
Optimiza.tion Shtegics for Spatial Query Processing*

Walid G. href
I-Isnan Samet

Computer Science Department and
Center for Aut,omation Research and

Tnst,it,rlte for Advanced Colnputer Studies
‘I’he I:nivcrsit!r of hJa.ryla.ntl

College Park, hlaryla.nd 20742

Abstract

The applicat.ion of st~andard qurry processing al111 01)-
timizat,ion techniques in the conl ext. of an in t.egril.t fvl

spatial dat,abase environment is discussed. In adtli-
Con, some new processing and optimization strat,egies
are shown to emerge from the nature of the underly-
ing architecture used for the integration of spatial data.
Other strategies are presented t,liat, RI’C applicat,ion-
dependent,. They are related t.o tile diITf,rctlt possible Ian-
plementationa of spatial operat,ors wli~rc~ each one is pr+
ferrable under certain conditions. The underlying spa-
tial database architecture that is used is called SAND
(denot#ing Spatial And Non-spatial Data). SAND is a
dual spatial database archit,ecture in which tile ohjeck’
spat,ial information is stored in sepi3rat.e spalial da1.a
st-ructures and their non-spat#ial inrormation is stored in
dat.abase relat,ions while nlaint,aitling apl)roprintc links
between the spatrial and non-spatial con1poncnt.s of’eacll
object. SAND provides an equal opportunit,y for hot#h
the spatial and non-spatial components of the dat,a to
participate in query processing and optimizabion. Aside
from the application-dependent opt,imization st,rakgic>s
discussed in the paper, these tprhniqlles are not Iill]-
ited t.o spa.tial data. They can he estcnd~tl to deal wit II
multi-media databases as well.

1 Introduction

Today, many non-standard dn~~abas~ applicalions rcTl>
heavily on spatial data. This has rcs11ltcY1 in con.Gi(lt>r-
able research eff0rt.s towards support i11g spai ial ol),jcr1$
in database environments. Slipportiilg spatial 0l)jects
and, more generally, complex objects, involves extellrl-
ing almost all levels of the database management sys-

Proceedings of the 17th International
Conference on Very Large Data Bases

81

tern (DBMS). At the user interface level, the query lan-
guage is extended to enable t,he definition and manip-
lllalion of conlplcx objects while maintaining t,he non-
procedural flavor of 111~ language. At, the physical and
access method levels, alternat#ive ways of storing, orga-
nizing, and accessing complex objects have to he added
to the DBMS for efficient handling of complex objects.
At the intermediate level, new ways for mapping the
ext.ended user query int,o the extended physical and ac-
ccss Inet.hod level are necessary. Most of the extensions
at. this level are made to the query optimizer and to
111~ query processor. In this paper, we concentrate on

spatial query processing and optimization.

The query optimizer is an important component of
a rnoclern DBMS. Usua.lly, the user’s query, expressed
in a non-procedural language, describes only the con-
tlit,inris t.hat the final response must, sat,isfy. It is thr
opi,iiliixcr’s respoilsihilit,y t.0 generate a query evidua-
tiorl plan t,hazt computes the requestsed result efficiently.
Many different st,rategies have been proposed for find-
ing a query evaluation plan which evaluates a suhmitted
query in a t,raditional database environment (see [Jarke
and Koch, 19841 for a comprehensive overview of var-
ious query opt,imixat.ion t,echniques). However, when
it, roiiies to non-st.a.ntlard applicat,ions, query optimiza-
t,ion techniques vary significantly from one application
domain to the other.

In the past, very little attention was devoted to spa-
t,ial query processing and optimization. Existing spatial
dat.abase syst-ems have ha.sically ignored the optimiza-
tioll issues. Little is known about the different strate-
gics antI altf~rnalives for processing spatial queries (i.e.,
when intrrspersing spatial and non-spatial operations)
as well as about tile cost of executing alternative query
evaluation plans containing spatial operations.

It is interesting to observe that, at a first’
glance, query optimization t,echniques for heterogeneous

Barcelona, September, 1991

database systems (e.g., [Dayal, 19841) appears t,o be ap
plicahle to spatial query opt,imizat.ion. TTnfortllllat.ely,
query optimization of spatial data is different from that
of heterogeneous databases because of the cost function.
In particular, the emphasis in heterogeneous databases
is on inter-database communicat,ion c&s. Dat,ahas(>s
in a heterogc>nrolls syst,em are i~s~~ally dist,ril~utccl OWI

a long-haul network where the nct.work commllnicat.ir>n

cost dominates. Thus the goal of a query opt.imizpr is to
do as much processing as possible at each participating
site thereby reducing the inter-database communication
overhead [Dayal, i984]. W e assume that the spatial and
non-spatial dat,a are stored in the same database wllirh

is locat,ed in one node of a nrt,work.

A number of recently sugg&ed spatial datahas~ ar-

chitectures address t,he issue of spat ial query opf,imiza-
tion (e.g., [Giit,ing, 1989; Orenstein, 1990; Sacks-Davis,
et. al., 1987; Wolf, 19891). JIowever, they differ in
the capabilities and degrees of freedom they provide to
the spatial query optimizer as a rcslllt of the mnnncr
in wllich t.hey integrat.e spatial data Lvith non-spat i;ll

data. In particular, the underlying architecttIre may
limit some feasible strategies for spat,ial query process-
ing. For example, according to one spatial da&base
architecture (e.g., GEO-Kernel [Wolf, 1989]), the query
processor may be forced to perform the non-spat,ial op-
erations first and t.hen the spatial opcrntions. A coin-
mon feat.ure of I he aforemcntioticd systcins is I lli\t t Ilc‘if

architectures arc biased towards 1 hc tlotl-spiit ial ilS])f‘Ct

of the data. At best, they rest,rict, the possible choic(!s
for the spatial optimizer, thereby making only a limited
use of the spatial aspect of the data (i.e., its extent) in
the optimization of mixed queries.

