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Abstract

Discovering hierarchical regularities in data is a key problem in interacting with
large datasets, modeling cognition, and encoding knowledge. A previous Bayesian
solution—Kingman’s coalescent—provides a probabilistic model for data repre-
sented as a binary tree. Unfortunately, this is inappropriate for data better described
by bushier trees. We generalize an existing belief propagation framework of
Kingman’s coalescent to the beta coalescent, which models a wider range of tree
structures. Because of the complex combinatorial search over possible structures,
we develop new sampling schemes using sequential Monte Carlo and Dirichlet
process mixture models, which render inference efficient and tractable. We present
results on synthetic and real data that show the beta coalescent outperforms King-
man’s coalescent and is qualitatively better at capturing data in bushy hierarchies.

1 The Need For Bushy Hierarchical Clustering

Hierarchical clustering is a fundamental data analysis problem: given observations, what hierarchical
grouping of those observations effectively encodes the similarities between observations? This is a
critical task for understanding and describing observations in many domains [1, 2], including natural
language processing [3], computer vision [4], and network analysis [5]. In all of these cases, natural
and intuitive hierarchies are not binary but are instead bushy, with more than two children per parent
node. Our goal is to provide efficient algorithms to discover bushy hierarchies.

We review existing nonparametric probabilistic clustering algorithms in Section 2, with particular
focus on Kingman’s coalescent [6] and its generalization, the beta coalescent [7, 8]. While Kingman’s
coalescent has attractive properties—it is probabilistic and has edge “lengths” that encode how
similar clusters are—it only produces binary trees. The beta coalescent (Section 3) does not have this
restriction. However, naı̈ve inference is impractical, because bushy trees are more complex: we need
to consider all possible subsets of nodes to construct each internal nodes in the hierarchy.

Our first contribution is a generalization of the belief propagation framework [9] for beta coalescent to
compute the joint probability of observations and trees (Section 3). After describing sequential Monte
Carlo posterior inference for the beta coalescent, we develop efficient inference strategies in Section 4,
where we use proposal distributions that draw on the connection between Dirichlet processes—a
ubiquitous Bayesian nonparametric tool for non-hierarchical clustering—and hierarchical coalescents
to make inference tractable. We present results on both synthetic and real data that show the beta
coalescent captures bushy hierarchies and outperforms Kingman’s coalescent (Section 5).

2 Bayesian Clustering Approaches

Recent hierarchical clustering techniques have been incorporated inside statistical models; this
requires formulating clustering as a statistical—often Bayesian—problem. Heller et al. [10] build
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binary trees based on the marginal likelihoods, extended by Blundell et al. [11] to trees with arbitrary
branching structure. Ryan et al. [12] propose a tree-structured stick-breaking process to generate trees
with unbounded width and depth, which supports data observations at leaves and internal nodes.1
However, these models do not distinguish edge lengths, an important property in distinguishing how
“tight” the clustering is at particular nodes.

Hierarchical models can be divided into complementary “fragmentation” and “coagulation” frame-
works [7]. Both produce hierarchical partitions of a dataset. Fragmentation models start with a single
partition and divide it into ever more specific partitions until only singleton partitions remain. Coagu-
lation frameworks repeatedly merge singleton partitions until only one partition remains. Pitman-Yor
diffusion trees [13], a generalization of Dirichlet diffusion trees [14], are an example of a bushy
fragmentation model, and they model edge lengths and build non-binary trees.

Instead, our focus is on bottom-up coalescent models [8], one of the coagulation models and
complementary to diffusion trees, which can also discover hierarchies and edge lengths. In this
model, n nodes are observed (we use both observed to emphasize that nodes are known and leaves to
emphasize topology). These observed nodes are generated through some unknown tree with latent
edges and unobserved internal nodes. Each node (both observed and latent) has a single parent. The
convention in such models is to assume our observed nodes come at time t = 0, and at time −∞ all
nodes share a common ur-parent through some sequence of intermediate parents.

