in all conditions rate
overall satisfaction with the interface positively
(M = 5.8 and median = 6) on a scale from 1 (not
satisfied at all) to 7 (very satisfied).

Discussion. One can argue that using topic
overviews for labeling could have a negative ef-
fect: users may ignore the document content and
focus on topics for labeling. We tried to avoid this
issue by making it clear in the instructions that they
need to focus on document content and use top-
ics as a guidance. On average, the participants in

TR create 1.96 labels per topic and the participants
in TA created 2.26 labels per topic. This suggests
that participants are going beyond what they see in
topics for labeling, at least in the TA condition.

6.3 Label Evaluation Results
Section 6.2 compares clusters of documents in dif-
ferent conditions against the gold clusters but does
not evaluate the quality of the labels themselves.
Since one of the main contributions of ALTO is to
accelerate inducing a high quality label set, we use
crowdsourcing to assess how the final induced label
sets compare in different conditions.

For completeness, we also compare labels
against a fully automatic labeling method (Aletras
and Stevenson, 2014) that does not require human
intervention. We assign automatic labels to docu-
ments based on their most prominent topic.

We ask users on a crowdsourcing platform to
vote for the “best” and “worst” label that describes
the content of a US congressional bill (we use
Crowdflower restricted to US contributors).

Five users label each document and we use the
aggregated results generated by Crowdflower. The
user gets $0.20 for each task.

We randomly choose 200 documents from our
dataset (Section 4.1). For each chosen document,
we randomly choose a participant from all four con-
ditions (TA, TR, LA, LR). The labels assigned in
different conditions and the automatic label of the
document’s prominent topic construct the candi-
date labels for the document.15 Identical labels are
merged into one label to avoid showing duplicate
labels to users. If a merged label gets a “best” or
“worst” vote, we split that vote across all the identi-
cal instances.16 Figure 6 shows the average number
of “best” and “worst” votes for each condition and
the automatic method. ALTO (TA) receives the most
“best” votes and the fewest “worst” votes. LR re-
ceives the most worst votes. The automatic labels,
interestingly, appear to do at least as well as the list
view labels, with a similar number of best votes and
fewer worst votes. This indicates that automatic
labels have reasonable quality compared to at least
some manually generated labels. However, when
users are provided with a topic model overview—

15Some participants had typos in the labels. We corrected
all the typos using pyEnchant (http://pythonhosted.
org/pyenchant/ ) spellchecker. If the corrected label was
still wrong, we corrected it manually.

16Evaluation data available at http://github.com/
Pinafore/publications/tree/master/2016_
acl_doclabel/data/label_eval



M ± SD [median]
Condition Mental Demand Physical Demand Temporal Demand Performance Effort Frustration

TA 9.8 ± 5.6 [10] 2.9 ± 3.4 [2] 9 ± 7.8 [7] 5.5 ± 5.8 [1.5] 9.4 ± 6.3 [10] 4.5 ± 5.5 [1.5]

TR 10.6 ± 4.5 [11] 2.4 ± 2.8 [1] 7.4 ± 4.1 [9] 8.8 ± 6.1 [7.5] 9.8 ± 3.7 [10] 3.9 ± 3.0 [3.5]

LA 9.1 ± 5.5 [10] 1.7 ± 1.3 [1] 10.2 ± 4.8 [11] 8.6 ± 5.3 [10] 10.7 ± 6.2 [12.5] 6.7 ± 5.1 [5.5]

LR 9.8 ± 6.1 [10] 3.3 ± 2.9 [2] 9.3 ± 5.7 [10] 9.4 ± 5.6 [10] 9.4 ± 6.2 [10] 7.9 ± 5.4 [8]

Table 4: Mean, standard deviation, and median results from NASA-TLX post-survey. All questions are
scaled 1 (low)–20 (high), except performance, which is scaled 1 (good)–20 (poor). Users found topic
model overview conditions, TR and TA, to be significantly less frustrating than the list overview conditions.
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Figure 6: Best and worst votes for document labels.
Error bars are standard error from bootstrap sample.
ALTO (TA) gets the most best votes and the fewest
worst votes.

with or without active learning selection—they can
generate label sets that improve upon automatic
labels and labels assigned without the topic model
overview.

