Online Ad Serving: Theory and Practice

Vahab Mirrokni
(Three papers in collaboration with Googlers)

Google Research, New York
October 20, 2010

Contract-based Online Advertising

- Pageviews (impressions) instead of queries.
- Display/Banner Ads, Video Ads, Mobile Ads.

Contract-based Online Advertising

- Pageviews (impressions) instead of queries.
- Display/Banner Ads, Video Ads, Mobile Ads.
- Cost-Per-Impression (CPM).
- Not Auction-based: offline negotiations + Online allocations.

Contract-based Online Advertising

- Pageviews (impressions) instead of queries.
- Display/Banner Ads, Video Ads, Mobile Ads.
- Cost-Per-Impression (CPM).
- Not Auction-based: offline negotiations + Online allocations.

Display/Banner Ads:

- Q1, 2010: One Trillion Display Ads in US. $\$ 2.7$ billion.
- Top Publishers: Facebook, Yahoo and Microsoft sites.
- Top Advertiser: AT\&T, Verizon, Scottrade.

Contract-based Online Advertising

- Pageviews (impressions) instead of queries.
- Display/Banner Ads, Video Ads, Mobile Ads.
- Cost-Per-Impression (CPM).
- Not Auction-based: offline negotiations + Online allocations.

Display/Banner Ads:

- Q1, 2010: One Trillion Display Ads in US. $\$ 2.7$ billion.
- Top Publishers: Facebook, Yahoo and Microsoft sites.
- Top Advertiser: AT\&T, Verizon, Scottrade.
- Ad Serving Systems e.g. Facebook, Google Doubleclick, AdMob.

Display Ad Delivery: Overview

Display Ad Delivery

1. Planning: Contracts/Commitments with Advertisers.
2. Ad Serving:

- Targeting: Predicting value of impressions.
- Ad Allocation: Assigning Impressions to Ads Online.

Display Ad Delivery: Overview

Display Ad Delivery

```
Planning:
Offline, Online
Strategic, Stochastic
```


1. Planning: Contracts/Commitments with Advertisers.
2. Ad Serving:

- Targeting: Predicting value of impressions.
- Ad Allocation: Assigning Impressions to Ads Online.

Display Ad Delivery: Overview

Display Ad Delivery

1. Planning: Contracts/Commitments with Advertisers.
2. Ad Serving:

- Targeting: Predicting value of impressions.
- Ad Allocation: Assigning Impressions to Ads Online.

Display Ad Delivery: Overview

Display Ad Delivery

1. Planning: Contracts/Commitments with Advertisers.
2. Ad Serving:

- Targeting: Predicting value of impressions.
- Ad Allocation: Assigning Impressions to Ads Online.

Display Ad Delivery: Overview

Display Ad Delivery

1. Planning: Contracts/Commitments with Advertisers.
2. Ad Serving:

- Targeting: Predicting value of impressions.
- Ad Allocation: Assigning Impressions to Ads Online.

Display Ad Delivery: Overview

Display Ad Delivery

- Objective Functions:
- Efficiency: Users and Advertisers. Revenue of the Publisher.
- Smoothness, Fairness, Delivery Penalty.

Targeting

Estimating Value of an impression.

Targeting

Estimating Value of an impression.

- Behavioral Targeting
- Interest-based Advertising.
- Yan, Liu, Wang, Zhang, Jiang, Chen, 2009, How much can Behavioral Targeting Help Online Advertising?

Targeting

Estimating Value of an impression.

- Behavioral Targeting
- Interest-based Advertising.
- Yan, Liu, Wang, Zhang, Jiang, Chen, 2009, How much can Behavioral Targeting Help Online Advertising?
- Contextual Targeting
- Information Retrieval (IR).
- Broder, Fontoura, Josifovski, Riedel, A semantic approach to contextual advertising

Targeting

Estimating Value of an impression.

