Streaming News Image Summarization

Hao Li, Shangfu Peng, Hanan Samet

{haoli, shangfu, hjs}@cs.umd.edu
NewsStand: A News Aggregation System

Indexed 10K+ RSS news feeds, extracted ~50K+ news articles/day

Samet et al, “Reading news with maps by exploiting spatial synonyms”. CACM, 2014
http://newsstand.umiacs.umd.edu/
PhotoStand: A News Image Aggregation System

A picture is worth a thousand words

Samet et al, “PhotoStand: A Map Query Interface for a Database of News Photos”. VLDB, 2013
http://newsstand.umiacs.umd.edu/photostand/
Temporal-based News Browsing
Topic-based News Summarization
Needs for Automatic News Image Summarization

• The “Boston Bombing” news topic has 835 new articles and 1540 images during April 15 - May 12, 2013

• News photos from different medias can be highly similar.
Problem Formulation

Input: Given a news photo stream \(\mathcal{I}_e = \{I_1, \ldots, I_N\} \) on topic \(e \), each image is associated with an article \(a \), a timestamp \(t \) and a caption \(d \)

Output: a subset of images \(V \) to summarize the topic \(e \) in a time interval \(T \)

Goals

- The selected images should be *important* and *representative*
- The visual timeline should maximize
 - Information Value
 - Coverage
 - Diversity
Redundancy in News Photos

- News photos taken by different media for the same event
 - Yahoo!
 - NBC News
 - Business Insider

- The same photo is cropped or modified by different media
 - CNN
 - The Guardian
 - BBC
How to measure the importance of a news photo?

Observations: the greater the importance of the news photo, the higher the frequency and diversity of use.

- The importance can be evaluated by the number of its near-duplicates.
Pipeline of News Image Summarization

News topic clustering → Photo stream → Global feature clustering → Local feature clustering → Representative image selection → Timeline generation

\[I_c \rightarrow I_1 \rightarrow I_2 \rightarrow \cdots \rightarrow I_N \]
Overview

- Image in News
- News Image Summarization Pipeline
 - Near-Duplicate Image Clustering
 - Representative Image Selection
 - Timeline Generation
- Evaluation
Near-Duplicate Image Clustering

• Global feature
 • Hierarchical Color Histogram
 • **Pro**: efficient to compute, store and compare (512-bytes)
 • **Con**: not robust to significant cropping and geometric distortions.

• Local feature
 • SIFT + RANSAC verification
 • **Pro**: more robust to various transformations
 • **Con**: more time consuming for matching.

encode and compare global and local features of the images, preserving spatial information

Samet et al, “PhotoStand: A Map Query Interface for a Database of News Photos” . VLDB, 2013
Streaming Two-Stage Image Clustering

Algorithm 1: Online near-duplicate image clustering

Input: Image stream \(\{I_1, \ldots, I_N\} \) to be processed
Output: Clusters \(C \)

while \(i \leq N \) do
 \(c_g \leftarrow \text{match}_\text{global}_\text{feature}(C, f_g(I_i)) \)
 if \(c_g \neq \emptyset \) then
 \(C[c_g] \leftarrow C[c_g] \cup \{I_i\} \)
 else
 \(c_l \leftarrow \text{match}_\text{local}_\text{feature}(C, f_l(I_i)) \)
 if \(c_l \neq \emptyset \) then
 \(C[c_l] \leftarrow C[c_l] \cup \{I_i\} \)
 else
 \(C \leftarrow C \cup \{I_i\} \)

strict threshold for global feature matching

local feature matching merges near-duplicate images

The number of images in cluster \(C \) is used as the importance score \(s \) for images in that cluster.

The criteria for SIFT matching:
1) at least 15 local descriptors are matched
2) the percentage of matched descriptors compared to the average number of descriptors of two images is greater than 5%.
Overview

• Image in News

• News Image Summarization
 • Duplicate Detection

• Representative Image Selection
 • Timeline Generation

• Evaluation
VisualRank for Image Search Re-ranking

Identifying the “authority” images on a visual-similarity graph

search result visual hyperlink similarity graph
Representative Image Selection

\[p(I_u, I_v) = \frac{m(I_u, I_v)}{n(I_u)} \]

\[PR(I_v) = \frac{\alpha}{|c|} + (1 - \alpha) \sum_{I_u \in c} PR(I_u) \frac{p(I_u, I_v)}{\sum_{I_x \in c} p(I_u, I_x)} \]
Overview

• Image in News

• News Image Summarization
 • Duplicate Detection
 • Representative Image Selection
 • **Timeline Generation**

• Evaluation
Timeline Generation

Basic approach

- select the top K images for each day while the importance score s_i of each image is above a threshold ϵ.

$$\max \sum_{i \in V_t} s_i \quad \text{st} \quad |V_t| \leq K \quad \text{and} \quad \forall s_i > \epsilon$$

Cons

- fixed K may fail to display important images.
- thresholding the important score may result in too many (few) images.

Xu et al. A Cross-media Evolutionary Timeline Generation Framework Based on Iterative Recommendation. ICMR 2013
Yan et al. Visualizing Timelines: Evolutionary Summarization via Iterative Reinforcement between Text and Image Streams. CIKM 2012
Dynamic Timeline

- We treat this task as a window query.
- Users can zoom in or zoom out on the timeline to see the detailed or the general summarization result.

