An Improved LP-based Approximation
for Steiner Tree

J. Byrka, F. Grandoni, T. Rothvof3, L. Sanita

Institute of Mathematics
EPFL, Lausanne

Grenoble, 10.12.09

@e T

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Steiner Tree

Given:
» undirected, metric graph G = (V, E)
> cost c: B — Q4
> terminals R CV

Find:
opt := min{c(T') | T spans R}

O O O

terminals

Steiner Tree

Given:
» undirected, metric graph G = (V, E)
> cost c: B — Q4
> terminals R CV
Find:
opt := min{c(T) | T spans R}

NoL IS
VN T

Steiner node

terminals

Known results:

Hardness:
» NP-hard even if edge costs € {1,2} [Bern & Plassmann '89]
» no < 22-apx unless NP = P [Chlebik & Chlebikova '02]

Known results:

Hardness:
» NP-hard even if edge costs € {1,2} [Bern & Plassmann '89]
» no < 22-apx unless NP = P [Chlebik & Chlebikova '02]
Approximations:
» 2-apx (minimum spanning tree heuristic)
1.83-apx [Zelikovsky 93]
1.667-apx [Promel & Steger ’97]
1.644-apx [Karpinski & Zelikovsky '97]
1.598-apx [Hougardy & Promel ’99]
1.55-apx [Robins & Zelikovsky ’00]
PTAS for R? (d fixed) [Arora '97]
PTAS for planar graphs [Borradaile et al. '07]

vV VvV vV VvV Vv Y

Known results:

Hardness:
» NP-hard even if edge costs € {1,2} [Bern & Plassmann '89]
» no < 22-apx unless NP = P [Chlebik & Chlebikova '02]
Approximations:
» 2-apx (minimum spanning tree heuristic)
1.83-apx [Zelikovsky 93]
1.667-apx [Promel & Steger ’97]
1.644-apx [Karpinski & Zelikovsky '97]
1.598-apx [Hougardy & Promel ’99]
1.55-apx [Robins & Zelikovsky ’00]
PTAS for R? (d fixed) [Arora '97]
» PTAS for planar graphs [Borradaile et al. ’07]
Integrality gap:

vV V. v v Vv .Yy

» Integrality gap: < 2 [Goemans & Williamson ’95, Jain 98]

Our results:

Theorem

There is a randomized polynomial time
(1.5 + ¢)-approximation, for any £ > 0.

» Can be improved to 1.39 (more involving)

Our results:

Theorem

There is a randomized polynomial time
(1.5 + ¢)-approximation, for any £ > 0.

» Can be improved to 1.39 (more involving)

There is an LP-relaxation with an integrality gap of at most 1.7.

Theorem J

» Can be improved to 1.55 (more involving)

Bi-directed cut relaxation

Bi-directed cut relaxation

» Pick aroot r € R

root r

Bi-directed cut relaxation

» Pick aroot r € R
» Bi-direct edges

root r

Bi-directed cut relaxation

» Pick aroot r € R
» Bi-direct edges

min Z c(e)ze (BCR) root
eckl
ZZGZI VSQV\{T}SHR#@ ° ® ®
ecd(S

zeZO Ve € E.

Bi-directed cut relaxation

» Pick aroot r € R
» Bi-direct edges

minz c(e)ze (BCR)
eck
Zzezl VSCV\{r}:SNR#0
ecd(S
2e > 0 Ve € E.

root r

/

Ze = 1/2

Bi-directed cut relaxation

» Pick aroot r € R
» Bi-direct edges

min Z ce)ze (BCR) root r

eck
Z%Zl VS CV\{r}:SNR# ,/.

Ze =1/2

ecd(S
2e > 0 Ve € E.

» Integrality gap € [8/7,2]

Bi-directed cut relaxation

» Pick aroot r € R
» Bi-direct edges

min Z c(e)ze (BCR) root r

eck 8212
ZZGZI VSQV\{T}SHR#@ ./. Z. /

ecd(S
2e > 0 Ve € E.

