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Abstract

We introduce a reinforcement learning-
based approach to simultaneous ma-
chine translation—producing a trans-
lation while receiving input words—
between languages with drastically dif-
ferent word orders: from verb-final lan-
guages (e.g., German) to verb-medial
languages (English). In traditional ma-
chine translation, a translator must
“wait” for source material to appear be-
fore translation begins. We remove this
bottleneck by predicting the final verb
in advance. We use reinforcement learn-
ing to learn when to trust predictions
about unseen, future portions of the
sentence. We also introduce an evalua-
tion metric to measure expeditiousness
and quality. We show that our new
translation model outperforms batch
and monotone translation strategies.

1 Introduction

We introduce a simultaneous machine transla-
tion (MT) system that predicts unseen verbs
and uses reinforcement learning to learn when
to trust these predictions and when to wait for
more input.

Simultaneous translation is producing a par-
tial translation of a sentence before the input
sentence is complete, and is often used in im-
portant diplomatic settings. One of the first
noted uses of human simultaneous interpreta-
tion was the Nuremberg trials after the Sec-
ond World War. Siegfried Ramler (2009), the
Austrian-American who organized the transla-
tion teams, describes the linguistic predictions

and circumlocutions that translators would use
to achieve a tradeoff between translation la-
tency and accuracy. The audio recording tech-
nology used by those interpreters sowed the
seeds of technology-assisted interpretation at
the United Nations (Gaiba, 1998).

Performing real-time translation is especially
difficult when information that comes early in
the target language (the language you’re trans-
lating to) comes late in the source language (the
language you’re translating from). A common
example is when translating from a verb-final
(sov) language (e.g., German or Japanese) to
a verb-medial (svo) language, (e.g., English).
In the example in Figure 1, for instance, the
main verb of the sentence (in bold) appears
at the end of the German sentence. An of-
fline (or “batch”) translation system waits until
the end of the sentence before translating any-
thing. While this is a reasonable approach, it
has obvious limitations. Real-time, interactive
scenarios—such as online multilingual video
conferences or diplomatic meetings—require
comprehensible partial interpretations before
a sentence ends. Thus, a significant goal in
interpretation is to make the translation as
expeditious as possible.

We present three components for an sov-to-
svo simultaneous mt system: a reinforcement
learning framework that uses predictions to
create expeditious translations (Section 2), a
system to predict how a sentence will end (e.g.,
predicting the main verb; Section 4), and a met-
ric that balances quality and expeditiousness
(Section 3). We combine these components in
a framework that learns when to begin trans-
lating sections of a sentence (Section 5).

Section 6 combines this framework with a



ich bin mit dem Zug nach Ulm gefahren
I am with the train to Ulm traveled
I (. . . . . . waiting. . . . . . ) traveled by train to Ulm

Figure 1: An example of translating from a
verb-final language to English. The verb, in
bold, appears at the end of the sentence, pre-
venting coherent translations until the final
source word is revealed.

translation system that produces simultaneous
translations. We show that our data-driven
system can successfully predict unseen parts
of the sentence, learn when to trust them, and
outperform strong baselines (Section 7).

While some prior research has approached
the problem of simultaneous translation—we re-
view these systems in more detail in Section 8—
no current model learns when to definitively
begin translating chunks of an incomplete sen-
tence. Finally, in Section 9, we discuss the
limitations of our system: it only uses the most
frequent source language verbs, it only applies
to sentences with a single main verb, and it
uses an idealized translation system. However,
these limitations are not insurmountable; we
describe how a more robust system can be as-
sembled from these components.

2 Decision Process for
Simultaneous Translation

Human interpreters learn strategies for their
profession with experience and practice. As
words in the source language are observed, a
translator—human or machine—must decide
whether and how to translate, while, for cer-
tain language pairs, simultaneously predicting
future words. We would like our system to do
the same. To this end, we model simultaneous
mt as a Markov decision process (mdp) and
use reinforcement learning to effectively com-
bine predicting, waiting, and translating into
a coherent strategy.

2.1 States: What is, what is to come

The state st represents the current view of
the world given that we have seen t words of
a source language sentence.1 The state con-
tains information both about what is known
and what is predicted based on what is known.