GEOQL’s spatial query optimizer [Ooi, 1988; Sacks-
Davis, et. al., 19871 extends t.h~ well-known q”cry dc-

composition tecllnique [\Vong and Youssefi, 19701 to
handle spat,ial queries as well. JJowcver, GEOQL is
also biased towards the relational side. For example,
spatial operations cannot be composed direct,ly with-
out building intermediate database relations. This lim-
it.s the efficiency of spatial query processing. hlorcovc>r.
GEOQI,‘s extended optimixcr only opt ionizes t.llc? cost of
non-spatial operat,ions and does 1101, t,ake into acroltllt

the I/O cost of spat,ial operations.

Extensible data.base systems offer a different ap-
proach for query processing and optimization. One
of the main design goals of extensible systems is 1.0

be as ap1~lication-intlependent. and as g~nrral as pas-
sible in order to support a witlcr rallgr nf non-st;lll(liIl~tl
database applicat,ions. To meet, t,hrse reqlliremrnts, C‘S-
tensible syst.ems mostly use rules for describing query
transformations as well as for cho’osing among different.
implementations of primitive dat.abase and application-

Proceedings of the 17th International
Conference on Vety Large Data Bases

82

tlcpcndent, operations for query processing and opti-
mization. Some examples of such systems are the EX-
ODUS optimizer generator [Graefe and DeWit,t, 19871
and Starburst’s query processor [Haas, et. al., 19891.

GEO-Kernel [Wolf, 1989j and Gral [Giiting, 19891
are two spatial database systems that are based on
an extcnsihle archit.f:cture. GEO-Kernel implementIs
a geometric data model on top of the DASDBS ker-
nel system [Schek and Waterfeld, 1986; Wolf, 19891
that supports Non-First-Normal-Form (NF’) relations
[Schek and Scholl, 19891. Gral extends the relational
model by geometric operations. Gral also features a
rule-based optimizer and query processor [Becker and
Giil,ing, 1989; Giit,ing, 19891. In both GEO-Kernel and
Gral, spatial informat.ion is stored in textual form as
an attribute value in a relation. Nevertheless, during
query evaluation appropriate spatial data structures are
used to operate on spatial data. Thus there is a need
for conversion procedures to toggle between these data
structures and the textual or byte-string form for each
spat ial dat,a type. Notmice that in order to perform the
opera.tion inlersecls or closest, for example, the whole
set of spatial objects in the relevant relations have to
be down-loaded into the spatial data structures. This is
an expensive task and its cost has to be included when
considering different query evaluation plans.

The architecture of our underlying spatial database
system, SAND (denot#ing Spat,ial And Non-spatial J)ata)
[Arrf and Sam&, 1990; Aref and Samet, 19911, differs
from the above systems in the manner in which spa-
tial and non-spatial data are stored and linked to each
other. Also, SAND assumes that the spatial description
of objects is stored in disk-based spatial data structures
which are linked properly to the rest of the objects’ non-
spatial description. For more details about the SAND
a.rrhit,ect,ure, as well as a more thorough comparison be-
tween different spatial database architectures, see [Aref
and Samet, 19911.

In this paper, we present a variety of feasible strate-
gies for answering spatial and mixed queries in the
SAND spat,iai dat.abase environment. SAND is unbi-
asc>cl with respect to the spatial and non-spatial aspects
of the data so that, the contribution of each aspect, in
t,he opt,imization process is maximized. By providing a
variety of strategies for answering spatial queries, the
query optimizer will have more alternatives to choose
from t.hereby enabling more efficient execution of spa-
t,ial queries. Anot,her motivation for this work is that the
S~;II in] qu(:ry processing strat,egies presented in this pa-
I)cr. as well a.s the SAND spatial database architecture,
can be ported on top of existing extensible database sys-
tems as a validation step for both the SAND and the
extensible system architectures.

Barcelona, September, 1991

The rest of the paper is organized as follows.
Section 2 summarizes SAND, [#he underlying spatial
database architecture that is used tlhroughout. the pa-
per. Alternative query processing strat,egies for use in
SAND are presented in Section 3. These include strat#e-
gies for processing relational and spatial selection and
join operations. Section 4 contains coricl~ltling remarks.

2 An Overview of SAND: A Spatial
Database Architecture

In [Aref and Samet, 19911 we present t.he SAND spa-

tial database architecture in much more detail. l~c~low,
we give a brief overview of some of t,hc feat,ures of t.l~c?
SAND architecture that are used in our present.alion.
For further details about the SAND syst,em, see [Aref
and Samet, 1990; Aref and Samet, 19911.

Throughout the paper we will often refer to the
schema definitions given in Figures 1 and 2 which de-
fine the land-use and roads spa.t,ial databa.ses. No-
tice that location is a spat,ial at,t.rihut.e of type
REGION while road-coords is a spatial at.trihute of type
LINE-SEGMENT. We use an SQL-like syntax.

(create table land-use
name CHARC401 ,
address CHAR[lOOl ,
location REGION,
usage CHAR~401,
zip-code IUMBER,
importance UUHBER) ;

Figure 1: Land-use spatial database schema

(create table roads
road-id NUMBER,
road-name CHAR(30) ,
road-trafficability YURBER,
road-lanes WJRBER,
road-coords LIUE-SEGMENT);

Figure 2: Roads spatial database schema

In general, a spatial object is described by two sets
of attributes: spatial and non-spatial. Objects that are
spatially related to each ot,her (i.e., are in prosimity,
or belong to a given region) and t,hat, WC of t.11~ samr
da.ta type such a.s line data, are logically clustered in 111~
database (e.g., stored together in dnt,abasa relations or
in suitable spatial data structures).