» Integrality gap € [8/7,2]
» Integrality gap < 4/3 for quasi-bipartite graphs

Bi-directed cut relaxation

» Pick aroot r € R
» Bi-direct edges

min Z c(e)ze (BCR) root r

eck 8212
ZZGZI VSQV\{T}SHR#@ ./. z. /

ecd(S
2e > 0 Ve € E.

» Integrality gap € [8/7,2]
» Integrality gap < 4/3 for quasi-bipartite graphs

Theorem (Edmonds ’67)
R =V = BCR integral ’

ooooooooo

Components

N

0—a

N

Components

E\ 4-restricted

@o— /:’
\ component
\

|L \:r !
!

\

h_-__f

» component k-restricted: < k terminals

Components

E\ 4-restricted

@o— /:’
\ component
\

|L \:r !
!

\

h_-__f

» component k-restricted: < k terminals

» k-restricted Steiner tree:

opty, = min {C(T) | T spans R & T is k—restricted}

Components

E\ /:’ 4-restricted
E/ \:’\ component
\
1
o

L

» component k-restricted: < k terminals

h_-__f

» k-restricted Steiner tree:

opty, = min {c(T) | T spans R & T is k—restricted}

Theorem (Borchers & Du "97)

1
t. < |1 - opt
0”—(+Llogsz> “

Directing components

Nb
he

< b

Directing components

T

Nl
A

Directing components

Directing components

sink(C) sources(C')

Directing components

N L e/
\I:I
\\

< |

sink(C) sources(C')

» Compute list C, ..., C} of potential k-restricted
components

Directing components

N L e/
\I:I
\\

< |

sink(C) sources(C')

» Compute list C, ..., C} of potential k-restricted
components

» h = poly(n) (for fixed k)

Directed component cut relaxation
opti = mian(Cj)wj (k-DCR)

> zj > 1 YDCSCR\{r}

Jj = sources(C;) NS # 0,
sink(C;) ¢ S

0 Vj=1,...,h

8
<
vV

root 7

<X

Directed component cut relaxation
0pt£ = mian(Cj):ﬂj (k-DCR)
j

> zj > 1 YDCSCR\{r}
Jj = sources(C;) NS # 0,
sink(C;) ¢ S

z; > 0 Vj=1,...,h

root 7

Directed component cut relaxation
0pt£ = mian(Cj)xj (k-DCR)
j

) zj
Jj = sources(C;) NS # 0,
sink(C;) ¢ S

Vv

1 WhcSCR\{r}

z; > 0 Vj=1,...,h

root 7

Directed component cut relaxation

0pt£ = minz c(Cj)z; (k-DCR)

> zj > 1 YDCSCR\{r}
Jj = sources(C;) NS # 0,
sink(C;) ¢ S

z; > 0 Vj=1,...,h

Lemma

k-DCR can be solved in
poly-time using the Ellipsoid
method.

The algorithm

(1) FOR ¢t =1,...,11 DO
(2) Solve k-DCR — zt
(3) Sample a component C* from x! and contract it.

(4) Compute a terminal spanning tree 7" in the remaining
instance

(5) Output T U Jj_, C".

The algorithm

(1) FOR ¢t =1,...,11 DO
(2) Solve k-DCR — zt
(3) Sample a component C* from x! and contract it.

(4) Compute a terminal spanning tree 7" in the remaining
instance

(5) Output T U Jj_, C".

t
x A
» Sampling C* € {C1,...,Ch}: Choose C; with prob —-

t
22

The algorithm

(1) FOR ¢t =1,...,11 DO
(2) Solve k-DCR — zt
(3) Sample a component C* from x! and contract it.
(4) Compute a terminal spanning tree 7" in the remaining
instance
(5) Output T U Jj_, C".

t
x .