Consider a set of n individuals observed at the present (time t = 0). All individuals start in one of n
singleton sets. After time ti, a set of these nodes coalesce into a new node. Once a set merges, their
parent replaces the original nodes. This is called a coalescent event. This process repeats until there
is only one node left, and a complete tree structure π (Figure 1) is obtained.

Different coalescents are defined by different probabilities of merging a set of nodes. This is called
the coalescent rate, defined by a general family of coalescents: the lambda coalescent [7, 15]. We
represent the rate via the symbol λkn, the rate at which k out of n nodes merge into a parent node.
From a collection of n nodes, k ≤ n can coalesce at some coalescent event (k can be different for
different coalescent events). The rate of a fraction γ of the nodes coalescing is given by γ−2Λ(dγ),
where Λ(dγ) is a finite measure on [0, 1]. So k nodes merge at rate

λkn =

∫ 1

0

γk−2(1− γ)n−kΛ(dγ) (2 ≤ k ≤ n). (1)

Choosing different measures yields different coalescents. A degenerate Dirac delta measure at 0
results in Kingman’s coalescent [6], where λkn is 1 when k = 2 and zero otherwise. Because this
gives zero probability to non-binary coalescent events, this only creates binary trees.

Alternatively, using a beta distribution BETA(2− α, α) as the measure Λ yields the beta coalescent.
When α is closer to 1, the tree is bushier; as α approaches 2, it becomes Kingman’s coalescent. If we
have ni−1 nodes at time ti−1 in a beta coalescent, the rate λkini−1

for a children set of ki nodes at time
ti and the total rate λni−1

of any children set merging—summing over all possible mergers—is

λkini−1
=

Γ(ki − α)Γ(ni−1 − ki + α)

Γ(2− α)Γ(α)Γ(ni−1)
and λni−1

=

ni−1∑

ki=2

(ni−1

ki

)
λkini−1

. (2)

Each coalescent event also has an edge length—duration—δi. The duration of an event comes from
an exponential distribution, δi ∼ exp(λni−1

), and the parent node forms at time ti = ti−1 − δi.
Shorter durations mean that the children more closely resemble their parent (the mathematical basis
for similarity is specified by a transition kernel, Section 3).

Analogous to Kingman’s coalescent, the prior probability of a complete tree π is the product of all of
its constituent coalescent events i = 1, . . .m, merging ki children after duration δi,

p(π) =
m∏

i=1

p(ki|ni−1)︸ ︷︷ ︸
Merge ki nodes

· p(δi|ki, ni−1)︸ ︷︷ ︸
After duration δi

=
m∏

i=1

λkini−1
· exp(−λni−1

δi). (3)

1This is appropriate where the entirety of a population is known—both ancestors and descendants. We focus
on the case where only the descendants are known. For a concrete example, see Section 5.2.
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Algorithm 1 MCMC inference for generating a tree
1: for Particle s = 1, 2, · · · , S do
2: Initialize ns = n, i = 0, ts0 = 0, ws0 = 1.
3: Initialize the node set V s = {ρ0, ρ1, · · · , ρn}.
4: while ∃s ∈ {1 · · ·S} where ns > 1 do
5: Update i = i+ 1.
6: for Particle s = 1, 2, · · · , S do
7: if ns == 1 then
8: Continue.
9: Propose a duration δsi by Equation 10.

10: Set coalescent time tsi = tsi−1 − δsi .
11: Sample partitions psi from DPMM.
12: Propose a set ρs~ci according to Equation 11.
13: Update weight wsi by Equation 13.
14: Update ns = ns − |ρs~ci |+ 1.
15: Remove ρs~ci from V s, add ρsi to V s.
16: Compute effective sample size ESS [16].
17: if ESS < S/2 then
18: Resample particles [17].

