Self-Adjusting Machines

Matthew A. Hammer

University of Chicago
Max Planck Institute for Software Systems

Thesis Defense
July 20, 2012
Chicago, IL

Static Computation Versus Dynamic Computation

Static Computation:

Fixed Input Compute Fixed Output

Dynamic Computation:

‘ Changing Input }—> Compute —>{ Changing Output ’

Read Update |- Write
Changes P) Updates

Matthew A. Hammer Self-Adjusting Machines 2

Dynamic Data is Everywhere

Software systems often consume/produce dynamic data]

Reactive Systems

Analysis of Internet
data

Scientific Simulation

Matthew A. Hammer Self-Adjusting Machines 3

Tractability Requires Dynamic Computations

‘ Changing Input }—> Compute —>{ Changing Output ’

Static Case
(Re-evaluation “from scratch”)
compute | 1 sec

of changes | 1 million
Total time | 11.6 days

Matthew A. Hammer Self-Adjusting Machines

Tractability Requires Dynamic Computations

‘ Changing Input }—> Compute —>{ Changing Output ’

Read Write

Changes Update - . Updates
Static Case Dynamic Case
(Re-evaluation “from scratch”) (Uses update mechanism)
compute | 1 sec compute | 10 sec
of changes | 1 million update | 1 x 1072 sec
Total time | 11.6 days # of changes | 1 million

Total time | 16.7 minutes
Speedup | 1000x

Matthew A. Hammer Self-Adjusting Machines 4

Dynamic Computations can be Hand-Crafted

As an input sequence changes, maintain a sorted output.]

Changing Input Changing Output
S

1736524 |—> 1234567

Remove 6] 1171316151214 """ ” update """" b 1121314151617
Reinsert 6, | 1,7,3,6,5,2,4 |- update |- 11,2,3,456,7
Remove 2 -

A binary search tree would suffice here (e.g., a splay tree)
What about more exotic/complex computations?

Matthew A. Hammer Self-Adjusting Machines 5

Self-Adjusting Computation

Offers a systematic way to program dynamic computations J

Domain knowledge + Library primitives

|
Self-Adjusting Program

The library primitives:
1. Compute initial output and trace from initial input
2. Change propagation updates output and trace

Matthew A. Hammer Self-Adjusting Machines 6

High-level versus low-level languages

Existing work uses/targets high-level languages (e.g., SML)
In low-level languages (e.g., C), there are new challenges

Language feature | High-level help Low-level gap

Type system Indicates mutability Everything mutable
Functions Higher-order traces Closures are manual
Stack space Alters stack profile Bounded stack space
Heap management | Automatic GC Explicit management

4

C is based on a low-level machine model
This model lacks self-adjusting primitives

Matthew A. Hammer Self-Adjusting Machines 7

Thesis statement

By making their resources explicit, self-adjusting machines give an
operational account of self-adjusting computation suitable for
interoperation with low-level languages;

via practical compilation and run-time techniques, these machines
are programmable, sound and efficient.

Contributions

Surface language, C-based Programmable

Abstact machine model Sound

Compiler Realizes static aspects
Run-time library Realizes dynamic aspects

Empirical evaluation Efficient

A\

Example: Dynamic Expression Trees

Objective: As tree changes, maintain its valuation |

\ +

/
()
3 @ 9@@@

(3+4)—0)+(5—06) ((3+4)— (b—6)+5) =11
Consistency: Output is correct valuation
Efficiency: Update time is O(#affected intermediate results) J

Matthew A. Hammer Self-Adjusting Machines 9

Expression Tree Evaluation in C

1 typedef struct node_s* node_t;

2 struct node_s {

3 enum { LEAF, BINOP } tag;

4 union { int leaf;

5 struct { enum { PLUS, MINUS } op;
6 node_t left, right;