» Sampling C* € {C4,...,Cy}: Choose C; with prob —2—

2%

» Wlog X:=3; xﬁ Vit

Bridges

» Let 1" terminal spanning tree

(]

Ml

Bridges

» Let 7" terminal spanning tree, C' some component used in
the fractional solution

.é.é.c

/|

(g
[
C

Bridges

» Let 7" terminal spanning tree, C' some component used in
the fractional solution

/.é.é.c
r 'I/I_I r
wJ J L

Bridges

» Let 7" terminal spanning tree, C' some component used in
the fractional solution

.é.é.c

/|

Bridges

» Let 7" terminal spanning tree, C' some component used in

the fractional solution

/o—)o—)oc
O O

brr(C) = max{c(B) | BC T, T\BUC is connected}

Bridges

» Let 7" terminal spanning tree, C' some component used in

the fractional solution

/o—)o—)oc
O O

brr(C) = max{c(B) | BC T, T\BUC is connected}

» Edges Bry(C) := B attaining this max. are called bridges

The Bridge Lemma

Lemma (Bridge Lemma)

For T terminal spanning tree, x k-DCR solution:

Zj zj - brr(Cj) > ¢(T)

The Bridge Lemma

Lemma (Bridge Lemma)

For T terminal spanning tree, x k-DCR solution:

Zj ;- brp(Cj) > o(T)

» Consider component C} o—>o—>eCj

!

The Bridge Lemma

Lemma (Bridge Lemma)
For T terminal spanning tree, x k-DCR solution:

Zj ;- brp(Cj) > o(T)

» Consider component C} 0—)0—)0

423

The Bridge Lemma

Lemma (Bridge Lemma)

For T terminal spanning tree, x k-DCR solution:

Zj zj - brr(Cj) > ¢(T)

» Consider component C}

» Consider the forest 7'\ Bry(C
Each connected component contams
exactly one terminal in RN C}

-
E

The Bridge Lemma

Lemma (Bridge Lemma)

For T terminal spanning tree, x k-DCR solution:

Zj zj - brr(Cj) > ¢(T)

» Consider component C}

» Consider the forest T\ Bry(C}): Pty
Each connected component contains B B
exactly one terminal in RN C}

» Define graph Y; on RN C): For by
every bridge b; add edge e; to Y

with cost c(e;) := c(b;)

The Bridge Lemma

Lemma (Bridge Lemma)

For T terminal spanning tree, x k-DCR solution:

Zj zj - brr(Cj) > ¢(T)

» Consider component C}

» Consider the forest T\ Bry(Cj): P
Each connected component contains I =
/b

€9

exactly one terminal in RN C}

» Define graph Y; on RN C): For
every bridge b; add edge e; to Y
with cost c(e;) := ¢(b;)

The Bridge Lemma

Lemma (Bridge Lemma)
For T terminal spanning tree, x k-DCR solution:

Zj zj - brr(Cj) > ¢(T)

» Consider component C} (:,y
» Consider the forest 7'\ Bry(C

Each connected component contams B B

exactly one terminal in RN C} I /
» Define graph Y; on RN C): For

every bridge b; add edge e; to Y

with cost c(e;) := ¢(b;)

The Bridge Lemma

Lemma (Bridge Lemma)

For T terminal spanning tree, x k-DCR solution:

Zj zj - brr(Cj) > ¢(T)

» Consider component C}

» Consider the forest T\ Bry(Cj): Py m
Each connected component contains = €4
exactly one terminal in RN C} by

» Define graph Y; on RN C): For

every bridge b; add edge e; to Y
with cost c(e;) := ¢(b;)

The Bridge Lemma

Lemma (Bridge Lemma)

For T terminal spanning tree, x k-DCR solution:
S a5 bra(Cy) 2 o)

» Consider component C} Y
» Consider the forest 7'\ Bry(C

Each connected component contams

exactly one terminal in RN C} L /
» Define graph Y; on RN C): For

every bridge b; add edge e; to Y
with cost c(e;) := ¢(b;)

» Y; is a spanning tree on RN C; with brp(C

The Bridge Lemma

Lemma (Bridge Lemma)

For T terminal spanning tree, x k-DCR solution:

Zj zj - brr(Cj) > ¢(T)

