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Abstract—Natural disasters affect millions of people every year.
Understanding human behavior is critical to improve both emer-
gency planning and prevention. However, emergency responders
typically struggle to gain access to timely, fine-grained models
of human behavior during disasters. In this paper, we propose a
novel framework to analyze behavioral changes during disasters
using Call Detail Records (CDRs) from a telecommunications
company. CDR datasets are collections of spatio-temporal traces
that can characterize individual mobility and social network
behaviors at very fine scales. The proposed framework exploits
the granular behavioral models to evaluate the similarities and
differences between the normal and the disaster patterns.

The framework consists of three steps: data pre-processing,
behavioral baseline computation and disaster analytics. The
data pre-processing step uses data mining techniques to extract
individual mobility traces and individual social network features
from the CDR data. The behavioral baseline computation step
computes the baselines that characterize normal mobility and so-
cial network behaviors in non-disaster scenarios. This step uses n-
th order Markov Chain models to approximate mobility patterns
from the CDR spatio-temporal data. Finally, the disaster analytics
step allows for the statistical analysis of behavioral changes
during disasters by comparing the real behaviors observed during
a disaster with the behaviors that would have been expected
under normal circumstances (baselines). We use the framework
to analyze Rwanda’s 2012 floods and show that disasters tend
to disrupt both mobility patterns and communication behaviors
while recovery times can take several weeks.

I. INTRODUCTION

Natural disasters such as hurricanes, floods or tornadoes
affect millions of individuals every year. As a result, govern-
ments spend millions of dollars in emergency response allo-
cating resources to mitigate the damages. Effective resource
allocation requires a deep understanding of how humans
react when a disaster takes place. However, gathering human
behaviors at large scale during a disaster is not trivial. For
example, some natural disasters like floods might generate
temporary displacements or permanent relocations. Drawing
a complete picture of such population mobility patterns is
extremely difficult. Generally, emergency responders in the
field gather data by interviewing affected individuals, but the
coverage of these interviews can be pretty limited.

The widespread use of cell phones worldwide has allowed
to model human behaviors at large scale through the use of

Call Detail Records (CDR) [1]. CDRs are collected by cell
phone companies for billing purposes every time a phone call
is made or received. Each CDR contains information regarding
the phone numbers involved in the communication, date, time
and the location (as a pair of latitude and longitude) of the
cellular towers that gave coverage to the service. As previous
research has shown, CDRs can offer a detailed picture of how
humans move and interact with each other [2]–[5]. In this
paper, we propose a novel framework to automatically extract
large-scale models of human behavior during disasters using
CDRs. The main objective is to allow emergency responders
understand how humans react to a disaster. The resulting
behavioral models will provide valuable information not only
to critically allocate resources once a disaster happens, but
also to enhance emergency planning and prevention.

The proposed framework uses a combination of data mining,
n-th order Markov Chain models and statistical analyses to
infer normal mobility patterns and social network behaviors
from CDR data and to automatically quantify behavioral
changes regarding displacements and communication patterns
when a disaster happens. Unlike previous work [6], our
approach uses CDR data which is sparser (both temporally and
spatially) than GPS data and thus more challenging in terms
of accurate mobility inference. More importantly, it offers
the advantage that the framework will be useful in emerging
regions with very limited resources where GPS cell phones,
let alone GPS collection systems, are a rarity; and where the
high penetration rates of cell phones offer the opportunity of
modeling mobility at large scale. The main contributions of
the proposed framework are:

• A framework that uses a mixture of data mining and ma-
chine learning techniques to extract mobility and social
network features from CDR data which are then used
to automatically build baselines that characterize normal
behaviors under non-disaster scenarios.

• A framework to automatically evaluate the statistically
significant differences between the normal mobility and
social behaviors of a population (pre-disaster) and the
reactions observed during and after a natural disaster
takes place.



• An evaluation of a real flood scenario in Rwanda using
CDR data from the major telecommunications carrier.
The evaluation provides insight information regarding
significant changes in mobility and social network pat-
terns. These insights will prove useful in understanding
displacements qualitatively and quantitatively so as to
improve emergency planning as well as in evaluating
social network changes that could prove critical to design
communication plans for the affected populations.

The rest of the paper is organized as follows: we first
describe the general framework with its three steps. Next, we
explain each step in depth: the data pre-processing to extract
individual mobility and social network features from CDR
data; the behavioral baseline computation step to compute
baselines that characterize mobility and social network behav-
iors under normal circumstances exclusively using geolocation
information from CDR data; and the disaster analytics that
allows to automatically extract statistically significant behav-
ioral changes in terms of displacements and communication
patterns of a population during a disaster. Next, we describe
our evaluation results using CDR data during the flood season
in Rwanda, in 2012 and we finalize with a description of the
related work and a discussion of our main conclusions.