1We use t to evoke a discrete version of time. We
only allow actions after observing a complete source
word.

To compare the system to a human transla-
tor in a decision-making process, the state is
akin to the translator’s cognitive state. At any
given time, we have knowledge (observations)
and beliefs (predictions) with varying degrees
of certainty: that is, the state contains the re-
vealed words x1:t of a sentence; the state also
contains predictions about the remainder of
the sentence: we predict the next word in the
sentence and the final verb.

More formally, we have a prediction at time
t of the next source language word that will

appear, n
(t)
t+1, and for the final verb, v(t). For

example, given the partial observation “ich
bin mit dem”, the state might contain a pre-

diction that the next word, n
(t)
t+1, will be “Zug”

and that the final verb v(t) will be “gefahren”.

We discuss the mechanics of next-word and
verb prediction further in Section 4; for now,
consider these black boxes which, after observ-
ing every new source word xt, make predictions
of future words in the source language. This
representation of the state allows for a richer set
of actions, described below, permitting simul-
taneous translations that outpace the source
language input2 by predicting the future.

2.2 Actions: What our system can do

Given observed and hypothesized input, our
simultaneous translation system must decide
when to translate them. This is expressed
in the form of four actions: our system can
commit to a partial translation, predict the
next word and use it to update the transla-
tion, predict the verb and use it to update the
translation, or wait for more words.

We discuss each of these actions in turn be-
fore describing how they come together to in-
crementally translate an entire sentence:

Wait Waiting is the simplest action. It pro-
duces no output and allows the system to re-
ceive more input, biding its time, so that when
it does choose to translate, the translation is
based on more information.

Commit Committing produces translation
output: given the observed source sentence,
produce the best translation possible.

2Throughout, “input” refers to source language in-
put, and “output” refers to target language translation.
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Figure 2: A simultaneous translation from source (German) to target (English). The agent
chooses to wait until after (3). At this point, it is sufficiently confident to predict the final verb
of the sentence (4). Given this additional information, it can now begin translating the sentence
into English, constraining future translations (5). As the rest of the sentence is revealed, the
system can translate the remainder of the sentence.

Next Word The next word action takes
a prediction of the next source word and pro-
duces an updated translation based on that
prediction, i.e., appending the predicted word
to the source sentence and translating the new
sentence.

Verb Our system can also predict the source
sentence’s final verb (the last word in the sen-
tence). When our system takes the verb ac-
tion, it uses its verb prediction to update the
translation using the prediction, by placing it
at the end of the source sentence.

We can recreate a traditional batch trans-
lation system (interpreted temporally) by a
sequence of wait actions until all input is ob-
served, followed by a commit to the complete
translation. Our system can commit to par-
tial translations if it is confident, but producing
a good translation early in the sentence often
depends on missing information.

2.3 Translation Process

Having described the state, its components,
and the possible actions at a state, we present
the process in its entirety. In Figure 2, after
each German word is received, the system ar-
rives at a new state, which consists of the source
input, target translation so far, and predictions
of the unseen words. The translation system

must then take an action given information
about the current state. The action will result
in receiving and translating more source words,
transitioning the system to the next state. In
the example, for the first few source-language
words, the translator lacks the confidence to
produce any output due to insufficient informa-
tion at the state. However, after State 3, the
state shows high confidence in the predicted
verb “gefahren”. Combined with the German
input it has observed, the system is sufficiently
confident to act on that prediction to produce
English translation.

2.4 Consensus Translations

Three straightforward actions—commit, next
word, and verb—all produce translations.
These rely black box access to a translation
(discussed in detail in Section 6): that is, given
a source language sentence fragment, the trans-
lation system produces a target language sen-
tence fragment.

Because these actions can happen more than
once in a sentence, we must form a single con-
sensus translation from all of the translations
that we might have seen. If we have only one
translation or if translations are identical, form-
ing the consensus translation is trivial. But
how should we resolve conflicting translations?

Any time our system chooses an action that



produces output, the observed input (plus extra
predictions in the case of next-word or verb),
is passed into the translation system. That
system then produces a complete translation
of its input fragment.

Any new words—i.e., words whose target
index is greater than the length of any previ-
ous translation—are appended to the previous
translation.3 Table 1 shows an example of
forming these consensus translations.