» Consider component C}
» Consider the forest T\ Bry(C Y
Each connected component contams
exactly one terminal in RN C} L /
» Define graph Y; on RN C): For
every bridge b; add edge e; to Y
with cost c(e;) := ¢(b;)
» Y; is a spanning tree on RN C; with brr(C;) = c(Y))
» direct Y; towards sink(C}j), ¢/ = (12, /) union of Y}’s

»\/M

The Bridge Lemma

Lemma (Bridge Lemma)

For T terminal spanning tree, x k-DCR solution:
S a5 bra(Cy) 2 o)

» Consider component C}
» Consider the forest T\ Bry(C smk
Each connected component contams
exactly one terminal in RN C} L /
» Define graph Y; on RN C): For
every bridge b; add edge e; to Y
with cost c(e;) := ¢(b;)
» Y; is a spanning tree on RN C; with brp(C
» direct Y; towards sink(C}), ¢/ = (1, /') union of YJ S
» Vj:install z; cap. on Yj; — cap. reservation y : E' — Qy

The Bridge Lemma (2)
» y is feasible solution for (BCR)

The Bridge Lemma (2)

» y is feasible solution for (BCR)
» 3 spanning tree F' in G’ : ¢(F) < ¢(y) (by Edmonds Thm.)

The Bridge Lemma (2)

» y is feasible solution for (BCR)
» 3 spanning tree F' in G’ : ¢(F) < ¢(y) (by Edmonds Thm.)
» ¢(T) < ¢(F) (Matroid exchange property)

The Bridge Lemma (2)

» y is feasible solution for (BCR)
» 3 spanning tree F' in G’ : ¢(F) < ¢(y) (by Edmonds Thm.)
» ¢(T) < ¢(F) (Matroid exchange property)

The Bridge Lemma (2)

» y is feasible solution for (BCR)
» 3 spanning tree F' in G’ : ¢(F) < ¢(y) (by Edmonds Thm.)
» ¢(T) < ¢(F) (Matroid exchange property)

The Bridge Lemma (2)

» y is feasible solution for (BCR)

» 3 spanning tree F' in G’ : ¢(F) < ¢(y) (by Edmonds Thm.)
» ¢(T) < ¢(F) (Matroid exchange property)

» Finally

ijbrT(Cj)
J

The Bridge Lemma (2)

» y is feasible solution for (BCR)

» 3 spanning tree F' in G’ : ¢(F) < ¢(y) (by Edmonds Thm.)
» ¢(T) < ¢(F) (Matroid exchange property)

» Finally

ijbrT Zx] c(Y,

The Bridge Lemma (2)

» y is feasible solution for (BCR)

» 3 spanning tree F' in G’ : ¢(F) < ¢(y) (by Edmonds Thm.)
» ¢(T) < ¢(F) (Matroid exchange property)

» Finally

Z zjbrop(C Z zj - c(Y;) = c(y)

/

The Bridge Lemma (2)

» y is feasible solution for (BCR)

» 3 spanning tree F' in G’ : ¢(F) < ¢(y) (by Edmonds Thm.)
» ¢(T) < ¢(F) (Matroid exchange property)

» Finally

ijbrT Zx] c(Y, c(y) > c(F)

/

The Bridge Lemma (2)

» y is feasible solution for (BCR)

» 3 spanning tree F' in G’ : ¢(F) < ¢(y) (by Edmonds Thm.)
» ¢(T) < ¢(F) (Matroid exchange property)

» Finally

ijbrT Zx] c(Y, c(y) > c(F) >c(T). O

/

Decrease of tree cost

Lemma

Ele(T] <2 (1 - L)" - opt].

Decrease of tree cost

Lemma

Ele(T] <2 (1 - L)" - opt].

» Let 7% be the MST at the end of iteration #

Decrease of tree cost

Lemma

Ele(T] <2 (1 - L)" - opt].

» Let 7% be the MST at the end of iteration #
> ¢(Tp) <2- opt£

Decrease of tree cost

Lemma

Ele(T] <2 (1 - L)" - opt].

» Let 7% be the MST at the end of iteration #
> ¢(Tp) <2- opt£

» In any iteration

Ele(TY)] < T) — E[brye—: (CY)]

Decrease of tree cost

Lemma

Ele(T] <2 (1 - L)" - opt].