II. FRAMEWORK OVERVIEW

This paper presents a framework that automatically analyzes
the behavioral response to a disaster using as input CDR
data. The main objective is to help emergency responders
understand human behaviors during disasters so as to improve
their mitigation plans and resource allocation. Figure 1 shows
the proposed framework. It receives as input a CDR dataset
i.e., a large-scale spatio-temporal series with millions of calls
from individuals that live in a geographical area hit by a
disaster. Initially, the dataset is divided into two groups: the
pre-disaster dataset, which contains all CDRs until the day of
the disaster and is used to compute the mobility and social
network baselines, and the post-disaster dataset, with all the
CDRs from the day of the disaster onwards which is used to
quantify the behavioral differences with respect to a normal
period of time. Given that input, the framework follows three
main steps. Here, we present a brief overview. The next three
sections describe each step in detail.

The data pre-processing step uses the CDR data to ex-
tract three pre- and post-disaster features that will be used
throughout the framework, namely: mobility traces, ego-social
network features and home location. The mobility traces are
computed for each individual in the sample as the set of
transitions between cellular towers and are used as an approx-
imation of the mobility patterns for any given individual. The
ego-social network features model various individual social
network aspects including degree or volume of incoming
and outgoing communications, reciprocity, transitivity and
friendship. Pre-disaster mobility traces and ego-social network
features are used in the second step of the framework to
compute the behavioral baselines that characterize general
mobility and social network patterns of the population under
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Fig. 1. Overview of the proposed framework with its three steps: CDR pre-
processing to extract main mobility and social features; behavioral baseline
computation to extract normal behaviors during non-disaster periods; and
disaster analytics to evaluate statistical differences between normal, pre-
disaster behavior and the behaviors observed during and after the natural
disaster.

study. The third variable, home location, is critical to model
behavioral changes with respect to the geographic distribution
of the population. Since the CDR data does not contain any
information regarding the home location of the individuals,
we present a data mining approach to approximate it given a
large-scale spatio-temporal series for a given individual.

The behavioral baseline computation step computes the
baselines that accurately represent normal mobility and social
network behaviors during non-disaster periods. These base-
lines will be used in the disaster analytics step to infer the
expected mobility and social behaviors under normal circum-
stances and compare them against the actual behavior observed
during a disaster so as to measure behavioral changes. While
individual social network behaviors can be easily represented
as averages characterizing the degree, reciprocity or transitivity
of the communications for each individual; mobility behaviors
are much more complex to represent. For that reason, the
framework computes one social network baseline per social
feature (degrees, reciprocity and transitivity), where each base-
line is a distribution containing the individual average feature
values for all the population. For example, given a population
of p individuals, the reciprocity baseline will be a distribution
with p elements where each element is the individual average
reciprocity computed using all the pre-disaster CDR data. On
the other hand, the mobility baseline is represented as a set
of n-th order Markov Chain models (one per individual) that
allow to probabilistically infer, for each individual, the next
location based on a set of previously visited locations. The
framework automatically explores various n-th order Markov
Chain models using both visited locations and social network



information and selects the best n value based on the accuracy
of the Markov Chain models in representing the population’s
normal behavior.

Finally, the disaster analytics step takes as input the behav-
ioral baselines and the post-disaster features, and extracts sta-
tistically significant differences between the normal, expected
behaviors and the actual behaviors observed after the disaster.
The objective is to quantify the difference between expected
and observed behaviors so as to provide critical information
to emergency responders regarding displacements, communi-
cations and their spatial and temporal characteristics. For the
displacements, the framework takes each individual n-th order
Markov Chain model in the mobility baseline and uses them
to infer what the expected location would be given a set of n
previously visited locations by an individual. Displacements
are measured by comparing the expected location against the
observed one in the post-disaster period, and by repeating the
process across all individuals and all their visited locations. For
the communications, the framework runs statistical analyses to
compare the baseline of each social feature against its actual
distribution in the post-disaster period so as to understand the
role that communications could play for the deployment and
dissemination of mitigation services. Next, we explain each
step in detail.

III. DATA PRE-PROCESSING

In this section, we present the approaches used to extract
the mobility traces, ego-social network features and home
location for each individual both during the pre- and the
post-disaster periods. The input to this step is a large-scale
spatio-temporal CDR series where each element is of the
type (Ii, Ij , Ti, Tj , t): Ii is an individual at location Ti calling
individual Ij at location Tj at time t. The location of a cellular
tower Tz is expressed as a pair (latitude, longitude). There
exist only a set of such possible locations determined by the
number of cellular towers T1, ..., Tn that give coverage to the
geographical area under study. Given such time series, the
mobility traces MTIz of an individual Iz are computed as the
set of observed transitions between cellular towers at different
time stamps t:

MTIz =
⋃
T,t

(Ti, Tj , t)

