
1CMSC 417 - F99 (lect 4) copyright 1996-1999 Jeffrey K. Hollingsworth

Announcements

l Reading
– Today: Chapter 3 (3.3-3.4)

• Skip details of code
– Thursday: Chapter 5 (5.1-5.2)

l Program #1 Due at 10 PM not 10AM
l TA Office Hours

– Th 1-3
– F 4-6
– phone x5-2776

2CMSC 417 - F99 (lect 4) copyright 1996-1999 Jeffrey K. Hollingsworth

Error Codes (cont.)

l Error Recovery
– Given m bits of data and r bits of error code
– Want to correct any one bit error
– There are n words one bit from each valid message

• so need n+1 words for each valid message
• thus (n + 1) 2m <= 2n

• but n = m + r so (m + r + 1) <= 2r

l Hamming Code
– recovers from any one bit error
– number bits from left (starting at 1)

• power of two bits are parity
• rest contain data

– bit is checked by all parity bits in its sum of power expansion
• bit 11 is used to compute parity bits 1, 2, and 8

3CMSC 417 - F99 (lect 4) copyright 1996-1999 Jeffrey K. Hollingsworth

Hamming Code Example

Char ASCII Hamming

H 1001 000 0011 0010 000

a 1100 001 1011 1001 001

m 1101 101 1110 1010 101

I 1101 001 0110 1011 001

l Burst Errors
– can send hamming codes by column rather than row
– if use k rows, then can detect any burst error up to k bits

• uses kr bits to check a block km bits long

4CMSC 417 - F99 (lect 4) copyright 1996-1999 Jeffrey K. Hollingsworth

Computing a Hamming Code

Bit #s 1 2 3 4 5 6 7 8 9 10 11
Parity/Data P P D P D D D P D D D
Data To Snd 1 0 0 1 0 0 0
Parity Bit 1 0 1 0 1 0 0
Parity Bit 2 0 1 0 1 0 0
Parity Bit 4 1 0 0 1
Parity Bit 8 0 0 0 0
Message 0 0 1 1 0 0 1 0 0 0 0

5CMSC 417 - F99 (lect 4) copyright 1996-1999 Jeffrey K. Hollingsworth

Checking & Correcting a Hamming Code

Bit #s 1 2 3 4 5 6 7 8 9 10 11
Parity/Data P P D P D D D P D D D
Data Sent 0 0 1 1 0 0 1 0 0 0 0
Data Recv 0 0 0 1 0 0 1 0 0 0 0
Parity Bit 1 1 0 0 1 0 0
Parity Bit 2 1 0 0 1 0 0
Parity Bit 4 1 0 0 1
Parity Bit 8 0 0 0 0
XOR Paritys 1 1 0 0
Corrected
Msg

0 0 1 1 0 0 1 0 0 0 0

Binary # when XOR the parity is the bit position with the error (e.g. 0011 = bit 3 is wrong)

6CMSC 417 - F99 (lect 4) copyright 1996-1999 Jeffrey K. Hollingsworth

Error Detection
l Less bits are required

– if errors are infrequent, then then this works better
– assumes that re-transmission is possible

l Cyclic Redundancy Codes (CRC)
– Use a generator function G(x) of degree r

• r+1 bits long
• x5 + x2 + 1 is degree 5 and represented as 100101

– let M’ be the message with r 0’s on the end of it
– divide M’ into G(x) and compute remainder

• use this as the r bit CRC code
– a code with r bits will detect all burst errors less than r bits

7CMSC 417 - F99 (lect 4) copyright 1996-1999 Jeffrey K. Hollingsworth

CRC’s

l several G’s are standardized
– CRC-12 = x12 + x11 + x3 + x2 + x + 1
– CRC-16 = x16 + x15 + x2 + 1
– CRC-CCITT = x16 + x12 + x5 + 1

l 16 bit CRC will catch
– all single and double bit errors
– all errors with an odd number of bits
– all burst errors of length less than 16

8CMSC 417 - F99 (lect 4) copyright 1996-1999 Jeffrey K. Hollingsworth

CRC Example
Frame : 1 1 0 1 0 1 1 0 1 1
Generator: 1 0 0 1 1

Transmitted frame: 1 1 0 1 0 1 1 0 1 1 1 1 1 0

Message after appending 4 zero bits: 1 1 0 1 0 1 1 0 0 0 0

1 0 0 1 1 1 1 0 1 0 1 1 0 1 1 0 0 0 0
 1 1 0 0 0 0 1 0 1 0

1 0 0 1 1

 1 0 0 1 1
 1 0 0 1 1

 0 0 0 0 1
 0 0 0 0 0

 0 0 0 1 0
 0 0 0 0 0

 0 0 1 0 1
 0 0 0 0 0

 0 1 0 1 1
 0 0 0 0 0

 1 0 1 1 0
 1 0 0 1 1

 0 1 0 1 0
 0 0 0 0 0

 1 0 1 0 0
 1 0 0 1 1

 0 1 1 1 0
 0 0 0 0 0
 1 1 1 0

Remainder

Division is done using XOR

9CMSC 417 - F99 (lect 4) copyright 1996-1999 Jeffrey K. Hollingsworth

PPP Protocol

l Link Protocol for Serial Lines
– Supports multiple network protocols: IP, IPX, CLNP, …
– designed for dialup or leased lines

l Link Establishment (via LCP - Link Control Protocol)
– Negotiate Options

• configure-request: list of proposed options and values
• configure-{ack/nack}: will (won’t) use the requested option

– Allows for authentication

flag
01111110

Address
11111111

control
00001110

protocol payload checksum flag
01111110

1 1 1 or 21 variable 2 or 4 1

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

10CMSC 417 - F99 (lect 4) copyright 1996-1999 Jeffrey K. Hollingsworth

PPP Cont.

l NCP protocol
• per network level protocol
• used to establish network attributes (e.g. addresses)
• high bit of protocol # is a one

l Notes on Link Format
– character stuff flag byte in data

• Escape Character is 0x7d (0111 1101)
• Escape Character and Frame Marker sent at

– <Esc-Char><data XOR 0x20>
– option to skip address and control fields (since constant)

l IP
– Protocol byte (0x21) or 0x8021 for IP NCP

11CMSC 417 - F99 (lect 4) copyright 1996-1999 Jeffrey K. Hollingsworth

ATM Datalink Protocol

l Header
– use CRC over the 32 bits of the header

l How to find cell boundary?
– use shift register to check for valid checksum

• 1/256 chance of a random match
– use HUNT mode to increase chances

• after a good cell, skip to the next cell boundary
• must receive δ cells with checksum matches

l Detecting loss of synchronization
– one bad cell is probably an error
– many bad cells is likely a slip (loss of sync)
– if α bad cells are seen in a row, switch to hunt mode