7

} binop; } u; }

int eval (node_t root) {
if (root->tag == LEAF)
return root->u.leaf;
else {
int 1 = eval (root->u.binop.left);
int r = eval (root->u.binop.right);

if (root->u.binop.op == PLUS) return (1 + r);
else return (1 - r);

b}

R E—————————————————————————————————————.|
Matthew A. Hammer Self-Adjusting Machines 10

© 00 N O O WN B~

The Stack “Shapes” the Computation

int eval (node_t root) {
if (root->tag == LEAF)
return root->u.leaf;

else {
int 1 = eval (root->u.binop.left);
int r = eval (root->u.binop.right);

if (root->u.binop.op == PLUS) return (1 + r);
else return (1 - r);

H

Stack usage breaks computation into three parts:

Matthew A. Hammer Self-Adjusting Machines 11

The Stack “Shapes” the Computation

int eval (node_t root) {
if (root->tag == LEAF)
return root->u.leaf;

else {
int 1 = eval (root->u.binop.left);
int r = eval (root->u.binop.right);

if (root->u.binop.op == PLUS) return (1 + r);
else return (1 - r);

H

Stack usage breaks computation into three parts:

» Part A: Return value if LEAF
Otherwise, evaluate BINOP, starting with left child

Matthew A. Hammer Self-Adjusting Machines 11

The Stack “Shapes” the Computation

int eval (node_t root) {

int r = eval (root->u.binop.right);

if (root->u.binop.op == PLUS) return (1 + r);
else return (1 - r);

H

Stack usage breaks computation into three parts:

» Part A: Return value if LEAF
Otherwise, evaluate BINOP, starting with left child

» Part B: Evaluate the right child

Matthew A. Hammer Self-Adjusting Machines 11

The Stack “Shapes” the Computation

int eval (node_t root) {

if (root->u.binop.op == PLUS) return (1 + r);
else return (1 - r);

H

Stack usage breaks computation into three parts:

» Part A: Return value if LEAF
Otherwise, evaluate BINOP, starting with left child

» Part B: Evaluate the right child
» Part C: Apply BINOP to intermediate results; return

Matthew A. Hammer Self-Adjusting Machines 11

Dynamic Execution Traces

Input Tree

S
(=) (=)
010

Execution Trace

Matthew A. Hammer Self-Adjusting Machines 12

Updating inputs, traces and outputs

/\

(=) =)
‘“'
9]0 909@
A (B,)

-+

Core self-adjusting primitives

Stack operations: push & pop
Trace checkpoints: memo & update points

Matthew A. Hammer Self-Adjusting Machines 14

Abstract model:
Self-adjusting machines

Matthew A. H Self-Adjusting Machines

Overview of abstract machines

» |IL: Intermediate language

» Uses static-single assignment representation
» Distinguishes local from non-local mutation

» Core IL constructs:

» Stack operations: push, pop
» Trace checkpoints: memo, update

» Additional IL constructs:

» Modifiable memory: alloc, read, write
» (Other extensions possible)

Matthew A. Hammer Self-Adjusting Machines 16

Abstract machine semantics

Two abstract machines given by small-step transition semantics: |

» Reference machine: defines normal semantics

» Self-adjusting machine: defines self-adjusting semantics
Can compute an output and a trace
Can update output/trace when memory changes
Automatically marks garbage in memory

We prove that these abstract machines are consistent
i.e., updated output is always consistent with normal semantics

Matthew A. Hammer Self-Adjusting Machines

Needed property: Store agnosticism

An IL program is store agnostic when each stack frame has a fixed
return value; hence, not affected by update points

destination-passing style (DPS) transformation:

v

Assigns a destination in memory for each stack frame
Return values are these destinations

v

v

Converts stack dependencies into memory dependencies
» memo and update points reuse and update destinations

v

Lemma: DPS-conversion preserves program meaning

v

Lemma: DPS-conversion acheives store agnosticism

Matthew A. Hammer Self-Adjusting Machines 18

Consistency theorem, Part 1: No Reuse

Trace

Input Self-adj. Machine Run s Output
| |

Input ‘ Reference Machine Run » Output

Self-adjusting machine is consistent with reference machine
when self-adjusting machine runs “from-scratch”, with no reuse