On the other hand, given a set of individuals I = {I1, ..., In}
in the large-scale spatio-temporal CDR series, we compute
the ego-social network for a given individual Ii as the set of
individuals with whom a communication has been established
in the past. The framework computes the following features
for each ego-network: input and output network degrees,
reciprocity, number of friends and transitivity. Input (ID)
and output (OD) network degrees represent the number of
incoming and outgoing communications for a given individual
i in her ego-network and are computed as:

IDi =
∑
Ij

V (i← j)

where V (i ← j) measures the number of calls from j to i,
and the output degree as the total number of calls from i to
others

ODi =
∑
Ij

V (i→ j)

We compute the friends for a given individual Ii as the set of
individuals with whom a strong, reciprocated communication
has been established in the past. Reciprocity measures the re-
lationship between how much an individual calls other people
and how much the other people reciprocate that behavior. The
framework computes this variable as Ri =

∑N
j=1Ri,j

/
N

where N is the total number of communicated individuals and

Ri,j = 1−

∣∣∣∣∣1− 2Vi→j

Vi→j + Vj→i

∣∣∣∣∣
where Vx→y is the volume of calls made from individual x
to individual y and Ri,j ∈ [0, 1] [7] . However, reciprocity
can be high between two individuals that have shared very
few communications. Thus, we define friends as individuals
that not only have a high reciprocity, but also whose commu-
nications represent an important percentage th of the overall
communication graph. Formally, we define the set of friends
of an individual Ii as:

F (Ii) =
⋃
j

Ij s.t. (Ri ≥ r) ∧ (Vi↔j ≥ Vi ∗ th)

where Vi↔j is the number of calls between Ii and Ij , Vi
is the total volume of calls for Ii and where r and th are
calibrated empirically. More details are presented in the eval-
uation section. The last network feature, transitivity, measures
the number of connections that an individual has with her
friends’ friends [8] and is computed as:

T (i) = Vi↔j s.t. j ∈ F (F (Ii))

Finally, to approximate the home location of an individual,
we use the centroid of the radius of gyration modeled using all
the locations visited by an individual. The radius of gyration
approximates the geographical area typically covered by an
individual and we use its centroid as a proxy for the location
of the home. Formally, given the set of towers T1, ..., Tn with
coordinates (lat1, long1), ..., (latn, longn) and being ni the
number of times tower Ti is visited by a given individual, we
compute the radius of gyration r for Ii as the deviation from
the center of masses for each recorded position weighted by
the number of times each location is visited:

rIi =

√√√√ N∑
i=1

dist(C, Ti)2

where dist(C, Ti) is the Euclidean distance between tower Ti,
ni is the number of times a location is visited and C is the
centroid computed as:

clat = (

N∑
i=1

ni ∗ lati)
/ N∑

i=1

ni



and

clong = (

N∑
i=1

ni ∗ longi)
/ N∑

i=1

ni

IV. BEHAVIORAL BASELINE COMPUTATION

This section presents the methods used to compute the
mobility and social network baselines that characterize a pop-
ulation’s normal, expected behavior in non-disaster scenarios.

A. Mobility Baseline

The mobility baseline represents the normal behavior of a
population as a set of n-th order Markov Chain (MC) models
[9], one per individual. Each n-th order MC is used to ap-
proximate the locations that an individual visits under normal
circumstances, and constitutes a baseline for the mobility of a
given individual. The framework automatically computes the
best n value as the one that best approximates the mobility
patterns for the population. The underlying assumption is that
the current location of an individual depends on the previous
n locations visited in the past. Formally, n-th order Markov
Chain models are designed such that given a set of states
S the probability of being at a given state depends on the
previously n visited locations i.e., P (Xn = Sn) = P (Xn−1 =
Sn−1, Xn−2 = Sn−2, ..., Xn−m = Sn−m) for n > m.
Given the mobility traces MTIz for each individual Iz the
framework explores different n values for MC(n) to infer the
next visited location (cellular tower Tn+1) based on the n
previously visited locations (cellular towers T1, ...Tn). For that
purpose, the framework divides the individual mobility traces
into randomly selected training and testing sets. The training
set is used to compute each individual n-th order MC model
while the testing set will be used to assess the accuracy of
the models to infer the next visited location. The process
is repeated multiple times for different randomly selected
training and testing sets and the average accuracy across runs
is used. The n value that most accurately approximates all
the locations observed across all individuals will be used to
represent the mobility baseline as the set of individual MC(n)
models:

MB =
⋃

i=1,...,p

MC(n)Ii

Each individual MC model is represented as a transition
matrix. For a given n-th order, the matrix contains the frequen-
cies at which each location is visited given a set of previous n
locations. This transition matrix has as many rows as possible
combinations with repetition (CR) of n previous towers T and
as many columns as potential next locations (towers T):

MC(n)size = [CR(T, n), T ]

As such, the transition matrices tend to be sparse, suggest-
ing that a large number of the potential transitions between
locations do not happen i.e., PTn+1,{Tn,...,T1} = 0, which
is not necessarily true but rather a limitation of the model.
To account for this, the framework applies the Laplacian
smoothing technique to the transition matrices with α = 1
[10]. To assess the accuracy of each individual transition

matrix, the framework compares the inferred location, given
a set of previously visited n locations, with the actual visited
location observed in the testing set. The inferred location is
the one with the highest frequency in the transition matrix for
a given set of previous locations. This procedure is repeated
for all transitions observed in the testing set while the MC(n)
matrix is also updated in the process.