Now that we have defined how states evolve
based on our system’s actions, we need to know
how to select which actions to take. Eventu-
ally, we will formalize this as a learned policy
(Section 5) that maps from states to actions.
First, however, we need to define a reward that
measures how “good” an action is.

3 Objective: What is a good
simultaneous translation?

Good simultaneous translations must optimize
two objectives that are often at odds, i.e., pro-
ducing translations that are, in the end, accu-
rate, and producing them in pieces that are
presented expeditiously. While there are exist-
ing automated metrics for assessing translation
quality (Papineni et al., 2002; Banerjee and
Lavie, 2005; Snover et al., 2006), these must
be modified to find the necessary compromise
between translation quality and expeditious-
ness. That is, a good metric for simultaneous
translation must achieve a balance between
translating chunks early and translating accu-
rately. All else being equal, maximizing either
goal in isolation is trivial: for accurate transla-
tions, use a batch system and wait until the
sentence is complete, translating it all at once;
for a maximally expeditious translation, cre-
ate monotone translations, translating each
word as it appears, as in Tillmann et al. (1997)
and Pytlik and Yarowsky (2006). The former
is not simultaneous at all; the latter is mere
word-for-word replacement and results in awk-
ward, often unintelligible translations of distant
language pairs.

Once we have predictions, we have an ex-
panded array of possibilities, however. On one
extreme, we can imagine a psychic translator—

3Using constrained decoding to enforce consistent
translation prefixes would complicate our method but
is an appealing extension.

one that can completely translate an imagined
sentence after one word is uttered—as an un-
obtainable system. On the other extreme is a
standard batch translator, which waits until
it has access to the utterer’s complete sentence
before translating anything.

Again, we argue that a system can improve
on this by predicting unseen parts of the sen-
tence to find a better tradeoff between these
conflicting goals. However, to evaluate and op-
timize such a system, we must measure where
a system falls on the continuum of accuracy
versus expeditiousness.

Consider partial translations in a two-
dimensional space, with time (quantized by
the number of source words seen) increasing
from left to right on the x axis and the bleu
score (including brevity penalty against the
reference length) on the y axis. At each point
in time, the system may add to the consensus
translation, changing the precision (Figure 3).
Like an roc curve, a good system will be high
and to the left, optimizing the area under the
curve: the ideal system would produce points
as high as possible immediately. A translation
which is, in the end, accurate, but which is less
expeditious, would accrue its score more slowly
but outperform a similarly expeditious system
which nevertheless translates poorly.

An idealized psychic system achieves this,
claiming all of the area under the curve, as it
would have a perfect translation instantly, hav-
ing no need of even waiting for future input.4

A batch system has only a narrow (but tall)
sliver to the right, since it translates nothing
until all of the words are observed.

Formally, let Q be the score function for a
partial translation, x the sequentially revealed
source words x1, x2, . . . , xT from time step 1 to
T , and y the partial translations y1, y2, . . . , yT ,
where T is the length of the source language
input. Each incremental translation yt has a
bleu-n score with respect to a reference r. We
apply the usual bleu brevity penalty to all the
incremental translations (initially empty) to

4One could reasonably argue that this is not ideal:
a fluid conversation requires the prosody and timing
between source and target to match exactly. Thus, a
psychic system would provide too much information
too quickly, making information exchange unnatural.
However, we take the information-centric approach:
more information faster is better.



Pos Input Intermediate Consensus
1
2 Er He1 He1
3 Er wurde

gestaltet
It1 was2 designed3 He1 was2 designed3

4 It1 was2 designed3 He1 was2 designed3

5 Er wurde
gestern
renoviert

It1 was2 renovated3

yesterday4

He1 was2 designed3

yesterday4

Table 1: How intermediate translations are combined into a consensus translation. Incorrect
translations (e.g., “he” for an inanimate object in position 3) and incorrect predictions (e.g.,
incorrectly predicting the verb gestaltet in position 5) are kept in the consensus translation.
When no translation is made, the consensus translation remains static.