» Let 7% be the MST at the end of iteration #
> ¢(Tp) <2- opt£
» In any iteration

Ele(TY)] < T) — E[brye—: (CY)]

_ 1
= C(Tt 1) — E ZZE§ . b’)"Tt—l (C_])
J

Decrease of tree cost

Lemma

Ele(T] <2 (1 - L)" - opt].

» Let 7% be the MST at the end of iteration #
> ¢(Tp) <2- opt£
» In any iteration

Ble(T)] < oT") = Elbrye: (CY)]
= (T - % > @k brpe-i (Cy)
J

J

>e(Tt1)

Decrease of tree cost

Lemma

Ele(T] <2 (1 - L)" - opt].

» Let 7% be the MST at the end of iteration #
> ¢(Tp) <2- opt£
» In any iteration

Ble(T)] < oT") = Elbrye: (CY)]
= (T - % > @k brpe-i (Cy)
J

J

>e(Tt1)

(VAN
—
—_
|

| —
N
o
—
N
T
—
N—
O

A first bound

Theorem

cost < 1.7 - opt,J:

A first bound

Theorem

cost < 1.7 - optf:

» Choose p := 0% (=# of iterations)

A first bound

Theorem

cost < 1.7 - opt,{

» Choose p := 0% (=# of iterations)
» Cost of sampled components:

I
E[Zc(C’t)] <60 %opt,{ =9 opt£
t=1

A first bound

Theorem

cost < 1.7 - optf;

» Choose p := 0% (=# of iterations)
» Cost of sampled components:

I
E[Zc(C’t)] <60 %opt,{ =9 opt£
t=1

» Cost of MST

1\ 0%
Bl < (1-5)" - 200t] <2¢77 - optf

A first bound

Theorem

cost < 1.7 - optf;

» Choose p := 0% (=# of iterations)
» Cost of sampled components:

I
E[Zc(C’t)] < 0% - Eopt =4 opt£
t=1

» Cost of MST
165
Bl < (1-5)" - 200t] <2¢77 - optf
» Total cost

2e70 +8) - opt] "2 (1 4 n(2)) - opt] O

<L.7

Also opt;. is getting cheaper

Theorem

Let T, T" be optimal Steiner trees before and after sampling and
contracting a component. Then

Ble()] < (1 - 55) - e(@)

t{}

Also opt;. is getting cheaper

Theorem

Let T, T" be optimal Steiner trees before and after sampling and
contracting a component. Then

Bler)] < (1 5) - e(T)

» Counsider a component Z; of T. W.Lo.g.
Z; is binary tree
[]

N
TARPAN

Also opt;. is getting cheaper

Theorem

Let T, T" be optimal Steiner trees before and after sampling and
contracting a component. Then

Bler)] < (1 5) - e(T)

» Counsider a component Z; of T. W.Lo.g.

Z; is binary tree
[)

N
TANPAN

» From each Steiner node: Mark the
costlier edge to a child

Also opt;. is getting cheaper

Theorem

Let T, T" be optimal Steiner trees before and after sampling and
contracting a component. Then

Bler)] < (1 5) - e(T)

» Counsider a component Z; of T. W.Lo.g.
Z; is binary tree

» From each Steiner node: Mark the o
costlier edge to a child / \

» Construct Y; with uv € Y; < one e ®
marked edge on u-v path ‘J Xy I/

Also opt;. is getting cheaper

Theorem

Let T, T" be optimal Steiner trees before and after sampling and
contracting a component. Then

Bler)] < (1 5) - e(T)

» Counsider a component Z; of T. W.Lo.g.
Z; is binary tree

» From each Steiner node: Mark the ®
costlier edge to a child / wv
» Construct Y; with uv € Y; < one e ®
marked edge on u-v path
» c(uv) := c(marked edge in Z;) \JX' J
u v

c(uv) := c(byy)

Also opt;. is getting cheaper

Theorem

Let T, T" be optimal Steiner trees before and after sampling and
contracting a component. Then