A spatial data structure is associated with each spa-

Proceedings of the 17th International
Conference on Very Large Data Bases

t,ial at.trihute in the schema and is used to store all data
Illst,ances of t,llat, spat,ial at,tribute over the set of homo-
geneous objects. The spatial data structure is used as
an index for spatial objects as well aa a medium for per-
forming spatially-related operations (e.g., rotation and
scaling for images, editing, buffer-zoning, polygon inter-
section, area of a region, connected component retrieval,
proximity queries, etc.). Depending on the attribute’s
spat,ia.l dat,a type (e.g., region, line, or point), a spatial
data structure suitable for handling this type is selected.

The data instances of the set of non-spatial at-
tributes are stored in database relations. Each tuple
in the relation corresponds to one object. Figure 3 il-
I\lstrates how we link spatial and non-spatial att,ribute
values of a.n object,. Tn particular, we maintain two log-

Figure 3: (a) Forward links and (b) backward links for
the land-use database

ical links between the spatial and non-spatial data in-
stances of an object: forward and backward links. For-
ward links are used to retrieve the spatial information
of an object given the object’s non-spatial information.
On the other hand, backward links are used to retrieve
the non-spatial information of an object given the ob-
ject’s spatial information. Since the non-spatial infor-
mat.ion of an object is stored in a tuple, the backward
link can be the tuple-id. Since spatial data structures
hold the spatial information of an object and spatially
index the object space, the forward link can be a spatial
index value of this object inside the data structure that
uniquely selects the object. One example of a forward
link is a candidate point inside a region to uniquely se-
lect. a regional object in an object space consisting of
non-ovrrla.pping regions.

hlaint.ailring forward and backward links between
the spat.ial and non-spatial aspects of a set of objects
facilitates browsing in the two parts as well as permits
efficient query processing. Flexibility in the interaction

83
Barcelona, September, 1991

between spatial and non-spatial att,ribut,es enable opcr-
ations (whet,hcr spatial or non-spat,ial) t.o he pcr~orn~ctl
in their most natural environment,. In [Arcaf ant\ San~t,

19901 we showed how forward and backward 1ink.s facil-
itate query processing and query optimization, This is

also demonst,rated here in Section 3.

Table 1: Some Spatial Join Conditions

True if s, is within n units of distance from s,

We assume that we have a collect,ion of 0hject.s 0
referred to by the pair < R,, S >, whcrc R is a rclat ion
that stores t,he non-spatial att,rihllt,c instancrs of 0 anal
S is a spatial data struct,urr! t.llat, st.orcs llie spat,ial at.-
tribute instances of 0. We assume t,hat the set 0 is
described by only one spatial attribute and hence has
one spatial data structure associated with it. Relaxing
this assumpt,ion is straightforward. We use the not.at,ion
op(U) where U is either R or S or t,hc pair < R, S >
(depending on the context) to indicate that, operat,ion
op is applied to U.

One important requirement of the SAND archit,ec-
ture is that there needs to be a mechanism for keeping
the spatial component in sync with its non-spatial com-
ponent. Spatial, as well as rrlat.ional, opcrat.ors mrlst,
always keep t,he pair < R, S > cotlsistrllt. For esnmplr,
consider a certain spatial operat,or OP,~ that, opcrafes nn
the spatial data structure S t#o prodllcr anotllc>r spat ial
data structure 5’1 (e.g., a window opcrat,or generates a
subset of the input data structure). In order for the se-
lected objects, say 01, in St to he fully described, 01’s
non-spatial informat~ion has t,o l)r s~lcctctl as well from
relation I-? to form a new rclat inti II, wlrich is also a
subset of R and represents t.l~r OI~JPCIS rcs1111 illg f~,o~n
applying the spat,ial operator ops. III summary, givcxn
the pair < R, S >, op, returns the pair < RI, S1 > in-
stead of just 5’1. This reasoning is also applicable to
relational operators, say op,., such as selection.

Inc,rgrd if t,hcir corresponding spatial objects are within
5 miles of each other. The resulting relation contains
all the attributes of the two participating relations, in-
cluding the two spatial attributes (i.e., the location at-
tribute) and their corresponding spatial data st,ructures.
There is one spatia.1 dat,a struct,ure for the university re-
gions and another for t,he neighboring regions (i.e., the
ones within 5 miles) because the join is performed on
t.wo spatial att,ributes. We refer to the within condi-
tion as a spatial join. This is because it has the same
effect as a regular join. Namely, a spatial join combines
related entities from two entity sets into single entities
whenever the combina.tion satisfies the spatial join con-
dition (e.g., if they are within R miles from each ot#her).
‘I‘ahle 1 list,s some spat,ial join conditions. Notice the
IISV of si t,o specify inst.ance values of spatial attribut.es.

We realize the requirements of the SAND database
architecture by defining what we call extended operators.
In general, ext.ended operators provide a proper inter-
fact for int,cgrating not, only spatial data but also any
otllf,r ~nulti-mrdia data. into a. database environnlent.

‘l’here are two types of ext,ended operators:
rela.tional-based operators I-op, and spatial-based op-
erators I-op, (r denotes relational while s denot,es
spatial). We define these extended operators in terms
of t,heir un-extended counterparts and the operators
sl’-ext,ract and db-extract described below. As an il-
lust rat ion, herr WC only discuss the extended select op-
crat.ion (i.e., both t)he spatial and relational variants).
The reader is referred to [Aref and Samet, 19911 for the
definition of the extended join.