Matthew A. Hammer Self-Adjusting Machines 19

Consistency theorem, Part 2: Reuse vs No Reuse

Traceg
Input Self-adj. Machine Run Trace
Output
| [
Input Self-adj. Machine Run Trace
Output

Self-adjusting machine is consistent with from-scratch runs
When it reuses some existing trace Traceg

Matthew A. Hammer Self-Adjusting Machines 20

Consistency theorem: Main result

Traceg Trace
Input Tracing Machine Run (P) s Output
| |
Input Reference Machine Run (P) —— Output

Main result uses Part 1 and Part 2 together:

Self-adjusting machine is consistent with reference machine

Matthew A. Hammer Self-Adjusting Machines pal

Concrete
Self-adjusting machines

Matthew A. H Self-Adjusting Machines

From abstract to concrete machines

Overview of design and implementation
» Abstract model guides design
» Compiler addresses static aspects
» Run-time (RT) addresses dynamic aspects

Phases
» Front-end translates CEAL surface language into IL
» Compiler analyses and transforms IL
» Compiler produces C target code, links with RT library

» Optional optimizations cross-cut compiler and RT library

Matthew A. Hammer Self-Adjusting Machines 23

Compiler transformations

Destination-passing style (DPS) conversion
» Required by our abstract model
» Converts stack dependencies into memory dependencies

» Inserts additional memo and update points

Normalization
» Required by C programming model
» Lifts update points into top-level functions

» Exposes those code blocks for reevaluation by RT

Matthew A. Hammer Self-Adjusting Machines Pz

Compiler analyses

Compiler analyses
» guide necessary transformations

» guide optional optimizations

Special uses

memo/update analysis | selective DPS conversion
live variable analysis | translation of memo/update points

dominator analysis | normalization, spatial layout of trace

Matthew A. Hammer Self-Adjusting Machines 25

From compiler to run-time system

Trace nodes
» Indivisible block of traced operations
» Operations share overhead (e.g., closure information)

» Compiler produces trace node descriptors in target code

Run-time system
» RT interace based on trace node descriptors (from compiler)

redo callback — code at update points
undo callback — revert traced operations

» Change propagation incorporates garbage collection

Matthew A. Hammer Self-Adjusting Machines 26

Optimizations

Sparser traces — avoid tracing when possible

1. Stable references Programmer uses type qualifier
2. Selective DPS Compiler analysis of update points

Cheaper traces — more efficient representation

3. Write-once memory Programmer uses type qualifier
4. Trace node sharing Compiler analysis coalesces traced ops

Matthew A. Hammer Self-Adjusting Machines 27

Matthew A. Hammer

Evaluation

Self-Adjusting Machines

From-scratch time: Constant overhead

Exptrees From-Scratch
16 I I

14 | Self-Ad] ——
1o L Static e

1.0 |
08 r
0.6 -
04 r
0.2 -
0.0

Time (s)

0 250K 500K 750K
Input Size

Matthew A. H

Average update time: Constant time

Time (ms)

0.022

0.021 fself-Ad] —+—

0.020
0.019

Exptrees Ave Update

250K 500K 750K
Input Size

Self-Adjusting Machines

Speed up = From-scratch / Update

Exptrees Speedup

2.5 x 10*
2.0 x 10*
1.5 x 10
1.0 x 10
5.0 x 103

0.0 x 10° | | |
0 250K 500K 750K

Input Size

Self-Adj —+—

Speedup

Matthew A. H Self-Adjusting Machines

Evolution of our approach

Stage 1: First run-time library
+ Change propagation & memory management
— Very high programmer burden
Stage 2: First compiler
+ Lower programmer burden
— No return values
— Memo points are non-orthogonal
(conflated with read and alloc primitives)
— No model for consistency or optimizations
Stage 3: New compiler & run-time library
+ Self-adjuting machine semantics guides reasoning
about consistency & optimizations
+ Very low programmer burden