Er ist zum Laden gegangen

He to the

Psychic

Monotone

Batch

Policy
Prediction

He went

T
Source Sentence

He

He

He went to 
the store

He went 
to the 
store

He went to 
the store

He to the 
store went

He to the store

He went 
to  the

Figure 3: Comparison of lbleu (the area under
the curve given by Equation 1) for an impossi-
ble psychic system, a traditional batch system,
a monotone (German word order) system, and
our prediction-based system. By correctly pre-
dicting the verb “gegangen” (to go), we achieve
a better overall translation more quickly.

obtain latency-bleu (lbleu),

Q(x,y) =
1

T

∑

t

bleu(yt, r) (1)

+ T · bleu(yT , r)

The lbleu score is a word-by-word inte-
gral across the input source sentence. As each
source word is observed, the system receives a
reward based on the bleu score of the partial
translation. lbleu, then, represents the sum of
these T rewards at each point in the sentence.
The score of a simultaneous translation is the
sum of the scores of all individual segments
that contribute to the overall translation.

We multiply the final bleu score by T to en-

sure good final translations in learned systems
to compensate for the implicit bias toward low
latency.5

4 Predicting Verbs and Next
Words

The next and verb actions depend on predic-
tions of the sentence’s next word and final verb;
this section describes our process for predict-
ing verbs and next words given a partial source
language sentence.

The prediction of the next word in the source
language sentence is modeled with a left-to-
right language model. This is (näıvely) anal-
ogous to how a human translator might use
his own “language model” to guess upcoming
words to gain some speed by completing, for
example, collocations before they are uttered.
We use a simple bigram language model for
next-word prediction. We use Heafield et al.
(2013).

For verb prediction, we use a generative
model that combines the prior probability of
a particular verb v, p(v), with the likelihood
of the source context at time t given that
verb (namely, p(x1:t | v)), as estimated by a
smoothed Kneser-Ney language model (Kneser
and Ney, 1995). We use Pauls and Klein
(2011). The prior probability p(v) is estimated
by simple relative frequency estimation. The
context, x1:t, consists of all words observed.
We model p(x1:t | v) with verb-specific n-gram
language models. The predicted verb v(t) at

5One could replace T with a parameter, β, to bias
towards different kinds of simultaneous translations. As
β → ∞, we recover batch translation.



time t is then:

arg max
v
p(v)

t∏

i=1

p(xi | v, xi−n+1:i−1) (2)

where xi−n+1:i−1 is the n−1-gram context. To
narrow the search space, we consider only the
100 most frequent final verbs, where a “final
verb” is defined as the sentence-final sequence
of verbs and particles as detected by a German
part-of-speech tagger (Toutanova et al., 2003).6

5 Learning a Policy

We have a framework (states and actions) for
simultaneous machine translation and a metric
for assessing simultaneous translations. We
now describe the use of reinforcement learning
to learn a policy, a mapping from states to
actions, to maximize lbleu reward.

We use imitation learning (Abbeel and Ng,
2004; Syed et al., 2008): given an optimal se-
quence of actions, learn a generalized policy
that maps states to actions. This can be viewed
as a cost-sensitive classification (Langford and
Zadrozny, 2005): a state is represented as a fea-
ture vector, the loss corresponds to the quality
of the action, and the output of the classifier is
the action that should be taken in that state.

In this section, we explain each of these com-
ponents: generating an optimal policy, repre-
senting states through features, and learning a
policy that can generalize to new sentences.

5.1 Optimal Policies

Because we will eventually learn policies via
a classifier, we must provide training exam-
ples to our classifier. These training exam-
ples come from an oracle policy π∗ that
demonstrates the optimal sequence—i.e., with
maximal lbleu score—of actions for each se-
quence. Using dynamic programming, we can
determine such actions for a fixed translation
model.7 From this oracle policy, we generate
training examples for a supervised classifier.

6This has the obvious disadvantage of ignoring mor-
phology and occasionally creating duplicates of common
verbs that have may be associated with multiple parti-
cles; nevertheless, it provides a straightforward verb to
predict.

7This is possible for the limited class of consensus
translation schemes discussed in Section 2.4.

State st is represented as a tuple of the ob-
served words x1:t, predicted verb v(t), and the

predicted word n
(t)
t+1. We represent the state to

a classifier as a feature vector φ(x1:t, n
(t)
t+1, v

(t)).