The extended relational select operation < T, U >=
x-op,(< R, S >) first performs the relational select
op, on R. This results in the relational component
f = op,.(R). The spatial component U is built ‘by ex-
ecuting the operator sp-extract to extract from S the
spatial objects corresponding to the tuples in the result-
ing relation T. The extended spatial select 2-0~~ has an
analogous description. It uses the operator db-extract)
t80 extract the tuples corresponding to the objects se-
Iectcd hy the spatial operation op,. More formally,

In addition to the above synchronizat.ion rcqliire-
ment, operat.ing on mult,iplc spatial allrihrltc3 (atl(l
hence mult,iple spatial data struct.urcxs) and qlterying OH
the various relationships between spatial objects int#ro-
duces the concept of spatial joins. Consider t,he follow-
ing query, which retrieves all t,he regions within 5 miles
from universities in the land-use data.base:

select all
from land-use 1, land-use k

where nithin(l.location,k.location,5)
and l.usage = “University”

There may exist more than one university in the
database, and hence more than one tuple could be se-
lected by the condition l.usage = “University”. IJet
the set of selected tuples be L. ‘l’hcn thr spat,ial within
condit,ion generat,es the regions within 5 miles from each
member of I,. The result of the within cone-lil,ion sl~oultl
consist of a join relation. In part.icular, t.wo tuples are

s-op,(< R, s >) = < op,(R),sp-extract(op,(R),S) >, and

X_oP,(< R,S >) = < db-extract(R, op,(S)), opb(S) > .

Proceedings of the 17th International
Conference on Very Large Data Bases

84
Barcelona, September. 1991

Describing spatial and relational operators using ex-
tended operators is very general. Depending on the con-

text, we can replace this general form with simplw VW-

sions of the same operat.or and st,ill gel, l.he sanic I~IICI’)

answer. These simplified versions are mainly 11scf111 fog
query optimization. In fact, as we demonst,rate in t11c
Section 3, several optimizations can take place.

3 Query Processing Strategies

We demonstrate the strategies for spatial query pro-
cessing by giving examples using t,he dataabase schcrna
definitions of Figures 1 and 2.

Example 1: Find all roads ot,her than “Route 1” that
pass through a given window w.

select all
from roads

where in-oindow(road,coords,a)
and road-name != “Route 1”

Below, we give several strategies for processing this
query as well as others.

Plan 1 - Un-optimized: Plan 1, given in Fig~~re 4,

uses t,he notion of extended opcrat.ors wit,hout any fur-
ther optimizations. We can rephrase Plan 1, as given

<Tl,Sl> + z,9pmindow(< R, s >, w)

<T2,S2> +- r-rib-sclrcf (< T, . S1 > , dbmnrl)

Figure 4: Summary of Query P1a.n 1

in Figure 5. This helps to clarify the optimization steps
demonstrated in the following plans. Notice that a re-

&I + 9 sp~window(S, w)
T1 + db-eztract(R, S,)

T2 +- db-aelect(T1 , dh-cond)

s2 4- sp-eaAract(S1, Tz)

Figure 5: Rephrasing of Query Plan 1

ordering of the operations is also possible as givcll in

Figure 6. Other reorderings are given in Plan 2.

Plan 2 - Further reorderings: Figure 7 gives an
alternative reordering of the operators in Plan 1. Here
the database process and the spaCal process each work
independent,ly 011 a difrerent pottion of t,hc inpllf t1at.a.

The results are rnergetl at a Ir7l.w skp.

Proceedings of the 17th International
Conference on Very Large Data Bases

Figllx

T; + db-aelect(R, dbxond)

s: + sp-eztract(S, Ti)

s; + sp-window(.Si , w)

T; + dbm+act(T,‘, S;)

6: Reordering of the operations of Query Plan 1

4 + ap-window(S, w)

Tl + db-select(R, db-cond)

< 7-21.92 > + mew(Tl, .%)

Figure 7: Query Plan 2

The purpose of the merging step is to find the ob-
.jects that exist in both the input spatial data structure,
say S1, and the input relation, say Tl, and generate an
output pair, say < T2, Sa >, that contains all these com-
mon objects. Figure 8 illustrates the merging operation.

Figure 8: (a) Relation R and spatial data structure S
t,o be merged, (b) relation T and spatial data structure
lJ contain the result of merging R and S.

basically, there are two ways of performing a
merge: spatial-driven (sp-merge) and relational-driven
(r/b-merge). sp- merge traverses the spatial data struc-
ture S and for each spatial object that it encounters, say
o, sp-merge tries to retrieve o’s corresponding tuple, say
i, t,hrough the tuple-id stored with o. If t is found, then
1 and o are stored in T and U, respectively. Otherwise, o
is not part. of the result, - i.e., it is skipped. A schematic
listing of spmerge is given in Figure 9. dbmerge is the
same as sp-merge except that the relation R is traversed
and the spatial objects (if any) that correspond to the
tuples in R are retrieved and stored into the output
spatial data st.ruct.ure ZJ. Tuples with no corresponding
spat.ial objects are discarded, while tuples with match-
ing spat,ial objects are stored into the output relation T.
A schematic listing of dbmerge is given in Figure 10.

Plan 3 - Intersection of pointers: A third method of
merging the results of conjunctive selections, in addition
to ~.he spa.t ia.l-based merging and relation-based merging

clescritml in Plan 2 above, is by intersection of pointers.