(a) Kingman’s coalescent

(b) the beta coalescent

Figure 1: The beta coalescent can merge four simi-
lar nodes at once, while Kingman’s coalescent only
merges two each time.

3 Beta Coalescent Belief Propagation

The beta coalescent prior only depends on the topology of the tree. In real clustering applications, we
also care about a node’s children and features. In this section, we define the nodes and their features,
and then review how we use message passing to compute the probabilities of trees.

An internal node ρi is defined as the merger of other nodes. The children set of node ρi, ρ~ci , coalesces
into a new node ρi ≡ ∪b∈~ciρb. This encodes the identity of the nodes that participate in specific
coalescent events; Equation 3, in contrast, only considers the number of nodes involved in an event.
In addition, each node is associated with a multidimensional feature vector yi.

Two terms specify the relationship between nodes’ features: an initial distribution p0(yi) and a
transition kernel κtitb(yi, yb). The initial distribution can be viewed as a prior or regularizer for
feature representations. The transition kernel encourages a child’s feature yb (at time tb) to resemble
feature yi (formed at ti); shorter durations tb − ti increase the resemblance.

Intuitively, the transition kernel can be thought as a similarity score; the more similar the features
are, the more likely nodes are. For Brownian diffusion (discussed in Section 4.3), the transition
kernel follows a Gaussian distribution centered at a feature. The covariance matrix Σ is decided
by the mutation rate µ [18, 9], the probability of a mutation in an individual. Different kernels
(e.g., multinomial, tree kernels) can be applied depending on modeling assumptions of the feature
representations.

To compute the probability of the beta coalescent tree π and observed data x, we generalize the
belief propagation framework used by Teh et al. [9] for Kingman’s coalescent; this is a more scalable
alternative to other approaches for computing the probability of a Beta coalescent tree [19]. We
define a subtree structure θi = {θi−1, δi, ρ~ci}, thus the tree θm after the final coalescent event m is a
complete tree π. The message for node ρi marginalizes over the features of the nodes in its children
set.2 The total message for a parent node ρi is

Mρi(yi) = Z−1
ρi (x|θi)

∏

b∈~ci

∫
κtitb(yi, yb)Mρb(yb)dyb. (4)

where Zρi(x|θi) is the local normalizer, which can be computed as the combination of initial
distribution and messages from a set of children,

Zρi(x|θi) =

∫
p0(yi)

∏

b∈~ci

(∫
κtitb(yi, yb)Mρb(yb)dyb

)
dyi. (5)

2When ρb is a leaf, the message Mρb(yb) is a delta function centered on the observation.
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Recursively performing this marginalization through message passing provides the joint probability
of a complete tree π and the observations x. At the root,

Z−∞(x|θm) =

∫
p0(y−∞)κ−∞,tm(y−∞, ym)Mρm(ym)dymdy−∞ (6)

where p0(y−∞) is the initial feature distribution and m is the number of coalescent events. This gives
the marginal probability of the whole tree,

p(x|π) = Z−∞(x|θm)

m∏

i=1

Zρi(x|θi), (7)

The joint probability of a tree π combines the prior (Equation 3) and likelihood (Equation 7),

p(x, π) = Z−∞(x|θm)

m∏

i=1

λkini−1
exp(−λni−1δi) · Zρi(x|θi). (8)

3.1 Sequential Monte Carlo Inference

Sequential Monte Carlo (SMC)—often called particle filters—estimates a structured sequence of
hidden variables based on observations [20]. For coalescent models, this estimates the posterior
distribution over tree structures given observations x. Initially (i = 0) each observation is in a
singleton cluster;3 in subsequent particles (i > 0), points coalesce into more complicated tree
structures θsi , where s is the particle index and we add superscript s to all the related notations to
distinguish between particles. We use sequential importance resampling [21, SIR] to weight each
particle s at time ti, denoted as wsi .

