

CMSC 417 Programming Assignment #4
Due November 15, 2001 (5:00 PM)

Introduction

You will add packet forwarding, ICMP Echo (ping), and traceroute support to your IPv6 system from project #3.
This project will also introduce the use of a garbler function that will allow you to introduce link-level errors in your
packets to verify that higher levels are able to recover from these errors.

Packet Forwarding

This project will add packet forwarding to your network project. When a packet arrives at a node, you should check
the destination address and see if it is intended for this host. If not, your router should consult its routing table to
identify the next hop for the packet. If an appropriate next hop is found, your router should decrement the hop count
field by one. If the hop count field is one or more, it should forward the packet to the next hop router (using the
garb_sendto call). If the hop count is zero, the router sends an ICMP TIME_EXCEEDED message back to the
source host and does not forward the packet (The code for this message type is zero). If there is no routing table
entry for the specified host, you should send an ICMP DESTINATION_UNREACHABLE message to the source
node (The code for this message is 0).

ICMP Support

In this project you will add support for ICMP echo packets. The format of an ICMP packet is:

Field Bits Description
Type 8 ICMP Request
Code 8 Generally zero
Checksum 16 ICMP Checksum
Reserved 32 Must be Zero
Address 128 IPv6 Address

ICMPv6 Header Format

The type field can be one of four values (in this project):

Value Description

1 Destination Unreachable
3 Time Exceeded

128 Echo Request
129 Echo Response

ICMPv6 Types

The checksum should is computed as the one’s complement of the one’s complement sum of the data in the ICMP
packet (including the ICMP header and the IPv6 header). When computing the checksum, the contents of the check-
sum field should be zero.

Interface

To allow you to write code that uses your new interface, you will construct an implementation of the IPv6 socket
layer. The header file for this routine is in IPv6socket.h. The interface routines for the socket layer are:

int IPv6init(int argc, char **argv)

This function is called once to initialize the networking layer. This function should create any of the long-lived
threads in your networking code (i.e., the timer and routing threads).

int IPv6socket(int family)

This function creates an IPv6 socket. The family parameter indicates which protocol family this socket is associated
with. The possible values are IPV6_PROTO_ICMP, IPV6_PROTO_UDP, and IPV6_PROTO_TCP.

 2

int IPv6sendto(int sock, const char *msg, int len, unsigned char *to)

Send a message to a remote host using the ipV6 address specified in to. The message (msg) is len bytes long.

int IPv6recvfrom(int sock, char *msg, int len, unsigned char *from,
 int timeout)

Receive a message on an IPv6 socket. If the pending message is longer than len bytes, it should be truncated to len
bytes and the rest of the message discarded. If a sock is of type IPV6_PROTO_ICMP, all ICMP messages received
by the host should be forwarded onto this socket. However, ECHO packets should be responded to internally to your
network layer. If no packet is received in timeout microseconds, the function should return with an error code of –2.

Ping and Traceroute

In this project you will use your new capabilities to write a ping and traceroute utility.

Both ping and traceroute are ICMP utilities that use the ICMP protocol’s hello packets to learn about that status of
the network. The ping utility sends an ICMP ECHO packet to a destination and waits for an ICMP ECHO response
packet to come back. The traceroute command also uses a HELO packet, but it uses the IPv6 hop limit field to dis-
cover the path that a packet takes through the network. The first packet sent by a traceroute command should have a
hop limit value of 1. This will cause the first hop router to drop the packet and send back an ICMP TIME EX-
CEEDED packet (which you can use to get the address of the first hop router). From there, you should increase the
number of hops until the packet reaches its destination.

Traceroute should terminate when either a packet is received from the destination node, when the max hop limit of
32 hosts is reached, or after a timeout interval ICMP_TIMEOUT (which is specified in your timeouts file like the
timeouts from project #3).

Ping should terminate send 10 ping packets spaced one every ICMP_TIMEOUT periods. When the 10th packet has
been sent, it should wait until the last packet returns or ICMP_TIMEOUT occurs.

Garbler

The final component of this project is to use the garbler routine to induce errors, and cause drops and duplicates in
your packets. Rather than calling sendto directly to send an IPv4 udp packet, you will use the routine garb_sendto to
cause the packet to be sent. The garbler reads a configuration file that determines the probability of certain types of
failures in the network. See the file ipv6-garb.init for a list of the parameters. You can use the routine
garb_print_stats to print out the statistics about the type of errors the garbler has introduced into your projects.

Implementation Requirements

You should submit a tar file that contains the source code for your project, a Makefile, and a README file. You
should also submit a script file for each of the nodes using the configuration files supplied.

Like project #3, your node program has one mandatory command line argument (the IPv6 node id of that node).
Your main thread should call the IPv6init and then read from standard input. The input will consist of a set of
commands to execute. The valid commands are:

 ping <node>

 traceroute <node>

Chance to get points back on project #3

If you didn’t finish project #3 completely, you can get ½ the points you lost for features that were not done or didn’t
work correctly by submitting these as part of project #4. Please include in the README file a description of what
features you now have working.

