
1
Multidimensional Point Data

The representation of multidimensional point data is a central issue in database design,

as well as applications in many other fields, including computer graphics, computer

vision, computational geometry, image processing, geographic information systems

(GIS), pattern recognition, very large scale integration (VLSI) design, and others. These

points can represent locations and objects in space, as well as more general records.

As an example of a general record, consider an employee record that has attributes

corresponding to the employee’s name, address, sex, age, height, weight, and Social

Security number. Such records arise in database management systems and can be treated

as points in, for this example, a seven-dimensional space (i.e., there is one dimension

for each attribute or key1), albeit the different dimensions have different type units (i.e.,

name and address are strings of characters; sex is binary; and age, height, weight, and

Social Security number are numbers).

Formally speaking, a database is a collection of records, termed a file. There is one

record per data point, and each record contains several attributes or keys. In order to

facilitate retrieval of a record based on some of the values of attributes,2 we assume the

existence of an ordering for the range of values of each of these attributes. In the case

of locational or numeric attributes, such an ordering is quite obvious because the values

of these attributes are numbers. In the case of alphanumeric attributes, the ordering is

usually based on the alphabetic sequence of the characters making up the attribute value.

Other data such as color could be ordered by the characters making up the name of the

color or, possibly, the color’s wavelength. It should be clear that finding an ordering for

the range of values of an attribute is generally not an issue; the only issue is what ordering

to use!

The representation that is ultimately chosen for this collection depends, in part, on

answers to the following questions:

1. What is the type of the data (e.g., is it discrete, is it continuous, is its domain finite)?

2. What operations are to be performed on the data?

3. Should we organize the data or the embedding space from which the data is drawn?

1 We use the terms key and attribute (as well as field, dimension, coordinate, and axis) interchange-

ably in this chapter. We choose among them based on the context of the discussion, while attempting to

be consistent with their use in the literature.
2 This is also known as secondary key retrieval (e.g., [1046]) to distinguish it from primary key

retrieval. In secondary key retrieval, the search is based on the value of more than just one attribute, as

is the case in traditional searching applications where we are dealing with one-dimensional data.

1



Chapter 1

Multidimensional Point Data

4. Is the database static or dynamic (i.e., can the number of data points grow and shrink

at will)?

5. Can we assume that the volume of data is sufficiently small so that it can all fit in

main memory, or should we make provisions for accessing disk-resident data?

The type of the data is an important question. Of course, we must distinguish between

data consisting of one and several attributes. Classical attribute values include bits,

integers, real numbers, complex numbers, characters, strings, and so on. There is also

the issue of whether the domain from which the data is drawn is finite (i.e., bounded)

or not. This distinction is used, in part, to determine which of the data organizations

in question 3 can be used. An alternative differentiation is on the basis of whether the

data is discrete or continuous. In the case of data that is used in conventional scientific

computations, discrete data corresponds to integers, while continuous data corresponds

to real and complex numbers. In the case of spatial data, we have discrete data (by

which we mean distinct samples or instances) such as points (which is the subject of

this chapter and, to a lesser extent, Chapter 4), while continuous data consists of objects

that take up space such as line segments, areas, surfaces, volumes, and so on (which are

the subject of Chapter 2 and, to a lesser extent, Chapter 3). Similarly, temporal data can

also be differentiated on the basis of whether it is discrete or continuous. In particular,

concepts such as event time and transaction time are indicative of a discrete approach,

while concepts such as rates are more indicative of a continuous approach in that they

recognize that the data is constantly changing over time. In this book, we do not deal

with temporal data (e.g., [951]) or the closely related concept of spatiotemporal data

(e.g., [21, 950, 1305]).

