
1CMSC 818Z - S99 (lect 1) copyright 1999 Jeffrey K. Hollingsworth

Introduction

l Class is an introduction to parallel computing
– topics include: hardware, applications, compilers, system

software, and tools

l Will count for Masters/PhD Comp Credit
l Work required

– small programming assignment
– midterm
– classroom participation
– project

l Reading for the lecture: Chapter 1
l Photos were taken of the class

2CMSC 818Z - S99 (lect 1) copyright 1999 Jeffrey K. Hollingsworth

What is Parallel Computing?

l Does it include:
– super-scalar processing (more than one insn at once)?
– client/server computing?

• what if RPC calls are non-blocking?
– vector processing (same instruction to several values)?
– collection of PC’s not connected to a network?

l For this class, parallel computing is:
– a collection of processing elements (more than one).
– connected to a communication network.
– working together to solve a single problem.

3CMSC 818Z - S99 (lect 1) copyright 1999 Jeffrey K. Hollingsworth

Why Parallelism

l Speed
– need to get results faster than possible with sequential

• a weather forecast that is late is useless
– could come from

• more processing elements (P.E.)
• more memory size
• more disks

l Cost: cheaper to buy many smaller machines
– this is only recently true due to

• VLSI
• commodity parts

4CMSC 818Z - S99 (lect 1) copyright 1999 Jeffrey K. Hollingsworth

What Does a Parallel Computer Look
Like?

l Hardware
– processors
– communication
– memory
– coordination

l Software
– languages
– operating systems
– programming models

5CMSC 818Z - S99 (lect 1) copyright 1999 Jeffrey K. Hollingsworth

Processing Elements (PE)
l Key Processor Choices

– How many?
– How powerful?
– Custom or off-the-shelf?

l Major Styles of Parallel Computing
– SIMD - Single Instruction Multiple Data

• one master program counter
– MIMD - Multiple Instruction Multiple Data

• separate code for each processor
– SPMD - Single Program Multiple Data

• same code on each processor, separate PC’s on each
– Dataflow - instruction waits for operands

• “automatically” finds parallelism