Bler)] < (1 5) - e(T)

v

Consider a component Z; of T. W.l.o.g.
Z; is binary tree

From each Steiner node: Mark the ®
costlier edge to a child / wv
[[]

Construct Y; with uv € Y; < one
marked edge on u-v path
» c(uv) := c(marked edge in Z;)

u v

Y=Y, oY) > e(T)
c(uv) := c(byy)

Also opt;. is getting cheaper

Theorem

Let T, T" be optimal Steiner trees before and after sampling and
contracting a component. Then

Bler)] < (1 5) - e(T)

» Counsider a component Z; of T. W.Lo.g.
Z; is binary tree

» From each Steiner node: Mark the ®
costlier edge to a child / wv
» Construct Y; with uv € Y; < one e ®
marked edge on u-v path
» c(uv) := c(marked edge in Z;) \JX' J
Y=Y, oY) > e(T) “ v
> br(C) > bry (C) e(w) := cfbu)

Also opty, is getting cheaper (2)

Theorem
Let T, T" be optimal Steiner trees before and after sampling and

contracting a component. Then

Bler)] < (1 5) - e(T)

Also opty, is getting cheaper (2)

Theorem
Let T, T" be optimal Steiner trees before and after sampling and

contracting a component. Then

Bler)] < (1 5) - e(T)

Also opty, is getting cheaper (2)

Theorem
Let T, T" be optimal Steiner trees before and after sampling and

contracting a component. Then

Bler)] < (1 5) - e(T)

Also opty, is getting cheaper (2)

Theorem
Let T, T" be optimal Steiner trees before and after sampling and

contracting a component. Then

Bler)] < (1 5) - e(T)

>c(Y) by Bridge Lem.

Also opty, is getting cheaper (2)

Theorem
Let T, T" be optimal Steiner trees before and after sampling and

contracting a component. Then

Bler)] < (1 5) - e(T)

>c(Y) by Bridge Lem.

Also opty, is getting cheaper (2)

Theorem
Let T, T" be optimal Steiner trees before and after sampling and

contracting a component. Then

Bler)] < (1 5) - e(T)

>c(Y) by Bridge Lem.

A better bound

2 - opty

bound on ¢(MST): 2(1 — %)u ~ Qo= H/E

1- Optk,,

1-X 2-% | = Fiterations

A better bound

2 - opty , .
bound on ¢(MST): 2(1 — £)H ~ 2eH/>

/

bound on opty, : (1 — 5k)# 2 e~/ (2%)

1-X 2-% | = Fiterations

A better bound

/

bound on ¢(MST): 2(1 — 5

bound on opty, : (1 — 5k)# 2 e~/ (2%)

1-% 1.38% 2.5

Theorem

For yu:=1n(4) - X one has: cost < 3opty,.

| = Fiterations

An even better bound

2 - opti

1- opty

1-X 2-% | = Fiterations

An even better bound

improved bound on opty, : c—R/E 11

1-X 2-% | = Fiterations

Theorem
For p := oo one has: cost < 1.39 - opty, J

Open problems

» Bound is in terms of optg. Does it also hold with 0pt£ ?

Open problems

» Bound is in terms of optg. Does it also hold with 0pt£ ?

» Can the algorithm be derandomized?

Open problems

» Bound is in terms of optg. Does it also hold with 0pt£ ?

» Can the algorithm be derandomized?

» Possible solution: Show that opt,J; is getting cheaper...

Open problems

» Bound is in terms of optg. Does it also hold with 0pt£ ?

» Can the algorithm be derandomized?

» Possible solution: Show that opt,J; is getting cheaper...

» Applications to generalizations like

» PRICE COLLECTING STEINER TREE
» SINGLE-SINK RENT-OR-BUY

Open problems

» Bound is in terms of optg. Does it also hold with 0pt£ ?

» Can the algorithm be derandomized?

» Possible solution: Show that opt,J; is getting cheaper...

» Applications to generalizations like

» PRICE COLLECTING STEINER TREE
» SINGLE-SINK RENT-OR-BUY

Thanks for your attention