The distinction in question 3 is formulated in terms of the notion of an embedding

space. The embedding space is determined by the span of values of the data. For example,

suppose that we have a set of employee records with a state-valued attribute called

STATE whose embedding space is the set of names of the 50 U.S. states. In this case,

our distinction is between organizing the employee records on the basis of the value of

the STATE attribute (e.g., all employee records whose STATE attribute value starts with

letters A–M in one group and all employee records whose STATE attribute value starts

with letters N–Z in another group) or organizing the employee records on the basis of the

value of this attribute for the record of a particular employee (e.g., if employee records

are grouped into two groups based on whether the first letter of the value of their STATE

attribute is less than or equal to the first letter of the value of the STATE attribute for the

record corresponding to an employee named “John Smith”).

As another example, in the case of a computer architecture where the representation

of each data item is implemented by one word of 32 bits, then, for simple integer data,

the embedding space spans the values 0 to 232 − 1, while it is considerably larger for

real data, where it depends on the way in which the representation of simple real data

is implemented (i.e., in the case of floating-point representation, the number of bits

allocated to the mantissa and to the exponent). In both cases of the example above, the

embedding space is said to be finite.

The distinction made in question 3 is often used to differentiate between one-

dimensional searching methods (e.g., [1046]) that are tree-based from those that are

trie-based. In particular, a trie [251, 635] is a branching structure in which the value of

each data item or key is treated as a sequence of j characters, where each character has

M possible values. A node at depth k − 1 (k ≥ 1) in the trie represents an M-way branch

depending on the value of the kth character (i.e., it has M possible values). Some (and at

times all) of the data is stored in the leaf nodes, and the shape of the trie is independent

of the order in which the data is processed.

For example, address computation methods such as radix searching [1046] (also

known as digital searching and yielding structures known as digital trees) are instances

of trie-based methods, since the boundaries of the partition regions of similarly valued

2



Chapter 1

Multidimensional Point Data

data that result from the partitioning (i.e., branching) process are drawn from among

locations that are fixed regardless of the content of the file. Therefore, these trie-based

methods are said to organize the data on the basis of the embedding space from which

they are drawn. Because the positions of the boundaries of the regions are fixed, the

range of the embedding space from which the data is drawn must be known (said to

be bounded). On the other hand, in one dimension, the binary search tree [1046] is an

example of a tree-based method since the boundaries of different regions in the search

space are determined by the data being stored. Such methods are said to organize the data

rather than the embedding space from which the data is drawn. Note that although trie-

based methods are primarily designed to organize integer-valued data since the partition

values (i.e., the boundaries of the partition regions) are also integer valued, nevertheless

they can also be used to organize real-valued data, in which case the real-valued data

are compared to predetermined partition values (e.g., 0.5, 0.25, 0.75, in the case of real

numbers between 0 and 1), which, again, are the boundaries of the partition regions. Of

course, the data must still be bounded (i.e., its values must be drawn from within a given

range).

The extension of a trie to multidimensional data is relatively straightforward and

proceeds as follows. Assume d-dimensional data where each data item consists of d

character sequences corresponding to the d attributes. Each character of the ith sequence

has Mi possible values. A node at depth k − 1 (k ≥ 1) in the multidimensional trie

represents an
∏d

i=1
Mi-way branch, depending on the value of the kth character of each of

the d attribute values.3 For attributes whose value is of numeric type, which is treated as

a sequence of binary digits, this process is usually a halving process in one dimension, a

quartering process in two dimensions, and so on, and is known as regular decomposition.

We use this characterization frequently in our discussion of multidimensional data when

all of the attributes are locational.

Disk-resident data implies grouping the data (either the underlying space based on

the volume—that is, the amount—of the data it contains or the points, hopefully, by the

proximity of their values) into sets (termed buckets), corresponding to physical storage

units (i.e., pages). This leads to questions about their size and how they are to be accessed,

including the following:

1. Do we require a constant time to retrieve a record from a file, or is a logarithmic

function of the number of records in the file adequate? This is equivalent to asking

if the access is via a directory in the form of an array (i.e., direct access) or in the

form of a tree (i.e., a branching structure).

