# An Improved LP-based Approximation for Steiner Tree

J. Byrka, F. Grandoni, T. Rothvoß, L. Sanità

Institute of Mathematics EPFL, Lausanne

Grenoble, 10.12.09





## Steiner Tree

#### Given:

- undirected, metric graph G = (V, E)
- ▶ terminals  $R \subseteq V$

## Find:

 $opt := \min\{c(T) \mid T \text{ spans } R\}$ 



### Steiner Tree

#### Given:

- undirected, metric graph G = (V, E)
- $ightharpoonup \cos c : E \to \mathbb{Q}_+$
- ightharpoonup terminals  $R \subseteq V$

#### Find:

$$opt := \min\{c(T) \mid T \text{ spans } R\}$$



#### Known results:

#### Hardness:

- $\blacktriangleright$  NP-hard even if edge costs  $\in \{1,2\}$  [Bern & Plassmann '89]
- ▶ no  $< \frac{96}{95}$ -apx unless **NP** = **P** [Chlebik & Chlebikova '02]

## Known results:

#### Hardness:

- ▶ NP-hard even if edge costs  $\in \{1, 2\}$  [Bern & Plassmann '89]
- ▶ no  $< \frac{96}{95}$ -apx unless **NP** = **P** [Chlebik & Chlebikova '02]

#### **Approximations:**

- ▶ 2-apx (minimum spanning tree heuristic)
- ▶ 1.83-apx [Zelikovsky '93]
- ▶ 1.667-apx [Prömel & Steger '97]
- ▶ 1.644-apx [Karpinski & Zelikovsky '97]
- ▶ 1.598-apx [Hougardy & Prömel '99]
- ▶ 1.55-apx [Robins & Zelikovsky '00]
- ▶ PTAS for  $\mathbb{R}^d$  (d fixed) [Arora '97]
- ▶ PTAS for planar graphs [Borradaile et al. '07]

# Known results:

#### Hardness:

- ▶ **NP**-hard even if edge costs  $\in \{1, 2\}$  [Bern & Plassmann '89]
- ▶ no  $< \frac{96}{95}$ -apx unless **NP** = **P** [Chlebik & Chlebikova '02]

#### **Approximations:**

- ▶ 2-apx (minimum spanning tree heuristic)
- ▶ 1.83-apx [Zelikovsky '93]
- ▶ 1.667-apx [Prömel & Steger '97]
- ▶ 1.644-apx [Karpinski & Zelikovsky '97]
- ▶ 1.598-apx [Hougardy & Prömel '99]
- ▶ 1.55-apx [Robins & Zelikovsky '00]
- ▶ PTAS for  $\mathbb{R}^d$  (d fixed) [Arora '97]
- ▶ PTAS for planar graphs [Borradaile et al. '07]

#### Integrality gap:

 $\blacktriangleright$  Integrality gap:  $\leq 2$  [Goemans & Williamson '95, Jain '98]

#### Our results:

#### Theorem

There is a randomized polynomial time  $(1.5 + \varepsilon)$ -approximation, for any  $\varepsilon > 0$ .

► Can be improved to 1.39 (more involving)

### Our results:

#### Theorem

There is a randomized polynomial time  $(1.5 + \varepsilon)$ -approximation, for any  $\varepsilon > 0$ .

► Can be improved to 1.39 (more involving)

#### Theorem

There is an LP-relaxation with an integrality gap of at most 1.7.

► Can be improved to 1.55 (more involving)



