
1CMSC 412 – F11 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Announcements

Project #6 is available
Reading Chapter 15 (Networks)
Midterm #2 re-grades accepted until next Tuesday
– Solution is on web site
– Submit requests via grades system

2CMSC 412 – F11 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Project #6 Notes

Uid
– First process has uid of 0
– Spawned processes

• Inherit uid of parent
• Unless setuid bit is set on program to run, then the uid of

the owner of that file is used

ACLs
– First ACL entry is owner
– Others are for other users

• Can delete these entires with setACl(file, uid, 0)
– Uid 0 can open any file regardless of ACLs

3CMSC 412 – F11 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Access Matrix

Abstraction of protection for objects in a system.
– Rows are domains (users or groups of users)
– Columns are objects (files, printers, etc.)
– Items are methods permitted by a domain on an objects

• read, write, execute, print, delete, …
Representing the Table
– simple representation (dense matrix) is large
– sparse representation possible: each non-zero in the matrix
– observation: same column used frequently

• represent groups of users with a name and just store that
– create a default policy for some objects without a value

Revocation of access
– when are access rights checked?
– selective revocation vs. global

4CMSC 412 – F11 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Access Matrix

F1 F2 F3 Laser Printer
D1 read execute
D2 execute print
D3 read, write execute
D4 execute
D5 delete

Rows represent users or groups of users
Columns represent files, printers, etc.

5CMSC 412 – F11 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Capabilities

Un-forgeable Key to access something
Implementation: a string
– I.e. a long numeric sequence for a copier

Implementation: A protected memory region
• tag memory (or procedures) with access rights

– example - x86 call gate abstraction
• permit rights amplification

6CMSC 412 – F11 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Monitoring

Record (log) significant events
– attempts to login to the system
– changes to selected files or directories

Possible to compromise the log
– the user or software breaking in could delete all or part of the logs
– could record logs to non-erasable storage

• have a line printer attached to the machine
• use WORM drives

– send data to a secure remote host

7CMSC 412 – F11 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Tripwire

Compute a set of expectorations about system
– Hash of file contents
– Dates on files

Store database of values
– On read-only media
– Offline

Periodically
– Compare database to current system
– Report any differences

8CMSC 412 – F11 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Encryption: protecting info from being read
Given a message m
– use a key k, and function Ek to compute Ek(m)
– store or send only Ek(m)
– use a second second key k and function Dk’ such that

• Dk’(Ek(m)) = m
– Ek and Dk’ need not be kept a secrete

If k=k’ it’s called private key encryption
– need to keep k secret
– example DES

if k != k’, it’s called public key encryption
– need only keep one of them secret
– if k’ is secret, anyone can send a private message
– if k is secret, it is possible to “sign” a message
– still need a way to authenticate k or k’ for a user
– example RSA

9CMSC 412 – F11 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Public Key Encryption

Split into public and private keys
– public key used to encrypt messages

• publish this key widely
– private key used to decrypt messages

• keep this key a secret
RSA
– algorithm for computing public/private key pairs
– based on problems involved in factoring large primes
– for an n bit message P, C = (Pe mod n), and P = (Cd mod n)

Other Public Key Algorithms
– knapsack

• given a large collection of objects with different weights
• public key is the total weight of a subset of the objects
• private key is the list of objects

10CMSC 412 – F11 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

One Time Pad

Key Idea: randomness in key
Create a random string as long as the message
– each party has the pad
– xor each bit of the message with the a bit of the key

Almost impossible to break
Some practical problems
– need to ensure key is not captured
– a one bit drop will corrupt the rest of the message

11CMSC 412 – F11 (lect 23) copyright 2004 Jeffrey K. Hollingsworth

Secure Socket Layer

Goal:
– Provide secure access to remote services
– Authenticate remote servers to local users
– Allow remote systems to authenticate users
– Permit encrypted communication

Approach
– Public Key Cryptography

• Certificates (signed by certificate authorities)
– Sever sends:

• Certificate (signed use CA’s private key)
• Certificate contains server’s public key
• Client responds by encrypting reply using servers pub

key
• Server checks response with private key