2. How large can the directories be allowed to grow before it is better to rebuild them?

3. How should the buckets be laid out on the disk?

In this chapter, we examine several representations that address these questions. Our

primary focus is on dynamic data, and we concentrate on the following queries:

1. Point queries that determine if a given point p is in the dataset. If yes, then the result

is the address corresponding to the record in which p is stored. This query is more

accurately characterized as an exact match query in order to distinguish it from the

related point query in the context of objects that finds all the objects that contain a

given point (see, e.g., Section 3.3.1 of Chapter 3).

2. Range queries (e.g., region search) that yield a set of data points whose specified

keys have specific values or values within given ranges. These queries include the

partially specified query, also known as the partial match query and the partial range

query, in which case unspecified keys take on the range of the key as their domain.

3. Boolean combinations of 1 and 2 using the Boolean operations and, or, and not.

3 When the ith character sequence has less than k characters, there is no corresponding branching

at depth k − 1 for this attribute.

3



Chapter 1

Multidimensional Point Data

NAME X Y

Chicago 35 42

Mobile 52 10

Toronto 62 77

Buffalo 82 65

Denver 5 45

Omaha 27 35

Atlanta 85 15

Miami 90 5

Figure 1.1

Sample list of cities with their x and

y coordinate values.

When multidimensional data corresponds to locational data, we have the additional

property that all of the attributes have the same unit, which is distance in space.4 In this

case, we can combine the attributes and pose queries that involve proximity. Assuming

a Euclidean distance metric, for example, we may wish to find all cities within 50 miles

of Chicago. This query is a special case of the range query, which would seek all cities

within 50 miles of the latitude position of Chicago and within 50 miles of the longitude

position of Chicago.5 A related query seeks to find the closest city to Chicago within

the two-dimensional space from which the locations of the cities are drawn—that is, a

nearest neighbor query, also sometimes referred to as the post office problem (e.g., [1046,

p. 563]). This problem arises in many different fields, including computer graphics,

where it is known as a pick query (e.g., [622]); in coding, where it is known as the

vector quantization problem (e.g., [747]); and in pattern recognition, as well as machine

learning, where it is known as the fast nearest-neighbor classifier (e.g., [514]). We do

not deal with such queries in this chapter (but see [846, 848, 854] and Sections 4.1 and 4.2

of Chapter 4).

In contrast, proximity queries are not very meaningful when the attributes do not

have the same type or units. For example, it is not customary to seek all people with age-

weight combination less than 50 year-pounds (year-kilograms) of that of John Jones, or

the person with age-weight combination closest to John Jones because we do not have

a commonly accepted unit of year-pounds (year-kilograms) or a definition thereof.6 It

should be clear that we are not speaking of queries involving Boolean combinations of

the different attributes (e.g., range queries), which are quite common.

The representations that we describe are applicable to data with an arbitrary number

of attributes d . The attributes need not be locational or numeric, although all of our

examples and explanations assume that all of the attributes are locational or numeric. In

order to be able to visualize the representations, we let d = 2. All of our examples make

use of the simple database of records corresponding to eight cities given in Figure 1.1.7

Each record has three attributes, NAME, X, and Y, corresponding to their name and

location. We assume that our queries retrieve only on the basis of the values of the

X and Y attributes. Thus, d = 2, and no ordering is assumed on the NAME field. In

particular, the NAME field is just used to aid us in referring to the actual locations and is

not really part of the record when we describe the various representations in this chapter.

Some of these representations can also be adapted to handle records where the attributes

are nonlocational, as long as an ordering exists for their range of values. Moreover,

Section 4.5 of Chapter 4 contains a discussion of how some of these representations can

be adapted to handle records where the only information available is the relative distance

between pairs of records.