85
Barcelona, September. 1991

sp-merge(R,S)
/* Rerge relation R with spatial data structure S

based on the common objects in them.
The results are stored in relation T and spatial
data structure IJ. */

begin
initialize relation T;
initialize spatial data structure U;
traverse S ;
for each spatial object o in S do

begin
tid := get o’s tuple-id;
if tid in R then

begin
retrieve tid’s tuple t from R;
append t into T;
insert 0 into U;

end ;
end ;

end ;

Figure 9: Spatial-driven merging

This is a well-known technique for answering conjunc-
tive selections where the tuple-ids resulting from each
selection are int,ersected [Elmasri and Nava.the, 19891.
Intersecting pointers is possihla if the srlcctions that, arc

performed generat)e tuple-ids. This silllation can arise
when the atlributes that comprise the selection condi-

tion can be accessed via a secondary index that, contains

the associated tuple-ids.

In SAND we have two t,ypes of object-ids, namely
tuple-ids and spatial-ids. In a.ddition, the conjunctive
selections may be spatial, rcla(.ional, or Iml II. I Il(‘O1’-

porating the intersection of pointers tecllnique in tl~f)

SAND environment can be done itr t.wo difi’ercnt ways,

depending on whether we intersect, t,l~c t.uple-ids or 111~

spatial-ids. This is illustrated by the following example.

Example 2: Find all 4-lane roads t,hat are wit.hin r

miles of point (x, y).

select road-name
from roads land-use

where in-circle(road-coords,x,y,r)
and road-lanes = 4

l- Intersection of tuplo-ids: If a secondary in-

dex is present on the att,ribule roadlanes, lhrn wllrn

performing t,he select.ion based on road-lanes (i.c..

road-lanes = 4) would generat,e a set of tupl+ids (1~

use tuple-ids a.s indexes so that. we are able to int,ersect
them with tuple-ids generated from the spatial side).
The spatial selection in-circle gencrat,es the spatial
objects t,hat lie inside the specified circle and stores
them in a t.ernporary spatial tlala. st.rlltlllrr. ‘I’0 get

the tuple-ids or the object,s selected by in-circle, we

Proceedings of the 17th International
Conference on Very Large Data Bases

86

db-merge(R,S)
/* Merge relation R with spatial data structure S

based on the common objects in them.
The results are stored in relation T and spatial
data structure U. */

begin
initialize T, U;
traverse R;
for each tuple t in R do

begin
sid := get t’s spatial-id;
if sid in S then

begin
retrieve sid’s spatial object o from S;
insert 0 into U;
append t into T;

end ;
end ;

end :

Figure 10: Relation-driven merging

need to traverse this data structure and collect the cor-
responding tuple-ids. These can be intersected with the
ones generated from the database selection. The result
of t,he intersection is then materialized both from the
relational a.s well as t.he spatial side. Notice that the
opcrat.ion in-circle can generate the list of tuple-ids
directly without the need of an extra traversal of the
spatial data structure. Figure 11 gives the resulting
plan. Operator sp-in-circle-tid is a simplified version
of the operator in-circle which returns just the back-
ward link information (tuple-ids) of the selected spa-
t ial object.s. dh-select-lid is a secondary index selection
ll~iit ret.urns t.lre t,uplc-ids. Operation list-intersecl-frd
is given in Figure 12.

L SP +- spin-circleAd(S, c)

Ldb + db-select-tid(R, db-cond)

< 7’29.92 > - listintersect,tid(Ldb, Lsp, R, S)

Figure 11: Intersecting tuple-ids generated from both
t.he spatial and relational selections. c denotes the co-
ordinates of the circle and its radius.

2 - Intersection of spatial-ids: The same strategy
ran be applied when we consider intersecting spatial-

ids inst,ead of t,nplr-ids. Consider the plan given in
Figure 13. Operation sp-in-circlesid(S,c) is a simpli-

fed version of operation sp-in-circle which returns just
the spatial-ids of the qualified objects (i.e., the ones ly-

ing inside the circle c). In order to return the spatial-
ids as a result, of the database selection (i.e., based on
road-lanes = 4), we need to return the value of the
spatial attribute for ea.ch qualifying tuple in the se-

Barcelona, September, 1991

list-intersect-tid(Lo,Lr,R,S)
/* Intersect lists Lo and Lr where each list

contain tuple-ids and retrieve the tuples
and spatial objects corresponding to the common
tuple-ids. The results are stored in
relation T and spatial data structure IJ. */

begin
initialize T, U;
I := intersect Lr and Lo;
for each tuple-id tid in I do

begin
retrieve tid’s tuple t from R;
append t into T;
sid := get t’s spatial-id;
retrieve sid’s spatial object o from S;
insert 0 into U:

end ;
end ;

Figure 12: Conjunctive selection using intersection of
tuple-ids. Tuple-ids in the intersection can be sorted
for faster retrieval.

Iection. This st,rategy is rIsefIll when thr: cost of I’(:-
trieving the spnt.ial description of 0hjwt.s is espcctml

to be high in comparison to that of ret,rieving tuplrs
from the database (e.g., when the volume of t,he spat,ial
data is high in comparison to that of the non-spatial
data). The operation list-intersect-sid(l;db, L,, , R, ,S)
intersects the two spatial-id lists resulting from the spa-
tial and relat.ional selections. Then. it. rclrievcs t.hc spa-

tial and non-spatial description of the ohjcck in t11~

intersect,ion. Operation lisl-inlersecl-.sld is given in Fig-.

ure 14.

L SP - sp-in-circle-sid(S, c)

Ldh + db-selectAd(R, dbamd)

< Tz,Sz > + list-inte?sPrt-.~if~(~,~,~~ I,,$,, H,S)

Figure 13: Inkrsecting spatial-ids generated from both
the spatial and relational selections. c denot8es the co-
ordinates of the circle and its radius.

