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» Integrality gap: < 2 [Goemans & Williamson ’95, Jain 98]
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Theorem
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There is an LP-relaxation with an integrality gap of at most 1.7.

Theorem J

» Can be improved to 1.55 (more involving)
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Bi-directed cut relaxation

» Pick aroot r € R
» Bi-direct edges

min Z c(e)ze (BCR) root r

eck 8212
ZZGZI VSQV\{T}SHR#@ ./. z. /

ecd(S
2e > 0 Ve € E.

» Integrality gap € [8/7,2]
» Integrality gap < 4/3 for quasi-bipartite graphs

Theorem (Edmonds ’67)
R =V = BCR integral ’
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» k-restricted Steiner tree:

opty, = min {c(T) | T spans R & T is k—restricted}

Theorem (Borchers & Du "97)

1
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sink(C) sources(C')

» Compute list C, ..., C} of potential k-restricted
components

» h = poly(n) (for fixed k)
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Directed component cut relaxation

0pt£ = minz c(Cj)z; (k-DCR)

> zj > 1 YDCSCR\{r}
Jj = sources(C;) NS # 0,
sink(C;) ¢ S

z; > 0 Vj=1,...,h

Lemma

k-DCR can be solved in
poly-time using the Ellipsoid
method.
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The algorithm

(1) FOR ¢t =1,...,11 DO
(2) Solve k-DCR — zt
(3) Sample a component C* from x! and contract it.
(4) Compute a terminal spanning tree 7" in the remaining
instance
(5) Output T U Jj_, C".

t
x .

» Sampling C* € {C4,...,Cy}: Choose C; with prob —2—

2%

» Wlog X:=3; xﬁ Vit
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Bridges

» Let 7" terminal spanning tree, C' some component used in

the fractional solution

/o—)o—)oc
O O

brr(C) = max{c(B) | BC T, T\BUC is connected}

» Edges Bry(C) := B attaining this max. are called bridges
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Lemma (Bridge Lemma)

For T terminal spanning tree, x k-DCR solution:

Zj zj - brr(Cj) > ¢(T)

» Consider component C}
» Consider the forest T\ Bry(C Y
Each connected component contams
exactly one terminal in RN C} L /
» Define graph Y; on RN C): For
every bridge b; add edge e; to Y
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The Bridge Lemma

Lemma (Bridge Lemma)

For T terminal spanning tree, x k-DCR solution:
S a5 bra(Cy) 2 o)

» Consider component C}
» Consider the forest T\ Bry(C smk
Each connected component contams
exactly one terminal in RN C} L /
» Define graph Y; on RN C): For
every bridge b; add edge e; to Y
with cost c(e;) := ¢(b;)
» Y; is a spanning tree on RN C; with brp(C
» direct Y; towards sink(C}), ¢/ = (1, /') union of YJ S
» Vj:install z; cap. on Yj; — cap. reservation y : E' — Qy
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The Bridge Lemma (2)

» y is feasible solution for (BCR)

» 3 spanning tree F' in G’ : ¢(F) < ¢(y) (by Edmonds Thm.)
» ¢(T) < ¢(F) (Matroid exchange property)

» Finally

ijbrT Zx] c(Y, c(y) > c(F) >c(T). O

/
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A first bound

Theorem

cost < 1.7 - optf;

» Choose p := 0% (=# of iterations)
» Cost of sampled components:

I
E[Zc(C’t)] < 0% - Eopt =4 opt£
t=1

» Cost of MST
165
Bl < (1-5)" - 200t] <2¢77 - optf
» Total cost

2e70 +8) - opt] "2 (1 4 n(2)) - opt] O

<L.7
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Z; is binary tree
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A better bound

/

bound on ¢(MST): 2(1 — 5

bound on opty, : (1 — 5k )# 2 e~/ (2%)

1-% 1.38% 2.5

Theorem

For yu:=1n(4) - X one has: cost < 3opty,.

| = Fiterations
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An even better bound

improved bound on opty, : c—R/E 11

1-X 2-% | = Fiterations

Theorem
For p := oo one has: cost < 1.39 - opty, J
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Thanks for your attention