4 The requirement that the attribute value be a unit of distance in space is stronger than one that

merely requires the unit to be a number. For example, if one attribute is the length of a pair of pants and

the other is the width of the waist, then, although the two attribute values are numbers, the two attributes

are not locational.
5 The difference between these two formulations of the query is that the former admits a circular

search region, while the latter admits a rectangular search region. In particular, the latter query is

applicable to both locational and nonlocational data, while the former is applicable only to locational

data.
6 This query is further complicated by the need to define the distance metric. We have assumed

a Euclidean distance metric. However, other distance metrics such as the City Block (also known as

Manhattan) and the Chessboard (also known as maximum value) could also be used.
7 Note that the correspondence between coordinate values and city names is not geographically

accurate. We took this liberty so that the same example could be used throughout the chapter to illustrate

a variety of concepts.

4



Section 1.2

Range Trees

the x coordinate. A range search for [B :E] is performed by procedure RANGESEARCH.

It searches the tree and finds the node with either the largest value ≤ B or the smallest

value ≥B, and then follows the links until reaching a leaf node with a value greater than

E. For N points, this process takes O(log2N + F) time and uses O(N) space. F is the

number of points found.

Procedure RANGESEARCH assumes that each node has six fields, LEFT, RIGHT,

VALUE, PREV, NEXT, and MIDRANGE. LEFT(P ) and RIGHT(P ) denote the left and

right children, respectively, of nonleaf node P (they are null in the case of a leaf node).

VALUE is an integer indicating the value stored in the leaf node. PREV(P ) and NEXT(P )

are meaningful only for leaf nodes, in which case they are used for the doubly linked list

of leaf nodes sorted in nondecreasing order. In particular, PREV(P ) points to a node with

value less than or equal to VALUE(P ), while NEXT(P ) points to a node with value greater

than or equal to VALUE(P ). MIDRANGE(P ) is a variant of a discriminator between the

left and right subtrees—that is, it is greater than or equal to the values stored in the left

subtree, and less than or equal to the values stored in the right subtree (see Exercise 2).

The MIDRANGE field is meaningful only for nonleaf nodes. Note that by making use of

a NODETYPE field to distinguish between leaf and nonleaf nodes, we can use the LEFT,

RIGHT, and MIDRANGE fields to indicate the information currently represented by the

PREV, NEXT, and VALUE fields, respectively, thereby making them unnecessary.

1 procedure RANGESEARCH(B,E,T )

2 /* Perform a range search for the one-dimensional interval [B :E] in the one-

dimensional range tree rooted at T . */

3 value integer B,E

4 value pointer node T

5 if ISNULL(T ) then return

6 endif

7 while not ISLEAF(T ) do

8 T ← if B ≤ MIDRANGE(T ) then LEFT(T )

9 else RIGHT(T )

10 endif

11 enddo

12 if not ISNULL(T ) and VALUE(T ) < B then T ← NEXT(T )

13 endif

14 while not ISNULL(T ) and VALUE(T ) ≤ E do

15 output VALUE(T )

16 T ← NEXT(T )

17 enddo

For example, suppose we want to perform a range search for [28:62] on the one-

dimensional range tree in Figure 1.7. In this example, we assume that the VALUE field of

the leaf nodes contains only the x coordinate values. We first descend the tree to locate, in

this case, the node with the largest value ≤28 (i.e., (27,35)). Next, following the NEXT

links, we report the points (35,42), (52,10), and (62,77). We stop when encountering

(82,65).

A two-dimensional range tree is a binary tree of binary trees. It is formed in the

following manner. First, sort all of the points along one of the attributes, say x, and store

them in the leaf nodes of a balanced binary search tree (i.e., a range tree), say T . With

each node of T , say I , associate a one-dimensional range tree, say TI , of the points in

the subtree rooted at I , where now these points are sorted along the other attribute, say

y.12 For example, Figure 1.8 is the two-dimensional range tree for the data of Figure 1.1,

12 Actually, there is no need for the one-dimensional range tree at the root or its two children (see

Exercise 6). Also, there is no need for the one-element, one-dimensional range trees at the leaf nodes,

as the algorithms can make a special check for this case and use the data that is already stored in the leaf

nodes (but see Exercise 5).