Visual Timeline with Constraints

- **Constraint 1**: total M images are visible in the window

- **Constraint 2**: screen width W

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$s_A > s_B > s_C$</td>
</tr>
<tr>
<td></td>
<td>$w_A + w_B > W$</td>
</tr>
<tr>
<td></td>
<td>$w_A + w_C > W$</td>
</tr>
<tr>
<td>2</td>
<td>$s_B + s_C > s_A$</td>
</tr>
<tr>
<td></td>
<td>$w_B + w_C < W$</td>
</tr>
</tbody>
</table>

sometimes two narrow images are better than one wide image
0-1 Knapsack Problem

Objective: select at most images M to maximize the accumulated scores in a query window (time period $T = [t_s, t_e]$ and width W).

\[
\hat{V} = \arg \max_V \sum_{i \in V} s_i
\]

subject to:
- $|V| \leq M$ (visible image constraint)
- $\sum_{i \in V_k} w_i \leq W$ (screen width constraint)
- $t_s \leq t_i \leq t_e$ (time window constraint)

We solve this 0 – 1 knapsack problem by dynamic programming:

- $f(i, n, m, w) + s_i \rightarrow \begin{cases} f(i + 1, n, m + 1, w + w_i) \\ f(i + 1, n + 1, m + 1, 0) \end{cases}$
- $f(i, n, m, w) \rightarrow \begin{cases} f(i + 1, n, m, w) \\ f(i + 1, n + 1, m, 0) \end{cases}$
“Prince William and Kate seen after the birth of their first child”
More Results

Timeline summarization with $M = 30$, $W = 600$ and $|T| = 8$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled Cruise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Boston Bombing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SFO Crash</td>
</tr>
</tbody>
</table>
More Results

Timeline summarization of “Boston Bombing” with $M = 30$, $W = 600$ and $|T| = 8$
Summary

• Utilize the crowd-wisdom to determine the importance of news images.

• Dynamic timeline display as a window query and solve it as a 0-1 knapsack problem.
Thank you!
Performance

| Event | #imgs | $|C|_{GT}$ | Dup% | $\max(|c|)$ | $|C|$ | False Match | Miss Match |
|------------------------|-------|---------|-------|-------------|------|-------------|------------|
| Disabled Cruise | 325 | 175 | 46.2 | 44 | 219 | 160 | 170 |
| Boston Bomning | 1540 | 713 | 53.7 | 65 | 963 | 675 | 698 |
| George Zimmerman | 1374 | 706 | 48.6 | 27 | 954 | 608 | 695 |
| SFO Plane crash | 788 | 305 | 61.3 | 25 | 427 | 266 | 301 |
| William and Kate | 1273 | 766 | 39.8 | 58 | 913 | 726 | 736 |
| California Kidnapping | 396 | 97 | 75.5 | 128 | 176 | 91 | 97 |

<table>
<thead>
<tr>
<th>Color</th>
<th>SIFT</th>
<th>Hybrid</th>
<th>Color</th>
<th>SIFT</th>
<th>Hybrid</th>
<th>Color</th>
<th>SIFT</th>
<th>Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>645</td>
<td>100</td>
<td>170</td>
<td>48</td>
<td>160</td>
<td>170</td>
<td>33.98</td>
<td>11.81</td>
<td>0.040</td>
</tr>
<tr>
<td>121.99</td>
<td>848.55</td>
<td>58.61</td>
<td>432.21</td>
<td>7.00</td>
<td>0.167</td>
<td>105.89</td>
<td>7.69</td>
<td>0.106</td>
</tr>
<tr>
<td>91.04</td>
<td>432.21</td>
<td>7.00</td>
<td>1149.02</td>
<td>11.97</td>
<td>0.139</td>
<td>1313.00</td>
<td>1.03</td>
<td>3.47</td>
</tr>
<tr>
<td>4.74</td>
<td>1149.02</td>
<td>11.97</td>
<td>11.47</td>
<td>20.57</td>
<td>0.108</td>
<td>76.36</td>
<td>0.19</td>
<td>0.22</td>
</tr>
</tbody>
</table>

TABLE II
Performance of Near-Duplicate Clustering

<table>
<thead>
<tr>
<th>Feature Extraction</th>
<th>Duplicate Clustering</th>
<th>Image Selection</th>
<th>Total</th>
<th>Average</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>SIFT</td>
<td>Stage 1</td>
<td>Stage 2</td>
<td>Graph Building</td>
<td>PageRank</td>
</tr>
<tr>
<td>1.75</td>
<td>22.58</td>
<td>0.15</td>
<td>33.98</td>
<td>11.81</td>
<td>0.040</td>
</tr>
<tr>
<td>12.44</td>
<td>121.99</td>
<td>8.33</td>
<td>848.55</td>
<td>58.61</td>
<td>0.210</td>
</tr>
<tr>
<td>10.59</td>
<td>91.04</td>
<td>4.74</td>
<td>432.21</td>
<td>7.00</td>
<td>0.167</td>
</tr>
<tr>
<td>7.62</td>
<td>64.57</td>
<td>0.90</td>
<td>105.89</td>
<td>7.69</td>
<td>0.106</td>
</tr>
<tr>
<td>9.03</td>
<td>137.74</td>
<td>5.09</td>
<td>1149.02</td>
<td>11.97</td>
<td>0.139</td>
</tr>
<tr>
<td>3.81</td>
<td>40.27</td>
<td>0.13</td>
<td>11.47</td>
<td>20.57</td>
<td>0.108</td>
</tr>
</tbody>
</table>
Failure Case

2013-08-24 16:39:47
President Barack Obama

2013-08-28 03:45:25
White House Press Secretary Jay Carney speaks about Syria during a press briefing at the White House

2012-12-27 15:46:10
Syrian President Bashar al-Assad meets with peace envoy Lakhdar Brahimi in the capital Damascus

2013-02-03 09:06:32
A picture released by the official Syrian Arab News Agency shows Syrian president Bashar al-Assad talking with Iran's Saeed Jalili.