▶ Pick a **root**  $r \in R$ 



- ▶ Pick a **root**  $r \in R$
- ▶ Bi-direct edges



- ▶ Pick a **root**  $r \in R$
- ▶ Bi-direct edges

$$\min \sum_{e \in E} c(e)z_e \qquad \text{(BCR)}$$

$$\sum_{e \in \delta(S)} z_e \ge 1 \qquad \forall S \subseteq V \setminus \{r\} : S \cap R \neq \emptyset$$

$$z_e \ge 0 \qquad \forall e \in E.$$



- ▶ Pick a **root**  $r \in R$
- ▶ Bi-direct edges

$$\min \sum_{e \in E} c(e)z_e \qquad \text{(BCR)}$$

$$\sum_{e \in \delta(S)} z_e \ge 1 \qquad \forall S \subseteq V \setminus \{r\} : S \cap R \ne \emptyset$$

$$z_e \ge 0 \qquad \forall e \in E.$$

- ▶ Pick a **root**  $r \in R$
- ▶ Bi-direct edges

$$\min \sum_{e \in E} c(e) z_e \qquad \text{(BCR)}$$

$$\sum_{e \in \delta(S)} z_e \ge 1 \qquad \forall S \subseteq V \setminus \{r\} : S \cap R \ne \emptyset$$

$$z_e \ge 0 \qquad \forall e \in E.$$

▶ Integrality gap  $\in [8/7, 2]$ 

- ▶ Pick a **root**  $r \in R$
- ▶ Bi-direct edges

$$\min \sum_{e \in E} c(e)z_e \qquad \text{(BCR)}$$

$$\sum_{e \in \delta(S)} z_e \ge 1 \qquad \forall S \subseteq V \setminus \{r\} : S \cap R \neq \emptyset$$

$$z_e \ge 0 \qquad \forall e \in E.$$

- ▶ Integrality gap  $\in [8/7, 2]$
- ▶ Integrality gap  $\leq 4/3$  for quasi-bipartite graphs

- ▶ Pick a **root**  $r \in R$
- ▶ Bi-direct edges

$$\min \sum_{e \in E} c(e)z_e \qquad \text{(BCR)}$$

$$\sum_{e \in \delta(S)} z_e \ge 1 \qquad \forall S \subseteq V \setminus \{r\} : S \cap R \neq \emptyset$$

$$z_e \ge 0 \qquad \forall e \in E.$$

- ▶ Integrality gap  $\in [8/7, 2]$
- ▶ Integrality gap  $\leq 4/3$  for quasi-bipartite graphs

# Theorem (Edmonds '67)

$$R = V \Rightarrow BCR integral$$







▶ component k-restricted:  $\leq k$  terminals



- ▶ component k-restricted:  $\leq k$  terminals
- ▶ k-restricted Steiner tree:

$$opt_k = \min \{ c(T) \mid T \text{ spans } R \& T \text{ is } k\text{-restricted} \}$$



- ▶ component k-restricted:  $\leq k$  terminals
- ▶ k-restricted Steiner tree:

$$opt_k = \min \left\{ c(T) \mid T \text{ spans } R \& T \text{ is } k\text{-restricted} \right\}$$

Theorem (Borchers & Du '97)

$$opt_k \le \left(1 + \frac{1}{\lfloor \log_2 k \rfloor}\right) \cdot opt$$











Compute list  $C_1, \ldots, C_h$  of potential k-restricted components



- ▶ Compute list  $C_1, ..., C_h$  of potential k-restricted components
- ightharpoonup h = poly(n) (for fixed k)

$$opt_k^f := \min \sum_j c(C_j) x_j \qquad (k\text{-DCR})$$
 
$$\sum_{\substack{j : \text{sources}(C_j) \cap S \neq \emptyset, \\ \text{sink}(C_j) \notin S}} x_j \geq 1 \quad \forall \emptyset \subset S \subseteq R \setminus \{r\}$$



$$opt_k^f := \min \sum_j c(C_j) x_j \qquad (k\text{-DCR})$$
 
$$\sum_{\substack{j : \text{sources}(C_j) \cap S \neq \emptyset, \\ \text{sink}(C_j) \notin S}} x_j \geq 1 \quad \forall \emptyset \subset S \subseteq R \setminus \{r\}$$



$$opt_k^f := \min \sum_j c(C_j) x_j \qquad (k\text{-DCR})$$
 
$$\sum_{\substack{j : \text{sources}(C_j) \cap S \neq \emptyset, \\ \text{sink}(C_j) \notin S}} x_j \geq 1 \quad \forall \emptyset \subset S \subseteq R \setminus \{r\}$$



$$opt_k^f := \min \sum_j c(C_j) x_j \qquad (k\text{-DCR})$$
 
$$\sum_{\substack{j : \text{sources}(C_j) \cap S \neq \emptyset, \\ \text{sink}(C_j) \notin S}} x_j \geq 1 \quad \forall \emptyset \subset S \subseteq R \setminus \{r\}$$



#### Lemma

k-DCR can be solved in poly-time using the Ellipsoid method.