The weights from SIR approximate the posterior. Computing the weights requires a conditional distri-
bution of data given a latent state p(x|θsi ), a transition distribution between latent states p(θsi |θsi−1),
and a proposal distribution f(θsi |θsi−1,x). Together, these distributions define weights

wsi = wsi−1

p(x | θsi )p(θsi | θsi−1)

f(θsi | θsi−1,x)
. (9)

Then we can approximate the posterior distribution of the hidden structure using the normalized
weights, which become more accurate with more particles.

To apply SIR inference to belief propagation with the beta coalescent prior, we first define the particle
space structure. The sth particle represents a subtree θsi−1 at time tsi−1, and a transition to a new
subtree θsi takes a set of nodes ρs~ci from θsi−1, and merges them at tsi , where tsi = tsi−1 − δsi and
θsi = {θsi−1, δ

s
i , ρ

s
~ci
}. Our proposal distribution must provide the duration δsi and the children set ρs~ci

to merge based on the previous subtree θsi−1.

We propose the duration δsi from the prior exponential distribution and propose a children set from the
posterior distribution based on the local normalizers. 4 This is the “priorpost” method in Teh et al. [9].

However, this approach is intractable. Given ni−1 nodes at time ti, we must consider all possible
children sets

(ni−1

2

)
+
(ni−1

3

)
+ · · ·+

(ni−1
ni−1

)
. The computational complexity grows from O(n2

i−1)
(Kingman’s coalescent) to O(2ni−1) (beta coalescent).

4 Efficiently Finding Children Sets with DPMM

We need a more efficient way to consider possible children sets. Even for Kingman’s coalescent, which
only considers pairs of nodes, Gorur et al. [22] do not exhaustively consider all pairs. Instead, they
use data structures from computational geometry to select the R closest pairs as their restriction set,
reducing inference toO(n log n). While finding closest pairs is a traditional problem in computational
geometry, discovering arbitrary-sized sets is less studied.

3The relationship between time and particles is non-intuitive. Time t goes backward with subsequent particles.
When we use time-specific adjectives for particles, this is with respect to inference.

4This is a special case of Section 4.2’s algorithm, where the restriction set Ωi is all possible subsets.
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In this section, we describe how we use a Dirichlet process mixture model [23, DPMM] to discover a
restriction set Ω, integrating DPMMs into the SMC proposal. We first briefly review what DPMMs are,
describe why they are attractive, and then describe how we incorporate DPMMs in SMC inference.

The DPMM is defined by a concentration β and a base distribution G0. A distribution over mixtures is
drawn from a Dirichlet process (DP): G ∼ DP(β,G0). Each observation xi is assigned to a mixture
component µi drawn from G. Because the Dirichlet process is a discrete distribution, observations i
and j can have the same mixture component (µi = µj). When this happens, points are said to be in
the same partition. Posterior inference can discover a distribution over partitions. A full derivation of
these sampling equations appears in the supplemental material.

4.1 Attractive Properties of DPMMs

DPMMs and Coalescents Berestycki et al. [8] showed that the distribution over partitions in a
Dirichlet process is equivalent to the distribution over coalescents’ allelic partitions—the set of
members that have the same feature representation—when the mutation rate µ of the associated
kernel is half of the Dirichlet concentration β (Section 3). For Brownian diffusion, we can connect
DPMM with coalescents by setting the kernel covariance Σ = µI to Σ = β/2I.

The base distribution G0 is also related with nodes’ feature. The base distribution G0 of a Dirichlet
process generates the probability measure G for each block, which generates the nodes in a block.
As a result, we can select a base distribution which fits the distribution of the samples in coalescent
process. For example, if we use Gaussian distribution for the transition kernel and prior, a Gaussian
is also appropriate as the DPMM base distribution.

Effectiveness as a Proposal The necessary condition for a valid proposal [24] is that it should have
support on a superset of the true posterior. In our case, the distribution over partitions provided by
the DPMM considers all possible children sets that could be merged in the coalescent. Thus the new
proposal with DPMM satisfies this requirement, and it is a valid proposal.