5.2 Feature Representation

We want a feature representation that will al-
low a classifier to generalize beyond the specific
examples on which it is trained. We use sev-
eral general classes of features: features that
describe the input, features that describe the
possible translations, and features that describe
the quality of the predictions.

Input We include both a bag of words rep-
resentation of the input sentence as well as
the most recent word and bigram to model
word-specific effects. We also use a feature
that encodes the length of the source sentence.

Prediction We include the identity of the
predicted verb and next word as well as their re-
spective probabilities under the language mod-
els that generate the predictions. If the model
is confident in the prediction, the classifier can
learn to more so trust the predictions.

Translation In addition to the state, we in-
clude features derived from the possible actions
the system might take. This includes a bag of
words representation of the target sentence, the
score of the translation (decreasing the score is
undesirable), the score of the current consen-
sus translation, and the difference between the
current and potential translation scores.

5.3 Policy Learning

Our goal is to learn a classifier that can accu-
rately mimic the oracle’s choices on previously
unseen data. However, at test time, when we
run the learned policy classifier, the learned
policy’s state distribution may deviate from
the optimal policy’s state distribution due to
imperfect imitation, arriving in states not on
the oracle’s path. To address this, we use
searn (Daumé III et al., 2009), an iterative
imitation learning algorithm. We learn from
the optimal policy in the first iteration, as in
standard supervised learning; in the following
iterations, we run an interpolated policy

πk+1 = επk + (1− ε)π∗, (3)



with k as the iteration number and ε the mixing
probability. We collect examples by asking
the policy to label states on its path. The
interpolated policy will execute the optimal
action with probability 1− ε and the learned
policy’s action with probability ε. In the first
iteration, we have π0 = π∗.

Mixing in the learned policy allows the
learned policy to slowly change from the oracle
policy. As it trains on these no-longer-perfect
state trajectories, the state distribution at test
time will be more consistent with the states
used in training.
searn learns the policy by training a cost-

sensitive classifier. Besides providing the opti-
mal action, the oracle must also assign a cost
to an action

C(at,x) ≡ Q(x, π∗(xt))−Q(x, at(xt)), (4)

where at(xt) represents the translation outcome
of taking action at. The cost is the regret of
not taking the optimal action.

6 Translation System

The focus of this work is to show that given an
effective batch translation system and predic-
tions, we can learn a policy that will turn this
into a simultaneous translation system. Thus,
to separate translation errors from policy er-
rors, we perform experiments with a nearly
optimal translation system we call an omni-
scient translator.

More realistic translation systems will nat-
urally lower the objective function, often in
ways that make it difficult to show that we can
effectively predict the verbs in verb-final source
languages. For instance, German to English
translation systems often drop the verb; thus,
predicting a verb that will be ignored by the
translation system will not be effective.

The omniscient translator translates a source
sentence correctly once it has been fed the ap-
propriate source words as input. There are
two edge cases: empty input yields an empty
output, while a complete, correct source sen-
tence returns the correct, complete translation.
Intermediate cases—where the input is either
incomplete or incorrect—require using an align-
ment. The omniscient translator assumes as
input a reference translation r, a partial source
language input x1:t and a corresponding partial

output y. In addition, the omniscient transla-
tor assumes access to an alignment between r
and x. In practice, we use the hmm aligner (Vo-
gel et al., 1996; Och and Ney, 2003).

We first consider incomplete but correct in-
puts. Let y = τ(x1:t) be the translator’s output
given a partial source input x1:t with transla-
tion y. Then, τ(x1:t) produces all target words
yj if there is a source word xi in the input
aligned to those words—i.e., (i, j) ∈ ax,y—and
all preceding target words can be translated.
(That translations must be contiguous is a nat-
ural requirement for human recipients of trans-
lations). In the case where yj is unaligned, the
closest aligned target word to yj that has a
corresponding alignment entry is aligned to xi;
then, if xi is present in the input, yj appears in
the output. Thus, our omniscient translation
system will always produce the correct output
given the correct input.