# The algorithm

- (1) FOR  $t = 1, ..., \mu$  DO
  - (2) Solve k-DCR  $\to x^t$
  - (3) Sample a component  $C^t$  from  $x^t$  and contract it.
- (4) Compute a terminal spanning tree  $T^{\mu}$  in the remaining instance
- (5) Output  $T^{\mu} \cup \bigcup_{t=1}^{\mu} C^t$ .

## The algorithm

- (1) FOR  $t = 1, ..., \mu$  DO
  - (2) Solve k-DCR → x<sup>t</sup>
    (3) Sample a component C<sup>t</sup> from x<sup>t</sup> and contract it.
- (4) Compute a terminal spanning tree  $T^{\mu}$  in the remaining instance
- (5) Output  $T^{\mu} \cup \bigcup_{t=1}^{\mu} C^t$ .
  - ▶ Sampling  $C^t \in \{C_1, \dots, C_h\}$ : Choose  $C_j$  with prob  $\frac{x_j^t}{\sum_j x_j^t}$

## The algorithm

- (1) FOR  $t = 1, ..., \mu$  DO
  - (2) Solve k-DCR → x<sup>t</sup>
    (3) Sample a component C<sup>t</sup> from x<sup>t</sup> and contract it.
- (4) Compute a terminal spanning tree  $T^{\mu}$  in the remaining instance
- (5) Output  $T^{\mu} \cup \bigcup_{t=1}^{\mu} C^t$ .
  - ▶ Sampling  $C^t \in \{C_1, \dots, C_h\}$ : Choose  $C_j$  with prob  $\frac{x_j^t}{\sum_j x_j^t}$
  - W.l.o.g.  $\Sigma := \sum_j x_j^t \ \forall t$

# Bridges

lacktriangle Let T terminal spanning tree



# **Bridges**

ightharpoonup Let T terminal spanning tree, C some component used in the fractional solution



ightharpoonup Let T terminal spanning tree, C some component used in the fractional solution



ightharpoonup Let T terminal spanning tree, C some component used in the fractional solution



ightharpoonup Let T terminal spanning tree, C some component used in the fractional solution



 $br_T(C) = \max\{c(B) \mid B \subseteq T, \ T \setminus B \cup C \text{ is connected}\}\$ 

▶ Let T terminal spanning tree, C some component used in the fractional solution



 $br_T(C) = \max\{c(B) \mid B \subseteq T, \ T \setminus B \cup C \text{ is connected}\}\$ 

▶ Edges  $Br_T(C) := B$  attaining this max. are called **bridges** 

## Lemma (Bridge Lemma)

$$\sum_{j} x_j \cdot br_T(C_j) \ge c(T)$$



## Lemma (Bridge Lemma)

For T terminal spanning tree, x k-DCR solution:

$$\sum_{j} x_{j} \cdot br_{T}(C_{j}) \ge c(T)$$

ightharpoonup Consider component  $C_j$ 



## Lemma (Bridge Lemma)

For T terminal spanning tree, x k-DCR solution:

$$\sum_{j} x_{j} \cdot br_{T}(C_{j}) \ge c(T)$$

ightharpoonup Consider component  $C_j$ 



## Lemma (Bridge Lemma)

$$\sum_{j} x_j \cdot br_T(C_j) \ge c(T)$$

- ightharpoonup Consider component  $C_j$
- ► Consider the forest  $T \setminus Br_T(C_j)$ : Each connected component contains exactly one terminal in  $R \cap C_j$