In addition, Chen [25] gives a set of desirable criteria for a good proposal distribution: accounts for
outliers, considers the likelihood, and lies close to the true posterior. The DPMM fulfills these criteria.
First, the DPMM provides a distribution over all partitions. Varying the concentration parameter β can
control the length of the tail of the distribution over partitions. Second, choosing the base distribution
of the DPMM appropriately models the feature likelihood; i.e., ensuring the DPMM places similar
nodes together in a partition with high probability. Third, the DPMM qualitatively provides reasonable
children sets when compared with exhaustively considering all children sets (Figure 2(c)).

4.2 Incorporating DPMM in SMC Proposals

To address the inference intractability in Section 3.1, we use the DPMM to obtain a distribution over
partitions of nodes. Each partition contains clusters of nodes, and we take a union over all partitions
to create a restriction set Ωi = {ωi1, ωi2, · · · }, where each ωij is a subset of the ni−1 nodes. A
standard Gibbs sampler provides these partitions (see supplemental).

With this restriction set Ωi, we propose the duration time δsi from the exponential distribution and
propose a children set ρs~ci based on the local normalizers

fi(δ
s
i ) = λsni−1

exp(−λsni−1
δsi ) (10) fi(ρ

s
~ci
|δsi , θsi−1) =

Zρi(x|θsi−1, δ
s
i , ρ

s
~ci

)

Z0
· I
[
ρs~ci ∈ Ωsi

]
, (11)

where Ωsi restricts the candidate children sets, I is the indicator, and we replace Zρi(x|θsi ) with
Zρi(x|θsi−1, δ

s
i , ρ

s
~ci

) since they are equivalent here. The normalizer is

Z0 =
∑

ρ′
~c

Zρi(x|θsi−1, δ
s
i , ρ
′
~c) · I [ρ′~c ∈ Ωsi ] =

∑
ρ′
~c
∈Ωs

i

Zρi(x|θsi−1, δ
s
i , ρ
′
~c). (12)

Applying the true distribution (the ith multiplicand from Equation 8) and the proposal distribution
(Equation 10 and Equation 11) to the SIR weight update (Equation 9),

wsi = wsi−1

λ
|ρs~ci |
ni−1 ·

∑
ρ′
~c
∈Ωs

i
Zρi(x|θsi−1, δ

s
i , ρ
′
~c)

λsni−1

, (13)
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where |ρs~ci | is the size of children set ρs~ci; parameter λ
|ρs~ci |
ni−1 is the rate of the children set ρs~ci (Equa-

tion 2); and λsni−1
is the rate of all possible sets given a total number of nodes ni−1 (Equation 2).

We can view this new proposal as a coarse-to-fine process: DPMM proposes candidate children
sets; SMC selects a children set from DPMM to coalesce. Since the coarse step is faster and filters
“bad” children sets, the slower finer step considers fewer children sets, saving computation time
(Algorithm 1). If Ωi has all children sets, it recovers exhaustive SMC. We estimate the effective sample
size [16] and resample [17] when needed. For smaller sets, the DPMM is sometimes impractical (and
only provides singleton clusters). In such cases it is simpler to enumerate all children sets.

4.3 Example Transition Kernel: Brownian Diffusion

This section uses Brownian diffusion as an example for message passing framework. The initial
distribution p0(y) of each node is N (0,∞); the transition kernel κtitb(y, ·) is a Gaussian centered
at y with variance (ti − tb)Σ, where Σ = µI, µ = β/2, β is the concentration parameter of DPMM.
Then the local normalizer Zρi(x|θi) is

Zρi(x|θi) =

∫
N (yi; 0,∞)

∏
b∈~ci
N (yi; ŷb,Σ(vρb + tb − ti))dyi, (14)

and the node message Mρi(yi) is normally distributed Mρi(yi) ∼ N (yi; ŷρi ,Σvρi), where

vρi =
(∑

b∈~ci
(vρb + tb − ti)−1

)−1

, ŷρi =

(∑
b∈~ci

ŷρb
vρb + tb − ti

)
vρi .