To select the best value for n, the framework measures
the accuracy for each order across all users in the disaster
area. We consider two scenarios: (i) exact location, where the
next location prediction given a set of n previous locations, is
correct if the inferred position is exactly the observed position
in the mobility trace; and (ii) top locations, where the next
location prediction, given a set of n previous locations, is
correct if the observed position in the testing set is in the set
of top 30% most frequently visited locations in the transition
matrix. For a given n, the accuracy of the mobility baseline for
the exact location is measured as the average accuracy across
all individual MC models when the exact location is used:

ACC(MB) =
∑
i=1,p

ACC(MC(n)Ii)/p

where ACC(· ) represents the accuracy of an individual MC
model inferring the next location and p is the total number of
individuals in the sample. The accuracy of the MC(n) model
for each individual is computed as the number of times the
observed location in the testing set is equal to the inferred
location using the individual MC(n)Ii model and the previous
n locations i.e.,

ACC(MC(n)Ii) = |Tz ==MC(n)Ii |

where || is the cardinality of the set, Tz the observed location
in the testing set and MC(n)Ii is the inferred next location
using the n-th order transition matrix (which is the location
with the highest frequency). Similarly, the accuracy for mo-
bility baseline with the top locations approach given an order
n is computed as the average accuracy across all individual
MC(n) models where each individual accuracy is obtained as
the number of times the observed location is in the set of
towers at the top 30% based on the frequencies in the transition
matrix:

ACC(MC(n)Ii) = |Tz ∈
⋃
j

MC(n)Ii [, j]|

where MC(n)[, j] represents all the locations j in the transi-
tion matrix whose frequencies are in the top 30%.

To explore enhancements to the accuracy of the individual
MC models and thus the mobility baseline, we will incorporate
the hypothesis that mobility patterns are also influenced by
one’s social network [11]. For that purpose, we propose to
modify the next location inference by using not only one’s own
transition matrix, but also the transition matrices from all the
friends. As a result, the prediction will be considered correct
if the observed location, given a set of previous n locations,
is the same as the inferred one using the MC model from
the individual or any of her friends. Formally, the accuracy



of a given MC(n)Ii with the exact location approach will be
computed as

ACC(MC(n)Ii) = |Tz ∈
⋃
Fi

(MC(n)Ii ,MC(n)IFi
)|

where Tz is the observed location in the testing set and
MC(n)IFi

are the inferred locations using the transitions
matrices from i’s friends Fi (where friends are defined as
described in the previous section). For the top locations
approach, the accuracy is computed as

ACC(MC(n)Ii) = |Tz ∈
⋃
Fi

(MC(n)Ii ,MC(n)IFi
[, j])|

where MC(n)IFi
[, j] are the top 30% locations j across all

of i’s friends transition matrices. Once the best value for n
is computed, the framework builds the mobility baseline as
the set of MC(n) models, one per individual in the population
under study.

Finally, we compare the accuracy of the mobility baseline
against two models already proposed in the literature: (i) a
memoryless baseline where each individual Markov Chain is
of type MC(0) i.e., the current state of an individual is indepen-
dent of the previously visited states [12]; and (ii) a time-based
memoryless baseline where each individual Markov Chain,
TMC(0), considers the current state to be independent of the
previously visited states but dependent of the date and time
[13]. The MC(0) model infers next location always as the most
frequent location visited by that individual across all training
data and independently of previous visited locations. On the
other hand, the TMC(0) model infers the next location as the
most frequent one visited by that individual at a given day
and time i.e., for each day of the week and time of the day a
most frequent location is given. As such, it represents a more
granular memoryless model than the MC(0).

B. Social Network Baseline Models

To characterize the normal social network behavior of the
population under study, the framework computes four different
baselines, one per social network feature: input degree, output
degree, reciprocity and transitivity. Specifically, each baseline
is defined as a distribution where each element represents an
individuals’ average value for a given social network feature.
Given the set of social measures per individual i: IDi, ODi,
Ri, and Ti, the baselines are computed as follows:

IDB = {ID1, ID2, ..., IDp}
ODB = {OD1, OD2, ..., ODp}

RB = {R1, R2, ..., Rp}
TB = {T1, T2, ..., Tp}

where p is the total population under study, IDi is the
average input degree for individual Ii in the population; ODi

is the average output degree for individual Ii; Ri is the
average reciprocity for individual Ii; and finally, Ti is the
average transitivity for individual Ii. The framework computes

these distributions and compares them against the actual
distributions observed in the post-disaster period to measure
the behavioral differences as explained in the next section.