## Lemma (Bridge Lemma)

$$\sum_{j} x_j \cdot br_T(C_j) \ge c(T)$$

- ightharpoonup Consider component  $C_j$
- Consider the forest  $T \setminus Br_T(C_j)$ : Each connected component contains exactly one terminal in  $R \cap C_j$
- ▶ Define graph  $Y_j$  on  $R \cap C_j$ : For every bridge  $b_i$  add edge  $e_i$  to  $Y_j$  with cost  $c(e_i) := c(b_i)$



## Lemma (Bridge Lemma)

$$\sum_{j} x_j \cdot br_T(C_j) \ge c(T)$$

- ightharpoonup Consider component  $C_j$
- ► Consider the forest  $T \setminus Br_T(C_j)$ : Each connected component contains exactly one terminal in  $R \cap C_j$
- ▶ Define graph  $Y_j$  on  $R \cap C_j$ : For every bridge  $b_i$  add edge  $e_i$  to  $Y_j$  with cost  $c(e_i) := c(b_i)$



## Lemma (Bridge Lemma)

$$\sum_{j} x_j \cdot br_T(C_j) \ge c(T)$$

- ightharpoonup Consider component  $C_j$
- ► Consider the forest  $T \setminus Br_T(C_j)$ : Each connected component contains exactly one terminal in  $R \cap C_j$
- ▶ Define graph  $Y_j$  on  $R \cap C_j$ : For every bridge  $b_i$  add edge  $e_i$  to  $Y_j$  with cost  $c(e_i) := c(b_i)$



## Lemma (Bridge Lemma)

$$\sum_{j} x_j \cdot br_T(C_j) \ge c(T)$$

- ightharpoonup Consider component  $C_j$
- ► Consider the forest  $T \setminus Br_T(C_j)$ : Each connected component contains exactly one terminal in  $R \cap C_j$
- ▶ Define graph  $Y_j$  on  $R \cap C_j$ : For every bridge  $b_i$  add edge  $e_i$  to  $Y_j$  with cost  $c(e_i) := c(b_i)$



## Lemma (Bridge Lemma)

$$\sum_{j} x_j \cdot br_T(C_j) \ge c(T)$$

- ightharpoonup Consider component  $C_j$
- ► Consider the forest  $T \setminus Br_T(C_j)$ : Each connected component contains exactly one terminal in  $R \cap C_j$
- ▶ Define graph  $Y_j$  on  $R \cap C_j$ : For every bridge  $b_i$  add edge  $e_i$  to  $Y_j$  with cost  $c(e_i) := c(b_i)$
- ▶  $Y_j$  is a spanning tree on  $R \cap C_j$  with  $br_T(C_j) = c(Y_j)$



## Lemma (Bridge Lemma)

$$\sum_{j} x_j \cdot br_T(C_j) \ge c(T)$$

- ightharpoonup Consider component  $C_j$
- ► Consider the forest  $T \setminus Br_T(C_j)$ : Each connected component contains exactly one terminal in  $R \cap C_j$
- ▶ Define graph  $Y_j$  on  $R \cap C_j$ : For every bridge  $b_i$  add edge  $e_i$  to  $Y_j$  with cost  $c(e_i) := c(b_i)$



- ▶  $Y_j$  is a spanning tree on  $R \cap C_j$  with  $br_T(C_j) = c(Y_j)$
- ▶ direct  $Y_j$  towards  $sink(C_j)$ , G' = (R, E') union of  $Y_j$ 's

### Lemma (Bridge Lemma)

$$\sum_{j} x_j \cdot br_T(C_j) \ge c(T)$$

- ightharpoonup Consider component  $C_j$
- ► Consider the forest  $T \setminus Br_T(C_j)$ : Each connected component contains exactly one terminal in  $R \cap C_j$
- ▶ Define graph  $Y_j$  on  $R \cap C_j$ : For every bridge  $b_i$  add edge  $e_i$  to  $Y_j$  with cost  $c(e_i) := c(b_i)$



- ▶  $Y_i$  is a spanning tree on  $R \cap C_i$  with  $br_T(C_i) = c(Y_i)$
- ▶ direct  $Y_j$  towards  $sink(C_j)$ , G' = (R, E') union of  $Y_j$ 's
- ▶  $\forall j$ : install  $x_j$  cap. on  $Y_j \to \text{cap.}$  reservation  $y: E' \to \mathbb{Q}_+$

 $\triangleright$  y is feasible solution for (BCR)



- $\triangleright$  y is feasible solution for (BCR)
- ▶  $\exists$  spanning tree F in G':  $c(F) \leq c(y)$  (by Edmonds Thm.)