Plan 4 - PuslGng spatial opc.rationn into
sp-extract: Consider the plan given in Figure ci to
answer the query of Example 1. Spatjial (Iata strut-

ture 5’; is writt.en by operator sp..extract, and then read
by operator sp-window. To avoid an extra traversal of
5’; as well as the read/write overhea.d, we can perform
some spatial conditions on the fly along wit&h opcrat’or
sp-extract. This technique may Iw (IwiraI~l~~ 1111rlcr SOIYIC

but not all circumst.ances. For cxamplr, if 1.11~ cardinal-

ity of the spat,ial objects is low ant1 if the apat.ial tcsl
to be performed is relat,ively simplr (~g., if R line intrr-

sects a given window), then it, is illdeed more econom-

Proceedings of the 17th International
Conference on Very Large Data Bases

list-intersect-sid(Lo,Lr,R,S)
/* Intersect lists Lo and Lr where each list

contain spatial-ids and retrieve the tuples
and spatial objects corresponding to the common
spatial-ids. The results are stored in
relation T and spatial data structure U. */

begin
initialize T, U;
I := intersect Lr and Lo;
for each spatial-id sid in I do

begin
retrieve sid’s spatial object o from S;
insert 0 into U;
tid := get o’s tuple-id;
retrieve tid’s tuple t from It;
append t into T;

end ;
end;

Figure 14: Conjunctive selection using intersection of
spa.tial-ids.

ical t,o perform this spatial test on the fly along with
t,he sp-ext)ract operat,or instead of storing the result, and
t,hcn ret,rnvcrsing the whole structure. Figure 15 gives

TI + db-select(R, db-cond)

s; + sp-ertractJ(S, T,‘, in-windozu(w))

G + db-extract(T{, S;)

I’igllrc, 15: Plan 4: pusljing window select,ion into op-
c>rat.or sp-ee~rnc2-f. The out.put is st,ored in the pair
< Ti, S; >. Relation Ti is a temporary relation.

the resulting plan. Notice the use of the new operator
sp-er2mckf (/ denotes filter) which has one additional
argument over sp-extract. This argument serves as a
spatial selection condition. All the spatial objects ex-
tracted should satisfy this condition. Also notice that
Plan 4 uses only one temporary spatial data structure,
namely Si, which is also the output data structure while
Plan 1 uses two temporary data structures, namely 5’1
and S?, where Sz is also the output data structure.

Plan 5 - Pushing database selection into
(lb-extract: Consider t#he plan given in Figure 5 to
answer the query of Example 1. The relation TI is writ-
ten by operator db-extract and then read by operator
dbselect. To avoid an estra traversal of the tempo-
rary relations, we can perform the database selection at
t,he same t,ime t,hat. we ext,ract the corresponding t)uples.
‘l‘his is one forIn of lhc 1186’ of the pipelining technique
t,o save from creating necdlcss temporary relations and
to save on traversal time. Figure 16 lists the modified
plan. Notice the use of the new operator db-extract-j

87
Barcelona, September, 1991

s1 + ap-window(S, w)

7-2 db-extrnct-j(I?, SI , db.mnd) +-

572 t ap-eztract(SI , Tz)

Figure 16: Plan 5: pushing database selection into
db-extract-f operator. The output, is stored in the pair
< T2, S2 >. S1 is a temporary spatminI dat,a st.ructure.

Sl +- ap-window(S, w)
? 1
11 - dbmztract(R,S1)

7'2 + db-aelect(Z’l, db-cond)

92 c ap-ezclude(S1 , Tz)

Figure 17: Use of deletion instead of extraction when
spatial selectivit,y is high.

(fdenotes filter) which has one additional argl~mrnt O~CI
db-extract,. This argument serves as a relational selec-
tion condition. All the tuples extra.cted should satisfy
this condition. Also notice that. Plan 5 uses only one
temporary relat.ion, namely T?:,, which is also llic alit-

put relation while Pla,n 1 uses t,wo temporary rclntiow.
namely 7’1 and Tz, wllere Tz is also tlrf> OII! p11t TCI:II ion.

Plan 6 - Further Pipelining: Not#ice that in Plans 4
and 5 we can get rid of the temporary relations and
data structures T{ and S1 in Figures 15 and 16, respec-
tively. This is a.chieved by directsly piping t,he result,s of
database selection in Plan 4 and t,lle r~s~tlt,s of spa.tial
windowing in P1a.n 5 int)o fhe next, st.age. Not ice Ihat
some communication overhead is incurrrd due to Ihe
pipelining of data items between concurrent, processes
(the spatial process and the DBMS process), and due to
the distinction between set-at-a-time or tuple-at-a-time
communicat,ion. This has to be taken into consideration
when deciding if this strategy is t,o he applied.

Plan 7 - Ddction instmwl of iusr?rt,ioll: In sonw
cases (e.g., in database selections or spat,inl oprrat.iorls
with very high selectivity values) it is easier to delete
the disqualified data items from the existing structure
or relation than to create a new one with almost. al1 the
same data items that are in the inpllt, st.rllctllrc or rrla-
tion except for it few Inissing dat,a itcins. Of coIIrsc, t.llis
depends on the relative cost of delet.ion versus iusert,ion
in conjunction with the value of t,he selectivity fa.ctor.
Other factors are that in some cases deletion is not fea-
sible. This is especially true when we are overwriting
or destroying the input structures. It, is most,ly usefIll
wit,li int,ermediat,e temporary slrucl ilrcs. Fllrt.hcrrlKWc.
the nature of the t.eriiporary st.rllcl.ilrcs ~rscd t,n spc~YI
tile processing of queries may not. allow cl~lctions in t.llc
first place. Figure 17 gives one example modification
of Plan 1 as given in Figure 5 where deletion is used
instead of insertion in the last, step. In this case S? is
formed by removing from S1 all of the spatial objects
whose corresponding t,uples are not in T?. This is prr-
formed by the operat,ion sp-par/l&de. ,‘?I no longer csisls
after executing sp-exchde.