V. DISASTER ANALYTICS

In this section, we describe the automatic analyses that
the framework performs to gain a better understanding of
the behavioral changes that citizens undergo when a disaster
happens. This step requires as input the mobility and social
network baselines to infer normal behavior and the post-
disaster spatio-temporal CDR to compare against and quantify
the behavioral changes.

A. Displacements

The framework measures displacements using two variables:
the distances between inferred (normal) and observed locations
after the disaster (we will refer to it as D1) and the changes
in the distribution of transition lengths (D2). While the first
variable quantifies the general impact of the disaster in the
mobility patterns i.e., overall changes with respect to normal
(inferred) behavior; the second variable characterizes specific
types of changes in the mobility patterns with respect to
distances travelled. Additionally, both variables are also used
by the framework to provide a measure of disaster recovery
i.e., the amount of time it takes to recover the normal behavior
that individuals had before the disaster happened.

The framework computes D1 as the average weekly dis-
tance between inferred and observed locations across all
individuals. Observed locations are extracted from the post-
disaster CDR features while the individual MC models in the
mobility baseline are used to infer what the next visited loca-
tion would be for an individual under normal circumstances
given that she has visited n previous locations during the post-
disaster period. Formally,

D1 =
∑
i

M∑
j=1

d(Tj ,MC(n)Ii)
/
W

where Ii is an individual in the sample, Tj are the towers
used by that individual each week after the disaster, d() is a
function that computes the Haversine distance for two pairs
of coordinates, MC(n)Ii is the MC model for individual Ii
and W is the number of weeks in the evaluation. The MC
model infers what the normal location would be, given the set
of previous visited locations, had the disaster not happened.

To compute D2, the framework extracts the distribu-
tion of the probabilities that transitions happen at different
length ranges (R in miles) for a given period of time.
Formally, it computes {P (d(Ti, Tj , t, t′) ∈ R)} where R ∈
{[0, 1 mi), [1 mi, 2 mi), ..[n mi, (n + 1) mi]} and (Ti, Tj)
represents a normal (inferred) or an observed transition during
time period (t, t′) and across all users Ii. After computing
the probabilistic distribution for both observed and inferred
transitions during a given period of time, the framework
runs Kolmogorov-Smirnov (KS) statistical tests to evaluate the
behavioral differences between each pair of distributions.



Finally, the framework also provides information regarding
the destination of the displacements. Specifically, it evaluates
three types of destinations: (i) friends’ home locations, (ii)
urban versus rural locations and (iii) new versus already visited
locations. To evaluate the number of displacements that have
a friends’ home location as final destination, we use the home
locations computed in the data pre-processing step. However,
since destinations are extracted as cellular tower locations Ti,
and home location is expressed as the centroid of the radius of
gyration, the framework considers as friends’ home the tower
whose cellular coverage contains the home centroid. To model
urban versus rural locations, the framework uses manually-
provided boundaries surrounding the main cities in the disaster
area under study and measures the number of displacements
that fall within the boundaries (urban) or not. Finally, new
locations are defined as those that have not been visited before
the disaster by the individual.

B. Communications

Another relevant information for emergency planners is
the ability to understand how communication patterns change
among individuals when a disaster happens. Such information
might shed some light into information diffusion techniques
to reach out to affected individuals. In fact, understanding
how people communicate could help authorities devise better
communication plans to reach those who are in most need.

In this step, the framework takes as input the post-disaster
CDR features and the social network baselines that represent
the normal communication behaviors. Next, it builds one post-
disaster distribution for each social network feature and runs
KS statistical tests to evaluate whether there exist statistically
significant differences between the pre- and post-disaster dis-
tributions for any the four social features: input and output
degrees; reciprocity and transitivity. As discussed earlier, input
and output degrees measure the volume of communications in-
dividuals have, reciprocity measures the relationship between
how much an individual calls other people and how much the
other people reciprocate that behavior, and transitivity mea-
sures the number of connections that an individual has with
her friends’ friends. We expect these variables will provide
insights into how communications might change to reach out
to others (higher input or output degrees or reciprocity) or to
connect with friends’ of friends (transitivity) when a disaster
happens.

VI. EVALUATION

In this section, we present an evaluation of the proposed
framework using spatio-temporal CDR data from a telecom-
munications company in Rwanda. Rwanda suffers every year
from heavy rains and floods specially in the northern province
of Musanze. Heavy rains typically affect crops creating food
insecurity; and can damage roads, schools and hospitals, gen-
erating a lot of disruptions in the lives of citizens. On April 12,
2012 heavy rains led to floods in Musanze provoking damages
in thousands of households [14]. The results discussed here
might help emergency responders gain a deep understanding

of the behavioral patterns during the disaster and prepare for
the floods to come in following years.