7 Related Work

Text classification—a ubiquitous machine learning
tool for automatically labeling text (Zhang, 2010)—
is a well-trodden area of NLP research. The diffi-
culty is often creating the training data (Hwa, 2004;
Osborne and Baldridge, 2004); coding theory is an
entire subfield of social science devoted to creating,
formulating, and applying labels to text data (Sal-
dana, 2012; Musialek et al., 2016). Crowdsourc-
ing (Snow et al., 2008) and active learning (Settles,
2012), can decrease the cost of annotation but only
after a label set exists.

ALTO’s corpus overviews aid text understanding,
building on traditional interfaces for gaining both
local and global information (Hearst and Peder-
sen, 1996). More elaborate interfaces (Eisenstein
et al., 2012; Chaney and Blei, 2012; Roberts et
al., 2014) provide richer information given a fixed
topic model. Alternatively, because topic mod-

els are imperfect (Boyd-Graber et al., 2014), re-
fining underlying topic models may also improve
users’ understanding of a corpus (Choo et al., 2013;
Hoque and Carenini, 2015).

Summarizing document collections through dis-
covered topics can happen through raw topics la-
beled manually by users (Talley et al., 2011), auto-
matically (Lau et al., 2011), or by learning a map-
ping from labels to topics (Ramage et al., 2009).
When there is not a direct correspondence between
topics and labels, classifiers learn a mapping (Blei
and McAuliffe, 2007; Zhu et al., 2009; Nguyen et
al., 2015). Because we want topics to be consistent
between users, we use a classifier with static topics
in ALTO. Combining our interface with dynamic
topics could improve overall labeling, perhaps at
the cost of introducing confusion as topics change
during the labeling process.

8 Conclusion and Future Work

We introduce ALTO, an interactive framework that
combines both active learning selections with topic
model overviews to both help users induce a label
set and assign labels to documents. We show that
users can more effectively and efficiently induce
a label set and create training data using ALTO

in comparison with other conditions, which lack
either topic overview or active selection.

We can further improve ALTO to help users gain
better and faster understanding of text corpora. Our
current system limits users to view only 20K docu-
ments at a time and allows for one label assignment
per document. Moreover, the topics are static and
do not adapt to better reflect users’ labels. Users
should have better support for browsing documents
and assigning multiple labels.

Finally, with slight changes to what the system
considers a document, we believe ALTO can be ex-
tended to NLP applications other than classification,
such as named entity recognition or semantic role
labeling, to reduce the annotation effort.



Acknowledgments

We thank the anonymous reviewers, David Mimno,
Edward Scott Adler, Philip Resnik, and Burr Settles
for their insightful comments. We also thank Niko-
laos Aletras for providing the automatic topic label-
ing code. Boyd-Graber and Poursabzi-Sangdeh’s
contribution is supported by NSF Grant NCSE-
1422492; Findlater, Seppi, and Boyd-Graber’s con-
tribution is supported by collaborative NSF Grant
IIS-1409287 (UMD) and IIS-1409739 (BYU). Any
opinions, findings, results, or recommendations
expressed here are of the authors and do not neces-
sarily reflect the view of the sponsor.

References

E Scott Adler and John Wilkerson. 2006. Congres-
sional bills project. NSF, 880066:00880061.

Nikolaos Aletras and Mark Stevenson. 2014. La-
belling topics using unsupervised graph-based meth-
ods. In Proceedings of the Association for Computa-
tional Linguistics, pages 631–636.

Pranav Anand, Joseph King, Jordan L Boyd-Graber,
Earl Wagner, Craig H Martell, Douglas W Oard, and
Philip Resnik. 2011. Believe me-we can do this!
annotating persuasive acts in blog text. In Computa-
tional Models of Natural Argument.

David M. Blei and Jon D. McAuliffe. 2007. Super-
vised topic models. In Proceedings of Advances in
Neural Information Processing Systems.

David M. Blei, Andrew Ng, and Michael Jordan. 2003.
Latent Dirichlet allocation. Journal of Machine
Learning Research, 3.

Gerlof Bouma. 2009. Normalized (pointwise) mutual
information in collocation extraction. In The Bien-
nial GSCL Conference, pages 31–40.