- $\triangleright$  y is feasible solution for (BCR)
- ▶  $\exists$  spanning tree F in G':  $c(F) \leq c(y)$  (by Edmonds Thm.)
- ▶  $c(T) \le c(F)$  (Matroid exchange property)



- $\triangleright$  y is feasible solution for (BCR)
- ▶  $\exists$  spanning tree F in G':  $c(F) \leq c(y)$  (by Edmonds Thm.)
- ▶  $c(T) \le c(F)$  (Matroid exchange property)



- $\triangleright$  y is feasible solution for (BCR)
- ▶  $\exists$  spanning tree F in G':  $c(F) \leq c(y)$  (by Edmonds Thm.)
- ▶  $c(T) \le c(F)$  (Matroid exchange property)



- ightharpoonup y is feasible solution for (BCR)
- ▶  $\exists$  spanning tree F in G':  $c(F) \leq c(y)$  (by Edmonds Thm.)
- ▶  $c(T) \le c(F)$  (Matroid exchange property)
- ▶ Finally

$$\sum_{j} x_{j} br_{T}(C_{j})$$



- $\triangleright$  y is feasible solution for (BCR)
- ▶  $\exists$  spanning tree F in G':  $c(F) \leq c(y)$  (by Edmonds Thm.)
- ▶  $c(T) \le c(F)$  (Matroid exchange property)
- ▶ Finally

$$\sum_{j} x_{j} br_{T}(C_{j}) = \sum_{j} x_{j} \cdot c(Y_{j})$$



- $\triangleright$  y is feasible solution for (BCR)
- ▶  $\exists$  spanning tree F in G':  $c(F) \leq c(y)$  (by Edmonds Thm.)
- ▶  $c(T) \le c(F)$  (Matroid exchange property)
- ▶ Finally

$$\sum_{j} x_{j} br_{T}(C_{j}) = \sum_{j} x_{j} \cdot c(Y_{j}) = c(y)$$



- $\triangleright$  y is feasible solution for (BCR)
- ▶  $\exists$  spanning tree F in G':  $c(F) \leq c(y)$  (by Edmonds Thm.)
- ▶  $c(T) \le c(F)$  (Matroid exchange property)
- ▶ Finally

$$\sum_{j} x_{j} br_{T}(C_{j}) = \sum_{j} x_{j} \cdot c(Y_{j}) = c(y) \ge c(F)$$



- $\triangleright$  y is feasible solution for (BCR)
- ▶  $\exists$  spanning tree F in G':  $c(F) \leq c(y)$  (by Edmonds Thm.)
- ▶  $c(T) \le c(F)$  (Matroid exchange property)
- ▶ Finally

$$\sum_{j} x_{j} br_{T}(C_{j}) = \sum_{j} x_{j} \cdot c(Y_{j}) = c(y) \ge c(F) \ge c(T). \quad \Box$$



$$E[c(T^{\mu})] \le 2 \cdot \left(1 - \frac{1}{\Sigma}\right)^{\mu} \cdot opt_k^f.$$

#### Lemma

$$E[c(T^{\mu})] \le 2 \cdot \left(1 - \frac{1}{\Sigma}\right)^{\mu} \cdot opt_k^f.$$

 $\blacktriangleright$  Let  $T^t$  be the MST at the end of iteration t

$$E[c(T^{\mu})] \le 2 \cdot \left(1 - \frac{1}{\Sigma}\right)^{\mu} \cdot opt_k^f.$$