A. Dataset

We use a spatio-temporal CDR series for a temporal range
from December 1st, 2011 to June 30th, 2012 covering all
the communications in or out of the Musanze province. The
dataset is fully anonymized i.e., real cell phone numbers have
been transformed into keys to preserve privacy. It contains for
each recorded cell phone call the key for the caller and callee,
the location of the cellular towers where the caller and callee
were when the call happened (as pairs latitude, longitude) and
the date and time at which the communication took place. The
whole dataset contains approximately 1.5 billion records.

B. Data Pre-processing

First, we compute the mobility traces for each individual as
the set of existing transitions between two continuous visited
locations in the spatio-temporal CDR series. Figure 2 shows
the Probability Density Function (PDF) for the transitions’
lengths using the pre-disaster CDR data. We observe that,
in general, the most probable transitions between any two
given points are under 20 miles of length, which covers
almost any trip distances in and between major cities in the
north of the province: Ruhengeri, Butare or Mutura among
others. However, there exists another peak with relatively high
probability at around 40 miles which probably represents trips
from Ruhengeri to the southern rural parts of the province
which are the farthest away from the urban hubs in the
north. Longer distances, possibly representing trips outside the
province, are much less probable.

Fig. 2. Probability Density Function (PDF) for the pre-disaster transitions’
lengths using CDR data. Two prominent peaks appear at 20mi and 40mi.
The first probably represents trips in and between major cities in the Musanze
province (20mi) while the second is probably associated to trips between the
capital city and the southern rural areas which are the farthest away from the
capital city.



The framework also models the ego-social network for
each individual extracting the input and output degrees, the
reciprocity, number of friends and transitivity of the ego-social
network. Further details are given in section VI-C2. Finally,
the home location for each individual in the dataset is obtained
as the centroid of the radius of gyration. Figure 3 shows an
example of the home location computation for an individual
who has used a total of 11 cellular towers throughout the
seven months of the data. The size of the towers in the plot
is proportional to the volume of activity that the user has had
in each tower. We observe that this specific user has visited
several towers in the northwestern part of the province with
higher frequencies than other areas. As a result, the center of
masses, and thus her home location, is approximated to be
where the red dot lies.

Fig. 3. Home location for one individual in our dataset. This individual visits
a total of 11 distinct towers in the time period under study. However, the
northern towers are visited the most (notice larger size in the plot) while the
southern towers are visited with less frequency. Thus, the home location is
located in the north, where the center of masses lies.

C. Behavioral Baselines

1) Mobility Baseline: Table I shows the accuracy of the
mobility baseline for different n-th order MC models. The
accuracy is measured as the average accuracy across all
individual MC models using the pre-disaster spatio-temporal
CDR features. All values are computed as the average results
of multiple runs resulting from dividing the pre-disaster series
into randomly selected training and testing sets. We only show
results for orders n = 1 and n = 2 since larger orders gave
mobility baseline accuracies lower than 10%. We discuss both
mobility baseline accuracy (ACC) and error (ERR) for each
MC order, where accuracy measures the average number of
correct predictions and error the average distance between the
inferred and the real locations across all predictions in the
testing set. Results are discussed for both the Exact and the
Top Locations (30%) approaches. For the latter, we also report
the average distance (Dist) between all the towers at the top
30% as an approximation of the area covered by the set of

TABLE I
ACCURACIES AND ERRORS FOR THE MOBILITY BASELINES USING MC(N)

MODELS WITH N=1 AND N=2 AND THE TWO EXISTING BASELINES:
MEMORYLESS AND TIME-BASED MEMORYLESS. RESULTS ARE SHOWN FOR
BOTH EXACT-LOCATION INFERENCE AND TOP30% LOCATION INFERENCE.

Exact Top Locations (30%) Friends
Model ACC ERR ACC ERR Dist ACC
MC(1) 40.21% 5.01mi 64.55% 3.50mi 6.69mi 66.44%
MC(2) 44.32% 2.96mi 72.06% 2.55mi 6.55mi 73.98%
MC(0) 44.47% 6.24mi 59.32% 1.70mi 7.41mi 60.4%
TMC(0) 22.91% 5.68mi 29.88% 2.45mi 7.18mi 30.13%

towers that are considered correct inferences. The table also
shows results for the other two existing mobility baselines:
MC(0) and TMC(0).

The table shows that the best mobility baseline accuracies
are obtained using MC(2) models with values of 44.32% and
72.06% when measured via Exact position and Top 30%,
respectively. These results show that considering the two
previously visited locations considerably improves the next-
location inference with respect to considering only one previ-
ous location. In fact, the accuracy for the mobility baseline
using MC(1) models where the next-location inference is
solely based on the previously visited location decreases to
40.21% and 64.55% for Exact and Top 30%, respectively.
As expected, the accuracy results for the Exact prediction are
considerably lower than the Top 30% approach: from 44.32%
to 72.06% in the best case. However, the errors for the Exact
predictions are larger meaning that the Top 30% approach
reduces the distance between the inferred and the real locations
since it considers a set of potential candidates. Although one
could argue that considering multiple locations always reduces
the error since the chance of finding a closer location is
higher, the average distance between any two locations of the
sets considered in the top 30% experiments is 6.55mi which
makes the errors reported considerably small given the location
distribution.