Proceedings of the 17th International
Conference on Very Large Data Bases

Plan 8 - Performing projection as early as possi-
ble: This is a standard technique in query optimization.
However, in our spatial database architecture there is
more to it. When a spatial attribute is not part of
t.lle final answer, we can stop maintaining the spatial
tlat,a st,ruct,ure associat,ed wit,h this attribute as early as
possihlc. Tllis savrs nrrdlcss execution of the operat.ol
sp-cstract. The same technique also applies when no
non-spatial a.ttributes are part of the projection list. In
such a case, we can stop maintaining the corresponding
dat.abase relation as early as possible and avoid needless
executions of t.he operator db-extract.

Exa~nplc 3: Suppose tliat. t,he query in Example 1 is
slightly modified to be:

select road-name
from roads

where in-windon(road,coords ,w)
and road-name != “Route 1”

Nol,ic:r t,hat only the al.tribute roadname is to be pro-
jecl,ed. Therefore, Plan 1 in Figure 5 can be expressed
as given in Figure 18 t)aking into consideration the pro-

Sl + ap-window(S, w)

‘Tl c db-extract-p(R, S’I , road-name)

l-2 + db-select(Tt , db-cond)

Figure 18: Effect of projection on Query Plan 1. Only
at,tribute roadname is to be returned

,ject,ion rule ment,ioned here. Projection is performed
along wit,h t#hr astract.ion operat,ion through the opera-
tor dh-ezlmcL.p (here, p denot.es project). Notice tha.t
t.he invocation of operator sp-extract has been elimi-
nated from the plan. Also, notice that we can eliminate
relation Y’l by applying the pipelining rule.

Plan 0 - Composing operations: This strategy ap-
I)lic?s only when t.llerc are a.t least, two spatial or rcla-
tional operations that refer t,o the same spatial attribute
or to the same relation, respectively. In either case, only

88
Barcelona, September, 1991

one execution of the operat,or sp-extract. or clll-rstract
needs he performed after all the cotnpos~rl opcraliol~h
are executed.

Example 4: Find the road passing t.hrough t,he Uni-
versity of Maryland campus Ihat is nearest t,o the Com-
puter Science Department (for simplicity, spccificti h~c
by its coordinate values (cx,cy)).

select road-name
from roads land-use

where pass-throughcroad-coords,location)
and name = “University of Maryland”
and nearest-to(road-coords,cx,cy)

Originally, the operator db-ext,ract. wn111tl be excycut,r>d
twice, as part of the execution OC each of t,ho rstcntlcd
spatial operators pass-through and nearest-to t,o build
up the relational result of the execution of each operator.
Since both spatial operators refer to the same spatial
attribute, namely road-coords, bot.h spat’ial operations
can be cascaded on t.he same spatial dat#a st#ructure fol-
lowed by only one execution of db-axt ract.

Example 5:
that lie in the

select
from

where

Find all industrial regions and a.irpork
same zip code region.

all
land-use 11, land-use 12
ll.usage = “industrial”
and 12.usage = “airport”
and ll.zip-code = lZ.zip-code

Since no spatial operations exist in t,he above query,
there is no need to maintain the spatial da.tta st,ructures
(via the operat.or sp-extract) until lhe end of I.he t.hrec
relational operations. At lhal stagf‘? only ii final psccu-
tion of sp-extract is needed t,o build t,hc da1 a sl.rllct ur(’
containing the selected objects (i.e., tlrc airpork and ill-
dustrial regions).

Plan 10 - Application-dependent alternative op-
erations: Depending on the cont,est, we can repla,ce
some of the operations by alt,ernative ones tllat’ yield
the same results. This may lead t.o better perfornlnncc
in some cases. Two examples are given below.

Nearer vs. nearest: If the nearest spatial object t,o
a given point does not meet all t,he conditions in the
query, then we may want to perform another nearest.
object computation with the remaining spat.iaI ol>*iects.
An alternative option is t,o always ~-Icf~>r 1.1~~ n~i3rcsl 01~

ject computat,ion to the end until all ot,her qu(‘ry condi-
tions are met. However, this option restricts the order

Proceedings of the 17th International
Conference on Very Large Data Bases

89

in whicll the query conditions are executed. Another op-
tion is to perform a nearer object computation instead
of a nearest object computation. The operator nearer
builds a list of spatial objects that are sorted by their
distance from the given point (i.e., it returns the near-
est object, 2nd nearest, 3rd nearest, etc.). Hence, if the
nearest object does not. meet all the query conditions,
then we pick the first object from the top of the list
thi\f, me& t,hem. Therefore, we do not need to repeat
tllc nearest, object computation several times. The best
option can be chosen based on a cost model.