- $\blacktriangleright$  Let  $T^t$  be the MST at the end of iteration t
- $c(T_0) \le 2 \cdot opt_k^f$

$$E[c(T^{\mu})] \leq 2 \cdot \left(1 - \frac{1}{\Sigma}\right)^{\mu} \cdot opt_k^f.$$

- $\blacktriangleright$  Let  $T^t$  be the MST at the end of iteration t
- $c(T_0) \le 2 \cdot opt_k^f$
- ▶ In any iteration

$$E[c(T^t)] \le c(T^{t-1}) - E[br_{T^{t-1}}(C^t)]$$

$$E[c(T^{\mu})] \le 2 \cdot \left(1 - \frac{1}{\Sigma}\right)^{\mu} \cdot opt_k^f.$$

- $\blacktriangleright$  Let  $T^t$  be the MST at the end of iteration t
- $ightharpoonup c(T_0) \leq 2 \cdot opt_k^f$
- ▶ In any iteration

$$E[c(T^{t})] \leq c(T^{t-1}) - E[br_{T^{t-1}}(C^{t})]$$

$$= c(T^{t-1}) - \frac{1}{\Sigma} \sum_{j} x_{j}^{t} \cdot br_{T^{t-1}}(C_{j})$$

$$E[c(T^{\mu})] \leq 2 \cdot \left(1 - \frac{1}{\Sigma}\right)^{\mu} \cdot opt_k^f.$$

- $\blacktriangleright$  Let  $T^t$  be the MST at the end of iteration t
- $c(T_0) \leq 2 \cdot opt_k^f$
- ▶ In any iteration

$$E[c(T^{t})] \leq c(T^{t-1}) - E[br_{T^{t-1}}(C^{t})]$$

$$= c(T^{t-1}) - \frac{1}{\Sigma} \underbrace{\sum_{j} x_{j}^{t} \cdot br_{T^{t-1}}(C_{j})}_{>c(T^{t-1})}$$

$$E[c(T^{\mu})] \leq 2 \cdot \left(1 - \frac{1}{\Sigma}\right)^{\mu} \cdot opt_k^f.$$

- $\blacktriangleright$  Let  $T^t$  be the MST at the end of iteration t
- $ightharpoonup c(T_0) \leq 2 \cdot opt_k^f$
- ▶ In any iteration

$$\begin{split} E[c(T^{t})] & \leq c(T^{t-1}) - E[br_{T^{t-1}}(C^{t})] \\ & = c(T^{t-1}) - \frac{1}{\Sigma} \underbrace{\sum_{j} x_{j}^{t} \cdot br_{T^{t-1}}(C_{j})}_{\geq c(T^{t-1})} \\ & \leq \left(1 - \frac{1}{\Sigma}\right) \cdot c(T^{t-1}). \quad \Box \end{split}$$

#### Theorem

 $cost \leq 1.7 \cdot opt_k^f$ 

#### Theorem

 $cost \leq 1.7 \cdot opt_k^f$ 

▶ Choose  $\mu := \delta \Sigma$  (=# of iterations)

#### Theorem

 $cost \le 1.7 \cdot opt_k^f$ 

- ▶ Choose  $\mu := \delta \Sigma$  (=# of iterations)
- ► Cost of sampled components:

$$E\Big[\sum_{k=1}^{\mu}c(C^t)\Big] \leq \delta\Sigma \cdot \frac{1}{\Sigma}opt_k^f = \delta \cdot opt_k^f$$

#### Theorem

 $cost \le 1.7 \cdot opt_k^f$ 

- Choose  $\mu := \delta \Sigma$  (=# of iterations)
- ▶ Cost of sampled components:

$$E\Big[\sum_{t=1}^{\mu} c(C^t)\Big] \leq \delta \Sigma \cdot \frac{1}{\Sigma} opt_k^f = \delta \cdot opt_k^f$$

► Cost of MST

$$E[c(T^{\mu})] \leq \left(1 - \frac{1}{\Sigma}\right)^{\delta \Sigma} \cdot 2opt_k^f \leq 2e^{-\delta} \cdot opt_k^f$$