We also observe that adding information from friends’ MC
models, increments the best mobility baseline accuracies by
≈ 2% for any order n. In an attempt to better understand
why friends’ MC models appear to improve the next-location
inference, we divided the users into those for whom the
friendship approach increased the accuracy and those for
whom the friendship approach did not. For each group, we
computed average values for the following variables: number
of locations (DT ), number of contacts (DC), distance from
friends (FD), number of friends (NF ), radius of gyration
(RG), total calls made (TC) and average distance (TD) from
home to the locations visited (TD). Figure 4 shows that,
in general, individuals for whom the next-location prediction
improved using friends’ information are users that tend to
have higher volumes of calling interactions and larger mobility
patterns, which probably enhances the amount of information
available in the mobility models and thus the final accuracy
in the prediction.

A comparison with the existing mobility baselines in the



literature shows that the proposed framework enhances the
mobility inference accuracy. In fact, the memoryless baseline
were previous locations are not taken into account for the
inference shows accuracies approximately 14% worse than
the mobility baseline with MC(2) models and the Friends
approach, which confirms the fact that previous locations
help in predicting next visited locations. As for the time-
based memoryless approach, the results are even worse which
implies that inferring next location at specific times with-
out taking into account previous visited locations is not a
feasible solution. All the accuracies reported in the table
were the best across different friendship threshold values
th ∈ {1%, ..., 20%}. The value that gave the best accuracy
results was th = 10% i.e., a friend is someone with whom
your reciprocal communication represents at least 10% of the
total volume of your communication graph.

Fig. 4. Average variable values for individuals for whom the friends’ baseline
model improved prediction accuracies. The variables explored are: number
of locations (DT ), number of contacts (DC), distance from friends (FD),
number of friends (NF ), radius of gyration (RG), total calls made (TC) and
average distance (TD) from home to the locations visited (TD).

2) Social Network Baselines: The four distributions
IDB,ODB,RB, TB are computed across all individuals.
The average input degree for the input degree baseline IDB
is µ = 2.54 ;σ = 0.43, while the average output degree in the
ODB baseline is µ = 2.39 ;σ = 0.36. The average reciprocity
for the reciprocity baseline is r = 0.8 ;σ = 0.008. Finally,
the average transitivity across all individuals in the transitivity
baseline is µ = 0.26 ;σ = 0.67 which indicates a low level
of friendship between friends of friends.

D. Disaster Analytics

1) Displacements: Figure 5 shows the average weekly
distances between inferred (normal) and observed locations
after the floods (variable D1). We used the best mobility
baseline: individual MC(2) models with friends’ information,

Fig. 5. Average weekly distances between inferred and observed locations
after the disaster happens (variable D1). The bars show the average inference
errors and the standard deviation of the variable D1.

to infer the expected locations during the post-disaster period.
The Figure shows that the largest displacements happened
during the first three weeks after the disaster, reaching a
maximum difference of 10mi. This reveals that the floods
had the greatest impact on changing the mobility patterns with
respect to normal behavior mostly during the first three weeks.
Weeks 3 and 4 also show average changes of up to 9mi after
which the impact decreases down to 5mi, which shows that
the floods still generated mobility disruptions from the typical
visited locations, although at a smaller scale. It is important
to note that after 10 weeks we do not observe a trend towards
zero. This indicates that for this flood, the recovery time for
people to go back to their normal location visit patterns was
longer than two months; which could be indicative of long-
term or permanent displacements.

Figure 6 shows the distributions of transition lengths be-
tween consecutive locations for the inferred (normal) and ob-
served post-disaster locations as a probability density function
(PDF) for approximately one, two, three and ten weeks after
the floods. Since the normal PDFs for each time range were
very similar, and for clarity purposes, we only plot one normal
PDF (70 days later), although the statistical analyses were
carried out comparing one-on-one inferred versus observed
distributions. We observe that while for short transitions (up
to ≈ 20mi) there is not much change between the normal
and the actual observed post-disaster behaviors; there exist
significant changes for larger transitions (≥ 20mi). This result
might indicate that despite the floods, people still moved
locally at similar lengths, although to different places given
the differences observed in variable D1. However, people
reduced their large-scale trips significantly as can be observed
5, 10, 20 and 70 days after the disaster. Interestingly, we
also observe a small recovery pattern in the long transitions



Fig. 6. Distribution of transition lengths between consecutive locations for
the inferred (70 days later) and observed locations 5, 10, 20 and 70 days after
the floods happened.