5 Experiments: Finding Bushy Trees

In this section, we compare trees built by the beta coalescent (beta) against those built by Kingman’s
coalescent (kingman) and hierarchical agglomerative clustering [26, hac] on both synthetic and real
data. We show beta performs best and can capture data in more interpretable, bushier trees.

Setup The parameter α for the beta coalescent is between 1 and 2. The closer α is to 1, bushier the
tree is, and we set α = 1.2.5 We set the mutation rate as 1, thus the DPMM parameter is initialized
as β = 2, and updated using slice sampling [27]. All experiments use 100 initial iterations of DPMM
inference with 30 more iterations after each coalescent event (forming a new particle).

Metrics We use three metrics to evaluate the quality of the trees discovered by our algorithm:
purity, subtree and path length. The dendrogram purity score [28, 10] measures how well the leaves
in a subtree belong to the same class. For any two leaf nodes, we find the least common subsumer
node s and—for the subtree rooted at s—measure the fraction of leaves with same class labels. The
subtree score [9] is the ratio between the number of internal nodes with all children in the same
class and the total number of internal nodes. The path length score is the average difference—over
all pairs—of the lowest common subsumer distance between the true tree and the generated tree,
where the lowest common subsumer distance is the distance between the root and the lowest common
subsumer of two nodes. For purity and subtree, higher is better, while for length, lower is better.
Scores are in expectation over particles and averaged across chains.

5.1 Synthetic Hierarchies

To test our inference method, we generated synthetic data with edge length (full details available
in the supplemental material); we also assume each child of the root has a unique label and the
descendants also have the same label as their parent node (except the root node).

We compared beta against kingman and hac by varying the number of observations (Figure 2(a))
and feature dimensions (Figure 2(b)). In both cases, beta is comparable to kingman and hac (no
edge length). While increasing the feature dimension improves both scores, more observations do
not: for synthetic data, a small number of observations suffice to construct a good tree.

5With DPMM proposals, α has a negligible effect, so we elide further analysis for different α values.
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Figure 2: Figure 2(a) and 2(b) show the effect of changing the underlying data size or number
of dimension. Figure 2(c) shows that our DPMM proposal for children sets is comparable to an
exhaustive enumeration of all possible children sets (enum).

To evaluate the effectiveness of using our DPMM as a proposal distribution, we compare exhaustively
enumerating all children set candidates (enum) while keeping the SMC otherwise unchanged; this
experiment uses ten data points (enum is completely intractable on larger data). Beta uses the DPMM
and achieved similar accuracy (Figure 2(c)) while greatly improving efficiency.

5.2 Human Tissue Development

Our first real dataset is based on the developmental biology of human tissues. As a human develops,
tissues specialize, starting from three embryonic germ layers: the endoderm, ectoderm, and mesoderm.
These eventually form all human tissues. For example, one developmental pathway is ectoderm→
neural crest→ cranial neural crest→ optic vesicle→ cornea. Because each germ layer specializes
into many different types of cells at specific times, it is inappropriate to model this development as a
binary tree, or with clustering models lacking path lengths.

Historically, uncovering these specialization pathways is a painstaking process, requiring inspection
of embryos at many stages of development; however, massively parallel sequencing data make it
possible to efficiently form developmental hypotheses based on similar patterns of gene expression.
To investigate this question we use the transcriptome of 27 tissues with known, unambiguous,
time-specific lineages [29]. We reduce the original 182727 dimensions via principle component
analysis [30, PCA]. We use five chains with five particles per chain.