However, our learned policy can make wrong
predictions, which can produce partial trans-
lations y that do not match the reference.
In this event, an incorrect source word x̃i
produces incorrect target words ỹj , for all
j : (i, j) ∈ ax,y. These ỹj are sampled from
the ibm Model 1 lexical probability table mul-
tiplied by the source language model ỹj ∼
Mult(θx̃i)pLM (x̃).8 Thus, even if we predict
the correct verb using a next word action, it
will be in the wrong position and thus gener-
ate a translation from the lexical probabilities.
Since translations based on Model 1 probabil-
ities are generally inaccurate, the omniscient
translator will do very well when given correct
input but will produce very poor translations
otherwise.

7 Experiments

In this section, we describe our experimental
framework and results from our experiments.
From aligned data, we derive an omniscient
translator. We use monolingual data in the
source language to train the verb predictor and
the next word predictor. From these features,
we compute an optimal policy from which we
train a learned policy.

8If a policy chooses an incorrect unaligned word, it
has no effect on the output. Alignments are position-
specific, so “wrong” refers to position and type.



7.1 Data sets

For translation model and policy training, we
use data from the German-English Parallel “de-
news” corpus of radio broadcast news (Koehn,
2000), which we lower-cased and stripped of
punctuation. A total of 48, 601 sentence pairs
are randomly selected for building our system.
Of these, we use 70% (34, 528 pairs) for training
word alignments.

For training the translation policy, we re-
strict ourselves to sentences that end with one
of the 100 most frequent verbs (see Section 4).
This results in a data set of 4401 training sen-
tences and 1832 test sentences from the de-news
data. We did this to narrow the search space
(from thousands of possible, but mostly very
infrequent, verbs).

We used 1 million words of news text from
the Leipzig Wortschatz (Quasthoff et al., 2006)
German corpus to train 5-gram language mod-
els to predict a verb from the 100 most frequent
verbs.

For next-word prediction, we use the 18, 345
most frequent German bigrams from the train-
ing set to provide a set of candidates in a lan-
guage model trained on the same set. We use
frequent bigrams to reduce the computational
cost of finding the completion probability of
the next word.

7.2 Training Policies

In each iteration of searn, we learn a
multi-class classifier to implement the pol-
icy. The specific learning algorithm we use
is arow (Crammer et al., 2013). In the com-
plete version of searn, the cost of each action
is calculated as the highest expected reward
starting at the current state minus the actual
roll-out reward. However, computing the full
roll-out reward is computationally very expen-
sive. We thus use a surrogate binary cost: if
the predicted action is the same as the opti-
mal action, the cost is 0; otherwise, the cost
is 1. We then run searn for five iterations.
Results on the development data indicate that
continuing for more iterations yields no benefit.

7.3 Policy Rewards on Test Set

In Figure 4, we show performance of the opti-
mal policy vis-à-vis the learned policy, as well
as the two baseline policies: the batch policy

●●●●●●●●●● ● ● ● ● ● ● ● ●

●

0.25

0.50

0.75
1.00
1.25

0.00 0.25 0.50 0.75 1.00
% of Sentence

S
m

oo
th

ed
 A

ve
ra

ge

● Batch Monotone Optimal Searn

Figure 4: The final reward of policies on Ger-
man data. Our policy outperforms all baselines
by the end of the sentence.
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Figure 5: Histogram of actions taken by the
policies.

and the monotone policy. The x-axis is the
percentage of the source sentence seen by the
model, and the y-axis is a smoothed average of
the reward as a function of the percentage of
the sentence revealed. The monotone policy’s
performance is close to the optimal policy for
the first half of the sentence, as German and
English have similar word order, though they
diverge toward the end. Our learned policy
outperforms the monotone policy toward the
end and of course outperforms the batch policy
throughout the sentence.

Figure 5 shows counts of actions taken by
each policy. The batch policy always commits
at the end. The monotone policy commits at
each position. Our learned policy has an ac-
tion distribution similar to that of the optimal



policy, but is slightly more cautious.

7.4 What Policies Do

VERB

federal minister of the 
environment angela merkel 

shown the draft of an 
ecopolitical program

bundesumweltministerin 
merkel hat den entwurf

bundesumweltministerin

INPUT OUTPUT

federal minister of the 
environment angela merkel

federal minister of the 
environment angela merkel 

shown the draft

Merkel

gezeigt

bundesumweltministerin 
merkel hat den entwurf 
eines umweltpolitischen 
programms vorgestellt

COMMIT

NEXT

Figure 6: An imperfect execution of a learned
policy. Despite choosing the wrong verb
“gezeigt” (showed) instead of “vorgestellt” (pre-
sented), the translation retains the meaning.