## A first bound

#### Theorem

 $cost \le 1.7 \cdot opt_k^f$ 

- Choose  $\mu := \delta \Sigma$  (=# of iterations)
- ► Cost of sampled components:

$$E\left[\sum_{t=1}^{\mu} c(C^t)\right] \le \delta \Sigma \cdot \frac{1}{\Sigma} opt_k^f = \delta \cdot opt_k^f$$

► Cost of MST

$$E[c(T^{\mu})] \le \left(1 - \frac{1}{\Sigma}\right)^{\delta \Sigma} \cdot 2opt_k^f \le 2e^{-\delta} \cdot opt_k^f$$

▶ Total cost

$$(2e^{-\delta} + \delta) \cdot opt_k^f \stackrel{\delta := \ln(2) \approx 0.69}{=} \underbrace{(1 + \ln(2))}_{17} \cdot opt_k^f \quad \Box$$

#### Theorem

$$E[c(T')] \le \left(1 - \frac{1}{2\Sigma}\right) \cdot c(T)$$



#### Theorem

Let T, T' be optimal Steiner trees before and after sampling and contracting a component. Then

$$E[c(T')] \le \left(1 - \frac{1}{2\Sigma}\right) \cdot c(T)$$

► Consider a component  $Z_i$  of T. W.l.o.g.  $Z_i$  is binary tree



#### Theorem

$$E[c(T')] \le \left(1 - \frac{1}{2\Sigma}\right) \cdot c(T)$$

- ▶ Consider a component  $Z_i$  of T. W.l.o.g.  $Z_i$  is binary tree
- ► From each Steiner node: Mark the costlier edge to a child



#### Theorem

$$E[c(T')] \le \left(1 - \frac{1}{2\Sigma}\right) \cdot c(T)$$

- ▶ Consider a component  $Z_i$  of T. W.l.o.g.  $Z_i$  is binary tree
- ► From each Steiner node: Mark the costlier edge to a child
- ► Construct  $Y_i$  with  $uv \in Y_i \Leftrightarrow$  one marked edge on u-v path



#### Theorem

$$E[c(T')] \le \left(1 - \frac{1}{2\Sigma}\right) \cdot c(T)$$

- ▶ Consider a component  $Z_i$  of T. W.l.o.g.  $Z_i$  is binary tree
- ► From each Steiner node: Mark the costlier edge to a child
- ► Construct  $Y_i$  with  $uv \in Y_i \Leftrightarrow$  one marked edge on u-v path
- $ightharpoonup c(uv) := c(\text{marked edge in } Z_i)$



#### Theorem

$$E[c(T')] \le \left(1 - \frac{1}{2\Sigma}\right) \cdot c(T)$$

- ▶ Consider a component  $Z_i$  of T. W.l.o.g.  $Z_i$  is binary tree
- ► From each Steiner node: Mark the costlier edge to a child
- ► Construct  $Y_i$  with  $uv \in Y_i \Leftrightarrow$  one marked edge on u-v path
- $ightharpoonup c(uv) := c(\text{marked edge in } Z_i)$
- $Y := \bigcup_i Y_i, \quad c(Y) \ge \frac{1}{2}c(T)$



#### Theorem

$$E[c(T')] \le \left(1 - \frac{1}{2\Sigma}\right) \cdot c(T)$$

- ▶ Consider a component  $Z_i$  of T. W.l.o.g.  $Z_i$  is binary tree
- ► From each Steiner node: Mark the costlier edge to a child
- ► Construct  $Y_i$  with  $uv \in Y_i \Leftrightarrow$  one marked edge on u-v path
- $ightharpoonup c(uv) := c(\text{marked edge in } Z_i)$
- $Y := \bigcup_i Y_i, \quad c(Y) \ge \frac{1}{2}c(T)$
- $\blacktriangleright br_T(C) \ge br_Y(C)$



