Introduction

- Class is an introduction to parallel computing
 - topics include: hardware, applications, compilers, system software, and tools
- Will count for Masters/PhD Comp Credit
- Work required
 - small programming assignment
 - midterm
 - classroom participation
 - project
- Reading for the lecture: Chapter 1
- Photos were taken of the class

What is Parallel Computing?

• Does it include:

- super-scalar processing (more than one insn at once)?
- client/server computing?
 - what if RPC calls are non-blocking?
- vector processing (same instruction to several values)?
- collection of PC's **not** connected to a network?
- For this class, parallel computing is:
 - a collection of processing elements (more than one).
 - connected to a communication network.
 - working together to solve a single problem.

Why Parallelism

Speed

- need to get results faster than possible with sequential
 - a weather forecast that is late is useless
- could come from
 - more processing elements (P.E.)
 - more memory size
 - more disks
- Cost: cheaper to buy many smaller machines
 - this is only recently true due to
 - VLSI
 - commodity parts

What Does a Parallel Computer Look Like?

• Hardware

- processors
- communication
- memory
- coordination

• Software

- languages
- operating systems
- programming models

Processing Elements (PE)

- Key Processor Choices
 - How many?
 - How powerful?
 - Custom or off-the-shelf?
- Major Styles of Parallel Computing
 - SIMD Single Instruction Multiple Data
 - one master program counter
 - MIMD Multiple Instruction Multiple Data
 - separate code for each processor
 - SPMD Single Program Multiple Data
 - same code on each processor, separate PC's on each
 - Dataflow instruction waits for operands
 - "automatically" finds parallelism