15



Chapter 1

Multidimensional Point Data

T

Q

B

A

F

RX

GC

LX D

R1

R2

R3

R4

L1

L2

L3

L4

H

E

Figure 1.9

Example two-dimensional range tree

to illustrate two-dimensional range

searching.

For example, the desired closest common ancestor of LX and RX in Figure 1.9

is Q. One-dimensional range searches would be performed in the one-dimensional

range trees rooted at nodes A, B, D, E, F, and H since 5 {Li} = {L1,L2,L3,L4,LX} and

{Ri} = {R1,R2,R3,R4,RX}. For N points, procedure 2DSEARCH takes O(log2
2
N + F)

time, where F is the number of points found (see Exercise 9).

As a more concrete example, suppose we want to perform a range search for

([25:85],[8:16]) on the two-dimensional range tree in Figure 1.8. We first find the nearest

common ancestor of 25 and 85, which is node A. The paths {Li} and {Ri} are given by

{B,D,I} and {C,G,N}, respectively. Since B and B’s left child (i.e., D) are in the path to

25, we search the range tree of B’s right child (i.e., E) and report (52,10) as in the range.

Similarly, since C and C’s right child (i.e., G) are in the path to 85, we search the one-

dimensional range tree of C’s left child (i.e., F), but do not report any results as neither

(62,77) nor (82,65) is in the range. Finally, we check if the boundary nodes (27,35) and

(85,15) are in the range, and report (85,15) as in the range.

The range tree also can be adapted easily to handle k-dimensional data. In such a

case, for N points, a k-dimensional range search takes O(logk
2
N +F) time, where F is

the number of points found. The k-dimensional range tree uses O(N . logk−1
2 N) space

(see Exercise 10) and requires O(N . logk−1
2 N) time to build (see Exercise 11).

Exercises

1. Is there a difference between a balanced binary search tree, where all the data is stored in the

leaf nodes, and a one-dimensional range tree?

2. The MIDRANGE field in the one-dimensional range tree was defined as a variant of a dis-

criminator between the left and right subtrees in the sense that it is greater than or equal to

the values stored in the left subtree, and less than or equal to the values stored in the right

subtree. Why not use a simpler definition, such as one that stipulates that the MIDRANGE

value is greater than all values in the left subtree and less than or equal to all values in the

right subtree?

3. Why does procedure 2DSEARCH provide the desired result?

4. Prove that no point is reported more than once by the algorithm for executing a range query

in a two-dimensional range tree.

5. Procedure 2DSEARCH makes use of a representation of the two-dimensional range tree where

each node has a POINT and RANGETREE field. In fact, the POINT field is defined only for

leaf nodes, while the RANGETREE field points to a one-dimensional range tree of just one

node for leaf nodes. Rewrite 2DSEARCH, 1DSEARCH, and INRANGE so that they do not use

a POINT field, and hence interpret the RANGETREE field appropriately.

6. Show that the one-dimensional range trees at the first two levels (i.e., at the root and the two

children of the root) of a two-dimensional range tree are never used in procedure 2DSEARCH.

7. Show that O(N . log2N) space suffices for a two-dimensional range tree for N points.

8. Show that a two-dimensional range tree can be built in O(N . log2N) time for N points.

9. Given a two-dimensional range tree containing N points, prove that a two-dimensional range

query takes O(log2
2
N + F) time, where F is the number of points found.

10. Given a k-dimensional range tree containing N points, prove that a k-dimensional range

query takes O(logk
2
N + F) time, where F is the number of points found. Also, show that

O(N . logk−1
2 N) space is sufficient.

11. Show that a k-dimensional range tree can be built in O(N . logk−1
2 N) time for N points.

12. Write a procedure to construct a two-dimensional range tree.

18



Chapter 1

Multidimensional Point Data

(a)

(b)

Chicago

Mobile

Toronto
Miami

Buffalo

Omaha

Denver

Atlanta

(0,100) (100,100)

(100,0)(0,0)

y

x

(5,45)
Denver

(35,42)
Chicago

(27,35)
Omaha (52,10)

Mobile

(62,77)
Toronto (82,65)

Buffalo

(85,15)
Atlanta

(90,5)
Miami

Figure 1.34

A k-d tree (d = 2) and the records

it represents corresponding to the

data of Figure 1.1: (a) the resulting

partition of space and (b) the tree

representation.