#### Theorem

$$E[c(T')] \le \left(1 - \frac{1}{2\Sigma}\right) \cdot c(T)$$

- $c(Y) \ge \frac{1}{2}c(T)$
- $br_T(C) \ge br_Y(C)$

#### Theorem

Let T, T' be optimal Steiner trees before and after sampling and contracting a component. Then

$$E[c(T')] \le \left(1 - \frac{1}{2\Sigma}\right) \cdot c(T)$$

- $c(Y) \ge \frac{1}{2}c(T)$
- $br_T(C) \ge br_Y(C)$

 $E[br_T(C)]$ 

#### Theorem

$$E[c(T')] \le \left(1 - \frac{1}{2\Sigma}\right) \cdot c(T)$$

- $c(Y) \ge \frac{1}{2}c(T)$
- $ightharpoonup br_T(C) \geq br_Y(C)$

$$E[br_T(C)] \ge E[br_Y(C)]$$

#### Theorem

$$E[c(T')] \le \left(1 - \frac{1}{2\Sigma}\right) \cdot c(T)$$

- $ightharpoonup c(Y) \geq \frac{1}{2}c(T)$
- $\blacktriangleright br_T(C) \ge br_Y(C)$

$$E[br_T(C)] \ge E[br_Y(C)] = \frac{1}{\Sigma} \cdot \underbrace{\sum_j x_j br_Y(C_j)}_{>c(Y) \text{ by Bridge Lem.}}$$

#### Theorem

$$E[c(T')] \le \left(1 - \frac{1}{2\Sigma}\right) \cdot c(T)$$

- $ightharpoonup c(Y) \geq \frac{1}{2}c(T)$
- $\blacktriangleright br_T(C) \ge br_Y(C)$

$$E[br_T(C)] \ge E[br_Y(C)] = \frac{1}{\Sigma} \cdot \underbrace{\sum_j x_j br_Y(C_j)}_{>c(Y) \text{ by Bridge Lem.}} \ge \frac{1}{\Sigma} c(Y)$$

#### Theorem

Let T, T' be optimal Steiner trees before and after sampling and contracting a component. Then

$$E[c(T')] \le \left(1 - \frac{1}{2\Sigma}\right) \cdot c(T)$$

- $ightharpoonup c(Y) \geq \frac{1}{2}c(T)$
- $\blacktriangleright br_T(C) > br_Y(C)$

$$E[br_T(C)] \ge E[br_Y(C)] = \frac{1}{\Sigma} \cdot \sum_j x_j br_Y(C_j) \ge \frac{1}{\Sigma} c(Y) \ge \frac{1}{2\Sigma} c(T).$$

>c(Y) by Bridge Lem.

### A better bound



### A better bound



### A better bound



### Theorem

For  $\mu := \ln(4) \cdot \Sigma$  one has:  $cost \leq \frac{3}{2}opt_k$ .

## An even better bound



### An even better bound



## Theorem

For  $\mu := \infty$  one has:  $cost \leq 1.39 \cdot opt_k$ 

▶ Bound is in terms of  $opt_k$ . Does it also hold with  $opt_k^f$ ?

- ▶ Bound is in terms of  $opt_k$ . Does it also hold with  $opt_k^f$ ?
- ► Can the algorithm be derandomized?

- ▶ Bound is in terms of  $opt_k$ . Does it also hold with  $opt_k^f$ ?
- ▶ Can the algorithm be derandomized?
- ▶ Possible solution: Show that  $opt_k^f$  is getting cheaper...

- ▶ Bound is in terms of  $opt_k$ . Does it also hold with  $opt_k^f$ ?
- ▶ Can the algorithm be derandomized?
- ▶ Possible solution: Show that  $opt_k^f$  is getting cheaper...
- ▶ Applications to generalizations like
  - ► PRICE COLLECTING STEINER TREE
  - ► SINGLE-SINK RENT-OR-BUY

- ▶ Bound is in terms of  $opt_k$ . Does it also hold with  $opt_k^f$ ?
- ▶ Can the algorithm be derandomized?
- ▶ Possible solution: Show that  $opt_k^f$  is getting cheaper...
- ▶ Applications to generalizations like
  - ▶ PRICE COLLECTING STEINER TREE
  - ► SINGLE-SINK RENT-OR-BUY

Thanks for your attention