Matthew A. Hammer Self-Adjusting Machines 32

Stage 1, RT library: vs SML library

Quicksort From-Scratch Quicksort Ave. Update
150 T T T 15 T T T
SML+GC —»— % . SML+GC —»—)
@ 100 SML-Gg g 10 b SML—GS
o / Py
S
iz 50 S 5
= / = /
7 =
0wk it el i Q a2 ""*/)Hr_x_)‘/ -
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Input Size (n x 103) Input Size (n x 103)
» SML-GC is comparable to C
» SML+GC are 10x slower

Matthew A. Hammer Self-Adjusting Machines 33

Normalized Measurements [(CEAL / DeltaML) x 100]

Stage 2, Basic compiler: CEAL vs Delta-ML

App. From-Scratch | Ave. Update | Max Live
filter 11% 16% 23%
map 11% 14% 23%
reverse 13% 17% 24%
minimum 22% 11% 38%
sum 22% 29% 34%
quicksort 4% 6% 21%
quickhull 20% 30% 91%
diameter 17% 23% 67%
Averages 15% 18% 40%

Matthew A. Hammer

Self-Adjusting Machines

Stage 3, Machine model: Multiple targets

1. Stable references Programmer uses type qualifier

2. Selective DPS Compiler analysis of update points

3. Write-once memory Programmer uses type qualifier

4. Trace node sharing Compiler analysis coalesces traced ops

Matthew A. Hammer Self-Adjusting Machines 35

Stage 3, Machine model: Average update times

Update Time (norm. by no—opt)

1.0 T T

exptrees
map

Matthew A. Hammer

reverse
filter
sum

Self-Adjusting Machines

minimum

quicksort

mergesort

all-opt

no-seldps
no-share
no-stable
no—owcr

=)
=
~
2

=)

T

diameter

distance
mean

Stage 3, Machine model: Maximum live space

1.0 T T T T T T T T T T T T
H all-opt
[] no-seldps
0.8 B no-share | "7 7
[l no-stable
[] no-owcer

0.6 M e e

o4 AWM ARt

0.2

Max Live Space (norm by no-opt)

0.0

exptrees
map
reverse
filter
sum
minimum
quicksort
mergesort
quickhull
diameter
distance
mean

Matthew A. Hammer Self-Adjusting Machines 37

Stage 3, Machine model: Previous approaches

Quicksort From-Scratch Quicksort Ave Update
T 1.200
1.000
0.800
0.600
0.400
0.200

QIS 3 -~ 0.000
0 25K 50K 75K 100K 0 25K 50K 75K 100K

Input Size Input Size

AML

Time (s)
Time (ms)

» Delta-ML: order of magnitude slower

CEAL (stage 2) slightly faster than all-opt (stage 3)
CEAL uses non-orthogonal allocation primitive

v

Matthew A. Hammer Self-Adjusting Machines 38

Thesis statement

By making their resources explicit, self-adjusting machines give an
operational account of self-adjusting computation suitable for
interoperation with low-level languages;

via practical compilation and run-time techniques, these machines
are programmable, sound and efficient.

Contributions

Surface language, C-based Programmable

Abstact machine model Sound

Compiler Realizes static aspects
Run-time library Realizes dynamic aspects

Empirical evaluation Efficient

A\

	Introduction
	Problem statement
	Thesis & contributions

	Example: overview
	Abstract model
	Concrete implementation
	Evaluation
	Example
	Evolution of our approach
	Stage 1: Run-time library
	Stage 2: First compiler
	Stage 3: Self-adjusting machine model

	Conclusion