(≥ 20mi) as days pass after the floods. In fact, 10 weeks
(70 days) after the disaster, the longer transitions are more
probable than before, although still not at normal levels. At 10
weeks, D1 still showed that individuals were not visiting the
usual locations which means that although the long transitions
might be recovering, some of these still represent trips to
locations different than usual. All the differences discussed
between inferred and observed transitions at different weeks
were statistically significantly different with a KS test at
p < 0.01 [15].

Regarding the types of destinations citizens went to when
the flood happened, we observed that 26.67% of the displace-
ments during the disaster had as destination an area where the
home location of at least one friend was located. Additionally,
approximately 13.98% of the displacements were to urban
locations, and approximately 35.62% of the displacements
observed during the post-disaster period were to new places
that citizens had not visited in the past. Overall, the main
behavioral trends reveal that individuals stayed more in rural
areas, mostly going to known places (presumably not affected
by the floods) and where they had few friends.

2) Communications: To investigate the effect of the floods
on the communication patterns between users, we explore
the statistically significant differences between the degrees,
reciprocity and transitivity distributions before and after the
floods took place. Regarding the input and output degrees,
a KS test between the baselines and the post-disaster series
gave a statistical significant difference between the two with
p < 0.01. Overall, the communication behaviors changed after
the floods happened with an increase in the average incoming
calls (input degrees) from 2.38 to 2.46; and a decrease in the
average outgoing calls (output degrees) from 2.42 to 2.34.

To look more in depth into these changes, Figure 7 shows

the weekly input degree and output degree for 20 weeks before
and 10 weeks after the floods. It can be seen that both in-
coming and outgoing volumes of calls are higher than normal
mostly for the first two weeks after the floods happened. This
increase reflects that right after the floods individuals are both
reaching out and being reached out by their contacts either to
seek help or to let others know they are fine. After that, there is
a decrease in both values specially in the output degree which
goes lower than average values before the floods. The affected
individuals appear to cut down their outgoing communications
at least for several weeks after the floods. This finding reveals
that although emergency responders could use cell phone
communication to reach out to affected individuals, it might
be difficult to spread the word given that individuals appear
to be reaching out to their contacts less that usual (decrease
in the average output degrees). On the other hand, we did not
observe any significant differences in terms of reciprocity or
transitivity. As a result, emergency responders will also have
difficulties in spreading information across friends’ networks,
although individuals appear to be responsive to incoming
communications.

Fig. 7. Average weekly input degree and output degree before and after the
floods in Musanze province. We observe a statistically significant increase in
the average input degrees and a decrease in the average output degrees right
after the floods.

VII. RELATED WORK

From a disaster analytics perspective, there exists an impor-
tant body of work that uses Call Detail Records to analyze
disasters. Moumny et al. explored communication patterns
during an earthquake [16] using communication data from
cellphones; Bengsston et al. analyzed aggregated displace-
ments upon an earthquake in Haiti [17]; and Song et al.
provide an intelligent system to infer mobility patterns during
disasters. Pastor et al. and Morales et al. carried out an



aggregated analysis studying general mobility trends upon
floods [18], [19]. A more general analysis by Bagrow et al.
compared the collective response to large-scale emergencies
such as bombings, blackouts, earthquakes and big festivals,
among others [20]. Our paper expands the state of the art by
moving beyond mere behavioral analysis contributing with a
general framework that allows for the extraction of behavioral
trends upon different types of disasters based on inferred
behaviors rather than simply using the observed data.

From a baseline computation and inference perspective,
various mobility and social network data such as check-in
locations, GPS traces or CDR data have been use to analyze
mobility patterns. Liu et al. or Noulas et al. have used check-
in data from social networking to model user behavior in
urban areas [21]–[23]; while Becker et al. use cellular network
data to analyze daily range of travel, carbon footprints and
traffic volumes [24]. Cellular data has also been in determining
important places in users lives based on large population [25].
The effect of users’ ego networks on their own behavior
has also been studied in detail. Sadilek et al. proposed a
probabilistic model to predict location of a user based on the
locations of his friends [26]; while Cho et al. studied location
prediction based on friends’ users movements [27].

VIII. CONCLUSIONS AND FUTURE WORK

Understanding human behavior upon disasters is critical to
improve both emergency planning and prevention. However,
emergency responders typically struggle to gain access to
individual models of human mobility and communication. In
this paper, we have proposed a novel framework to analyze
human behavior during disasters using large-scale spatio-
temporal CDR series. The framework extracts behavioral
features from the spatio-temporal data to then infer general
behavioral baselines that are used to study behavioral changes
during disasters. As such, the framework can be used for any
type of disaster given that the spatio-temporal datasets are
provided for the duration of the disaster. Our evaluation has
shown that the framework can generate valuable information
both in terms of understanding displacements as well as for
evaluating communication changes.
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