Simplified operations: Consider the following query
t)hat, finds the names of t,he airports in the State of Mary-
land.

select 1 .name
from land-use 1 states s

where s.name = “Maryland”
and l-usage = “airport”
and intersect(l.location,s.location)

‘IYhis query assumes a relation, called states, containing
information about different st,ates. It has one spatial at-
tribute, called location, of type REGION. Only the name
of the airport is to be returned by the above query. As
mentioned in Plan 8, there is no need to maintain the
t.emporary spatial data structures. In addition to the
fact, that t,his saves execution time, it may also simplify
the spa.tial algorithms involved. In this case, the in-
Icrsc~cl, opcrntor need only retllrn the tuple-ids of t,lie
intersecting regions. The intersection algorithm may be
totally different if we do not want to output the spa-
tial details of t,he intersecting regions, but only the fact
that they do intersect. In summary, having multiple ver-
sions of operat,ors ca.n result. in different cost estimates
for ea.& version. This would help in plan selection in
the opt.imization process. Other examples of simplified
operators are also demonstrated in Query Plans 3 and 4
where two versions of the in-circle and in-window oper-
ators are considered, respectively.

4 Conclusions

LVe have shown how standard query processing and op-

t.imization strat,egies can be adapted to spatial data-
base systems. When the following requirements are
met, all the query processing and optimization strate-
gies mentioned in this paper (except for the application-
dependent, ones such as Plan 10) can be applied to ot,hel
~,Y~)cs of di1t.a in differcut, application domains, not Iicc-
rssarily for spat,ial da.ta:

Barcelona, September, 1991

l a process to perform the specific algorithms for
handling the complex data object,,

l a relational DBMS to store the t,lrctnatic dcscril)-
tion of the complex object,

l the maintenance of a dual architecture in which
both the complex object handler and the rela-
tional DBMS are linked together via forward and
backward links between each complex object, and
its themnt,ic counterpart, and

l the existence of extended 0peraior.a that prcscrve
the consistency between both components of a
complex object.

Future research includes building a cost mod?1 for
analyzing t,hp suggested spat.ial q~~cry procclssing and 01).
timization strat,egics as well as hllil(ling a spat,iaI (111rsr.\’
optimizer to experiment with such strategies.

References

W. G. Aref and H. Samet. An approach to information
management in geographical applicat,ions. In PI.OCPF~-
ings of the 4th International Symposrjlm on ,Spa~la/ no/n
Handling, volume 2, pages 589.-598, Zuriclr, S\vitz(>r-
land, (July 1990).

W. G. Aref and H. Samet. Extending a DBR4S with
spatial operat,ions. In Second Symposzum on Large Spn-
tial Database,q, Zurich, Switzerland, (Alrgust 1901).

L. Becker and R.. If. Giit,ing. R~il+l~asrd opl iitlil.;l-
tion and query processing in an cstcnsihle geornrt.ric
database system. Technical Report 3 12, Ihrtmurltl lllli-
versity, Dort,mund, West Germany, (August 1989).

U. Dayal. Query processing in a multidatabase sys-
tem. In W. Kim, D. Reincr, and D. Riltory, ctlif.ors,
Query Processing In Database Sy.sIrw.s, pages 81 -108.
Springer-Verlag, New York, (1984).

R. Elmasri and S. B. Navathe. Fundameninls of

Database Systems. Benjamin/Cummings, Redwood
City, CA, (1989).

G. Graefe and D. J. Dewitt. The EXODUS opt.imizer
generator. In Proceedings of the lSS7 ACM SIG.\IOII
Infernationnl Conference on Management of Data, vol-
ume IG, pages 160-172, Sa.n Francisco, (May 19S7).

R. II. Giiting. Gral: An extensible relational system for
geometric applications. In Proceedings of the 15th Inter-
national Conference on Very Large DniabnsPs (VLDIJ’),
pages 33-44, Amsterdam, (August 1989).

L. M. Haas, J.C. Freytag, G.M. Lehman, and II. Pira-

Proceedings of the 17th International
Conference on Very Large Data Bases

hesh. Extensible query processing in Starburst. In Pro-
reedlngs of the 1989 ACM SIGMOD International Con-
jerfoce on Management of Data, pages 377-388, Port-
land, OR., (June 1989).

M. Jarke and J. Koch. Query optimization in database
systems. ACM Computing Surveys, 16(2):111-152,
(June 1984).

J3. C:. Ooi. Eficient Query Processing for Geographic
Inform,ation Systems. PhD thesis, Monash University,
\‘ict.oria, hust,ralia, (1988). (Lecture Notes in Com-
put.er Science 471, Springer-Verlag, Berlin, 1990).

J. A. Orenstein. Spatial query processing in an object-
oriented database system. In Proceedings of the 1986
ACM SIGMOD International Conference on Manage-
men/ of Data, pages 326-336, Washington, DC, (May
I!)FR).

It. Sacks-Davis, I<. J. RiIcDonell, and B. C. Ooi.
GEOQL - A query language for geographic information
systems. Technical Report 87/2, Monash University,
Victoria, Australia, (July 1987).

IT. Schek and RI. Scholl. The two roles of nested rela-
tions in the DASDI3S project. In S. Abiteboul, P. C.
Fischer, and H.-J. Schek, editors, Nested Relations and
Complex Objects in Databases, number 361, pages 50-
68. Springer-Verlag, Berlin, (1989).

II. Schek and W. Waterfeld. A database kernel sys-
trm for geoscientific applications. In Proceedings of /he
.!ltd ln!Prnational Symposaum on Spatial Data liandling,
1’i+g’s 273.-288, Seattle, FVA, (July 1986).

A. Wolf. The DASDBS GEO-Kernel: Concepts, experi-
ences, and the second step. In Design and Implementa-
iion of Large Spatial Databases, Proceedings of the Fzrst
Symposium SSD ‘89, pages 67-88, Santa Barbara, CA,
(July 1989).

I<. \\‘ong and I<. Youssefi. Decomposition - A strategy
for query processing. AC,14 Transaciions on Database
Systems, 1(3):223-241, (September 1976).

90
Barcelona. September, 1991