1.5.1 Point K-d Trees

There are many variations of the point k-d tree. Their exact structure depends on the

manner in which they deal with the following issues:

1. Is the underlying space partitioned at a position that overlaps a data point, or may

the position of the partition be chosen at random? Recall that trie-based methods

restrict the positions of the partitions points, thereby rendering moot the question of

whether the partition actually takes place at a data point.

2. Is there a choice as to the identity of the partition axis (i.e., the attribute or key being

tested)? If we adopt a strict analogy to the quadtree, then we have little flexibility

in the choice of the partition axis in the sense that we must cycle through the d

different dimensions every d levels in the tree, although the relative order in which

the different axes are partitioned may differ from level to level and among subtrees.

The most common variant of the k-d tree (and the one we focus on in this section)

partitions the underlying space at the data points and cycles through the different axes

in a predefined and constant order. When we can apply the partitions to the underlying

space in an arbitrary order rather than having to cycle through the axes, then we preface

the name of the data structure with the qualifier generalized. For example, a generalized

k-d tree also partitions the underlying space at the data points; however, it need not cycle

through the axes. In fact, it need not even partition all of the axes (e.g., only partition along

the axes that are used in queries [172]). In our discussion, we assume two-dimensional

data, and we test x coordinate values at the root and at even depths (given that the root

is at depth 0) and y coordinate values at odd depths.

We adopt the convention that when node P is an x-discriminator, then all nodes

having an x coordinate value less than that of P are in the left child of P and all those

with x coordinate values greater than or equal to that of P are in the right child of P . A

similar convention holds for a node that is a y-discriminator. Figure 1.34 illustrates the

k-d tree corresponding to the same eight nodes as in Figure 1.1.

In the definition of a discriminator, the problem of equality of particular key values

is resolved by stipulating that records that have the same value for a particular key are in

the right subtree. As an alternative, Bentley [164] defines a node in terms of a superkey.

Given a node P , let K0(P ), K1(P ), and so on, refer to its d keys. Assuming that P

is a j -discriminator, then for any node Q in the left child of P , Kj(Q) < Kj(P ); and

likewise, for any node R in the right child of P , Kj(R)>Kj(P ). In the case of equality,

a superkey, Sj(P ), is defined by forming a cyclical concatenation of all keys starting

with Kj(P ). In other words, Sj(P )=Kj(P ) Kj+1(P ) ... Kd−1(P ) K0(P ) ... Kj−1(P ).

Now, when comparing two nodes, P and Q, we turn to the left when Sj(Q) < Sj(P )

and to the right when Sj(Q) > Sj(P ). If Sj(Q) = Sj(P ), then all d keys are equal, and

a special value is returned to so indicate. The algorithms that we present below do not

make use of a superkey.

The rest of this section is organized as follows. Section 1.5.1.1 shows how to insert

a point into a k-d tree. Section 1.5.1.2 discusses how to delete a point from a k-d tree.

Section 1.5.1.3 explains how to do region searching in a k-d tree. Section 1.5.1.4 discusses

some variants of the k-d tree that provide more flexibility as to the positioning and choice

of the partitioning axes.

1.5.1.1 Insertion

Inserting record r with key values (a,b) into a k-d tree is very simple. The process is

essentially the same as that for a binary search tree. First, if the tree is empty, then allocate

a new node containing r , and return a tree with r as its only node. Otherwise, search the

tree for a node h with a record having key values (a,b). If h exists, then r replaces the

record associated with h. Otherwise, we are at a NIL node that is a child of type s (i.e.,

‘LEFT’ or ‘RIGHT’, as appropriate) of node c. This is where we make the insertion by

50