Figure 6 shows a policy that, predicting in-
correctly, still produces sensible output. The
policy correctly intuits that the person dis-
cussed is Angela Merkel, who was the environ-
mental minister at the time, but the policy uses
an incorrectly predicted verb. Because of our
poor translation model (Section 6), it renders
this word as “shown”, which is a poor transla-
tion. However, it is still comprehensible, and
the overall policy is similar to what a human
would do: intuit the subject of the sentence
from early clues and use a more general verb
to stand in for a more specific one.

8 Related Work

Just as mt was revolutionized by statistical
learning, we suspect that simultaneous mt will
similarly benefit from this paradigm, both from
a systematic system for simultaneous transla-
tion and from a framework for learning how to
incorporate predictions.

Simultaneous translation has been
dominated by rule and parse-based ap-
proaches (Mima et al., 1998a; Ryu et al., 2006).
In contrast, although Verbmobil (Wahlster,
2000) performs incremental translation using a
statistical mt module, its incremental decision-
making module is rule-based. Other recent
approaches in speech-based systems focus on
waiting until a pause to translate (Sakamoto
et al., 2013) or using word alignments (Ryu

et al., 2012) between languages to determine
optimal translation units.

Unlike our work, which focuses on predic-
tion and learning, previous strategies for deal-
ing with sov-to-svo translation use rule-based
methods (Mima et al., 1998b) (for instance,
passivization) to buy time for the translator to
hear more information in a spoken context—or
use phrase table and reordering probabilities to
decide where to translate with less delay (Fu-
jita et al., 2013). Oda et al. (2014) is the
most similar to our work on the translation
side. They frame word segmentation as an
optimization problem, using a greedy search
and dynamic programming to find segmenta-
tion strategies that maximize an evaluation
measure. However, unlike our work, the direc-
tion of translation was from from svo to svo,
obviating the need for verb prediction. Simul-
taneous translation is more straightforward for
languages with compatible word orders, such
as English and Spanish (Fügen, 2008).

To our knowledge, the only attempt to
specifically predict verbs or any late-occurring
terms (Matsubara et al., 2000) uses pattern
matching on what would today be considered
a small data set to predict English verbs for
Japanese to English simultaneous mt.

Incorporating verb predictions into the trans-
lation process is a significant component of
our framework, though n-gram models strongly
prefer highly frequent verbs. Verb prediction
might be improved by applying the insights
from psycholinguistics. Ferreira (2000) argues
that verb lemmas are required early in sentence
production—prior to the first noun phrase
argument—and that multiple possible syntac-
tic hypotheses are maintained in parallel as the
sentence is produced. Schriefers et al. (1998)
argues that, in simple German sentences, non-
initial verbs do not need lemma planning at
all. Momma et al. (2014), investigating these
prior claims, argues that the abstract relation-
ship between the internal arguments and verbs
triggers selective verb planning.

9 Conclusion and Future Work

Creating an effective simultaneous translation
system for sov to svo languages requires not
only translating partial sentences, but also ef-
fectively predicting a sentence’s verb. Both



elements of the system require substantial re-
finement before they are usable in a real-world
system.

Replacing our idealized translation system
is the most challenging and most important
next step. Supporting multiple translation hy-
potheses and incremental decoding (Sankaran
et al., 2010) would improve both the efficiency
and effectiveness of our system. Using data
from human translators (Shimizu et al., 2014)
could also add richer strategies for simultane-
ous translation: passive constructions, reorder-
ing, etc.

Verb prediction also can be substantially im-
proved both in its scope in the system and
how we predict verbs. Verb-final languages
also often place verbs at the end of clauses,
and also predicting these verbs would improve
simultaneous translation, enabling its effective
application to a wider range of sentences. In-
stead predicting an exact verb early (which is
very difficult), predicting a semantically close
or a more general verb might yield interpretable
translations.

A natural next step is expanding this work
to other languages, such as Japanese, which not
only has sov word order but also requires tok-
enization and morphological analysis, perhaps
requiring sub-word prediction.
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