Jordan Boyd-Graber, David Mimno, and David New-
man. 2014. Care and feeding of topic models: Prob-
lems, diagnostics, and improvements. Handbook of
Mixed Membership Models and Their Applications;
CRC Press: Boca Raton, FL, USA.

Ian Budge. 2001. Mapping policy preferences: esti-
mates for parties, electors, and governments, 1945-
1998, volume 1. Oxford University Press.

Bob Carpenter. 2008. Lingpipe 4.1.0. http://
alias-i.com/lingpipe.

Allison Chaney and David Blei. 2012. Visualizing
topic models. In International AAAI Conference on
Weblogs and Social Media.

Jaegul Choo, Changhyun Lee, Chandan K. Reddy, and
Haesun Park. 2013. UTOPIAN: User-driven topic
modeling based on interactive nonnegative matrix
factorization. IEEE Transactions on Visualization
and Computer Graphics, 19(12):1992–2001.

Sanjoy Dasgupta and Daniel Hsu. 2008. Hierarchical
sampling for active learning. In Proceedings of the
International Conference of Machine Learning.

Jacob Eisenstein, Duen Horng Chau, Aniket Kittur, and
Eric Xing. 2012. TopicViz: interactive topic ex-
ploration in document collections. In International
Conference on Human Factors in Computing Sys-
tems.

Sandra G Hart and Lowell E Staveland. 1988. De-
velopment of nasa-tlx (task load index): Results of
empirical and theoretical research. Advances in psy-
chology, 52:139–183.

M.A. Hearst and J.O. Pedersen. 1996. Reexamining
the cluster hypothesis: scatter/gather on retrieval re-
sults. In Proceedings of the ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval.

Enamul Hoque and Giuseppe Carenini. 2015. Con-
visit: Interactive topic modeling for exploring asyn-
chronous online conversations. In Proceedings of
the 20th International Conference on Intelligent
User Interfaces, IUI ’15.

Yuening Hu, Jordan Boyd-Graber, Brianna Satinoff,
and Alison Smith. 2014. Interactive topic modeling.
Machine learning, 95(3):423–469.

Lawrence Hubert and Phipps Arabie. 1985. Compar-
ing partitions. Journal of classification, 2(1):193–
218.

Rebecca Hwa. 2004. Sample selection for statistical
parsing. Computational linguistics, 30(3):253–276.

Mohit Iyyer, Peter Enns, Jordan L Boyd-Graber, and
Philip Resnik. 2014. Political ideology detection
using recursive neural networks. In Proceedings of
the Association for Computational Linguistics.

Edward F Kelly and Philip J Stone. 1975. Com-
puter recognition of English word senses, volume 13.
North-Holland.

Soo-Min Kim and Eduard Hovy. 2004. Determining
the sentiment of opinions. In Proceedings of the As-
sociation for Computational Linguistics, page 1367.
Association for Computational Linguistics.

Hans-Dieter Klingemann, Andrea Volkens, Judith Bara,
Ian Budge, Michael D McDonald, et al. 2006.
Mapping policy preferences II: estimates for parties,
electors, and governments in Eastern Europe, Euro-
pean Union, and OECD 1990-2003. Oxford Univer-
sity Press Oxford.

Ken Lang. 2007. 20 newsgroups data set.
http://www.ai.mit.edu/people/jrennie/20Newsgroups/.



Jey Han Lau, Karl Grieser, David Newman, and Tim-
othy Baldwin. 2011. Automatic labelling of topic
models. In Proceedings of the Association for Com-
putational Linguistics, pages 1536–1545.

Jey Han Lau, David Newman, and Timothy Baldwin.
2014. Machine reading tea leaves: Automatically
evaluating topic coherence and topic model quality.
In Proceedings of the European Chapter of the Asso-
ciation for Computational Linguistics.

David D Lewis and William A Gale. 1994. A se-
quential algorithm for training text classifiers. In
Proceedings of the 17th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 3–12. Springer-Verlag
New York, Inc.

Andrew Kachites McCallum. 2002. Mal-
let: A machine learning for language toolkit.
http://www.cs.umass.edu/ mccallum/mallet.
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