Using reference developmental trees, beta performs better on all three scores (Table 1) because beta
builds up a bushy hierarchy more similar to the true tree. The tree recovered by beta (Figure 3)
reflects human development. The first major differentiation is the division of embryonic cells into
three layers of tissue: endoderm, mesoderm, and ectoderm. These go on to form almost all adult
organs and cells. The placenta (magenta), however, forms from a fourth cell type, the trophoblast;
this is placed in its own cluster at the root of the tree. It also successfully captures ectodermal tissue
lineage. However, mesodermic and endodermic tissues, which are highly diverse, do not cluster as
well. Tissues known to secrete endocrine hormones (dashed borders) cluster together.

5.3 Clustering 20-newsgroups Data

Following Heller et al. [10], we also compare the three models on 20-newsgroups,6 a multilevel
hierarchy first dividing into general areas (rec, space, and religion) before specializing into areas such
as baseball or hockey.7 This true hierarchy is inset in the bottom right of Figure 4, and we assume
each edge has the same length. We apply latent Dirichlet allocation [31] with 50 topics to this corpus,
and use the topic distribution for each document as the document feature. We use five chains with
eighty particles per chain.

6
http://qwone.com/˜jason/20Newsgroups/

7We use “rec.autos”, “rec.sport.baseball”, “rec.sport.hockey”, “sci.space” newsgroups but also—in contrast
to Heller et al. [10]—added “soc.religion.christian”.
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tissue. Dashed border indicates secretory func-
tion. While neural tissues from the ectoderm
were clustered correctly, some mesoderm and
endoderm tissues were commingled. The cluster
also preferred placing secretory tissues together
and higher in the tree.

rec.sport.hocky
rec.sport.baseball rec.autos

sci.space
soc.religion.christian

... ... ... ... ...

True Tree

Doc Label

Figure 4: One sample hierarchy of the 20news-
groups from beta. Each small square is a docu-
ment colored by its class label. Large rectangles
represent a subtree with all the enclosed docu-
ments as leaf nodes. Most of the documents from
the same group are clustered together; the three
“rec” groups are merged together first, and then
merged with the religion and space groups.

Biological Data 20-newsgroups Data
hac kingman beta hac kingman beta

purity ↑ 0.453 0.474± 0.029 0.492± 0.028 0.465 0.510± 0.047 0.565± 0.081
subtree ↑ 0.240 0.302± 0.033 0.331± 0.050 0.571 0.651± 0.013 0.720± 0.013
length ↓ − 0.654± 0.041 0.586± 0.051 − 0.477± 0.027 0.333± 0.047

Table 1: Comparing the three models: beta performs best on all three scores.

As with the biological data, beta performs best on all scores for 20-newsgroups. Figure 4 shows a
bushy tree built by beta, which mostly recovered the true hierarchy. Documents within a newsgroup
merge first, then the three “rec” groups, followed by “space” and “religion” groups. We only use
topic distribution as features, so better results could be possible with more comprehensive features.

6 Conclusion

This paper generalizes Bayesian hierarchical clustering, moving from Kingman’s coalescent to the
beta coalescent. Our novel inference scheme based on SMC and DPMM make this generalization
practical and efficient. This new model provides a bushier tree, often a more realistic view of data.

While we only consider real-valued vectors, which we model through the ubiquitous Gaussian,
other likelihoods might be better suited to other applications. For example, for discrete data such
as in natural language processing, a multinomial likelihood may be more appropriate. This is a
straightforward extension of our model via other transition kernels and DPMM base distributions.

Recent work uses the coalescent as a means of producing a clustering in tandem with a downstream
task such as classification [32]. Hierarchies are often taken a priori in natural language processing.
Particularly for linguistic tasks, a fully statistical model like the beta coalescent that jointly learns the
hierarchy and a downstream task could improve performance in dependency parsing [33] (clustering
parts of speech), multilingual sentiment [34] (finding sentiment-correlated words across languages),
or topic modeling [35] (finding coherent words that should co-occur in a topic).
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