
Solutions to Exercises

Solutions to Exercises in Section 1.1

1. See [649].

2. There are d! permutations of d attributes. It can be shown using symmetry arguments, as well

as additional properties, that only
(

d
⌊(d+1)/2⌋

)

of the permutations are needed. For more details,

see [1214], as well as [1046, pp. 577, 743–744].

3. The worst case is N + d − 1, where the first attribute value is different for all records, and now

the remaining chains are one element long at each level.

4. In the case of a doubly chained tree, in the worst case, we only test one attribute value at a

time for a total of O(N) tests. On the other hand, in the case of a sequential list, in the worst

case, we may have to test all attribute values of each record for a total of O(N . d) tests.

5. (Hans-Peter Kriegel) This worst case arises when the resulting tree has the depth O(d log2N).

To see how this case arises, assume a configuration of N records in the following sequence.

The first N/d records have N/d different values for the first attribute, and the remaining d − 1

attributes have arbitrary values. The first attribute value of the remaining N . (d − 1)/d records

is a constant, say c1. The second set of N/d records in the sequence have N/d different values

for the second attribute, and the remaining d − 2 attributes have arbitrary values. The second

attribute value of the remaining N . (d − 2)/d records is a constant, say c2. This same process

is applied for the remaining d − 2 sets of N/d records—that is, the ith set of N/d records in

the sequence have N/d different values for the ith attribute and the remaining d − i attributes

have arbitrary values. The second attribute value of the remaining N . (d − i)/d records is a

constant, say ci. This results in a sequence of d height-balanced binary trees of height log2N/d

apiece. Thus, the total height of the structure is O(d . log2N/d) = O(d . (log2N − log2d)),

which can be approximated by O(d log2N) since d ≪ N .

6. Assume that all of the attribute values are distinct. This means that the subfile H of the records

that lie on the partitioning hyperplane is empty as this maximizes the size of the left and right

subtrees of each node. Let S(N,d) denote the time needed to build the tree and solve the

following recurrence relation [1133]:

S(N,d) = 2 . S(N/2,d) + 2 . S(N/2,d − 1)

where S(1,d) = O(d) and S(N,1) = O(N . log2N). The recurrence relation indicates the

space needed for the trees corresponding to the subfiles L and R, which contain N/2 records,

and the subfiles LH and RH , which also contain N/2 records and are projections on the (d −1)-

dimensional hyperplane. S(N,1) is the space needed for the one-dimensional structure where

at each level LH and RH are just sets of pointers to the records corresponding to the elements of

L and H , respectively, and there are N records at each of the log2N levels. S(1,d) is the space

needed for a d-dimensional record that lies on the hyperplane corresponding to the record, and

there are d levels in this structure with an empty right subtree and a nonempty left subtree as

there are d attributes. The solution to this recurrence relation is S(N,d) = O(N . (log2N)d).

For more details, see [1133].
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4. Bentley [164] shows that the probability of constructing a given k-d tree of N nodes by

inserting N nodes in a random order into an initially empty k-d tree is the same as the

probability of constructing the same tree by random insertion into a one-dimensional binary

search tree. Once this is done, results that have been proved for one-dimensional binary search

trees will be applicable to k-d trees. The proof relies on viewing the records as d-tuples of

permutations of the integers 1,...,N . The nodes are considered random if all of the (N !)k

d-tuples of permutations are permitted to occur. It is assumed that the key values in a given

record are independent.

5. See [1912] for some hints.

Solutions to Exercises in Section 1.5.1.2

1. 1 recursive pointer node procedure FINDDMINIMUM(P,D)

2 /* Find the node with the smallest value for the D coordinate in the k-d tree

rooted at P */
3 value pointer node P

4 value direction D

5 pointer node L,H

6 if ISNULL(P ) then return NIL

7 elseif DISC(P ) = D then /* The ‘MINIMUM’ node is in the left subtree (i.e.,

LOCHILD) */

8 if ISNULL(LOCHILD(P )) then return P

9 else P ← LOCHILD(P )

10 endif

11 endif

12 /* Now, DISC(P ) �= D. The ‘MINIMUM’ node is the node with the smallest D

coordinate value of P , min(LOCHILD(P )), and min(HICHILD(P )) */

13 L ← FINDDMINIMUM(LOCHILD(P ),D)

14 H ← FINDDMINIMUM(HICHILD(P ),D)

15 if not ISNULL(H) and COORD(H,D) ≤ COORD(P,D) then P ← H

16 endif

17 if not ISNULL(L) and COORD(L,D) ≤ COORD(P,D) then P ← L

18 endif

19 return P

2. 1 procedure KDDELETE(P,R)

2 /* Delete node P from the k-d tree rooted at node R. If the root of the tree was

deleted, then reset R. */

3 value pointer node P

4 reference pointer node R

5 pointer node F,N

6 N ← KDDELETE1(P )

7 F ← FINDFATHER(P,R,NIL)

8 if ISNULL(F ) then R ← N /* Reset the pointer to the root of the tree */

9 else CHILD(F,CHILDTYPE(P )) ← N

10 endif

11 RETURNTOAVAIL(P )

1 recursive pointer node procedure KDDELETE1(P )

2 /* Delete node P and return a pointer to the root of the resulting subtree. */

3 value pointer node P

4 pointer node F,R

5 direction D

6 if ISNULL(LOCHILD(P )) and ISNULL(HICHILD(P )) then

7 return NIL /* P is a leaf */

8 else D ← DISC(P )

9 endif

10 if ISNULL(HICHILD(P )) then /* Special handling when HICHILD is empty */
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