- Behavioral Targeting
- Interest-based Advertising.
- Yan, Liu, Wang, Zhang, Jiang, Chen, 2009, How much can Behavioral Targeting Help Online Advertising?
- Contextual Targeting
- Information Retrieval (IR).
- Broder, Fontoura, Josifovski, Riedel, A semantic approach to contextual advertising
- Creative Optimization
- Experimentation

Predicting value of Impressions for Display Ads

- Estimating Click-Through-Rate (CTR).
- Budgeted Multi-armed Bandit
- Probability of Conversion.

Predicting value of Impressions for Display Ads

- Estimating Click-Through-Rate (CTR).
- Budgeted Multi-armed Bandit
- Probability of Conversion.
- Long-term vs. Short-term value of display ads?
- Archak, Mirrokni, Muthukrishnan, 2010 Graph-based Models.
- Computing Adfactors based on AdGraphs
- Markov Models for Advertiser-specific User Behavior

Contract-based Ad Delivery: Outline

- Basic Information
- Ad Planning: Reservation
- Ad Serving.
- Targeting.
- Online Ad Allocation

Outline: Online Allocation

- Online Stochastic Assignment Problems
- Online (Stochastic) Matching
- Online Generalized Assignment (with free disposal)
- Online Stochastic Packing
- Experimental Results
- Online Learning and Allocation

Online Ad Allocation

- When page arrives, assign an eligible ad.
- value of assigning page i to ad $a: v_{i a}$

Online Ad Allocation

- When page arrives, assign an eligible ad.
- value of assigning page i to ad $a: v_{i a}$
- Display Ads (DA) problem:
- Maximize value of ads served: $\max \sum_{i, a} v_{i a} x_{i a}$
- Capacity of ad a: $\sum_{i \in A(a)} x_{i a} \leq C_{a}$

Online Ad Allocation

- When page arrives, assign an eligible ad.
- revenue from assigning page i to ad $a: b_{i a}$
- "AdWords" (AW) problem:
- Maximize revenue of ads served: $\max \sum_{i, a} b_{i a} x_{i a}$
- Budget of ad a: $\sum_{i \in A(a)} b_{i a} x_{i a} \leq B_{a}$

General Form of LP

$$
\begin{array}{rlr|}
\hline \max \sum_{i, a} v_{i a} x_{i a} & \\
\sum_{a} x_{i a} & \leq 1 & (\forall i) \\
\sum_{i} s_{i a} x_{i a} & \leq C_{a} & (\forall a) \\
x_{i a} & \geq 0 & (\forall i, a) \\
\hline
\end{array}
$$

Online Matching: \mid Disp. Ads (DA): \mid AdWords (AW):
$v_{i a}=s_{i a}=1 \quad s_{i a}=1 \quad s_{i a}=v_{i a}$

General Form of LP

Ad Allocation: Problems and Models

	Online Matching:	Disp. Ads (DA):	AdWords (AW):
	$v_{i a}=s_{i a}=1$	$s_{i a}=1$	$s_{i a}=v_{i a}$
Worst Case	Greedy: $\frac{1}{2}$,	Inapproximable	$[$ MSVV,BJN $]:$
	$[K V V]: 1-\frac{1}{e}$-aprx	$?$	$1-\frac{1}{e}$-aprx

Ad Allocation: Problems and Models

	Online Matching: $v_{i a}=s_{i a}=1$	Disp. Ads (DA): $s_{i a}=1$	AdWords (AW): $s_{i a}=v_{i a}$
Worst Case	Greedy: $\frac{1}{2}$, $[K V V]: 1-\frac{1}{e}$-aprx	Inapproximable	$[$?SVV,BJN]:
	$?$		$1-\frac{1}{e}$-aprx
		$?$	$[\mathrm{DH09]:}$
Stochastic (i.i.d.)			$1-\epsilon$-aprx, if
			OPT $\gg \max v_{i a}$

Stochastic i.i.d model:

- i.i.d model with known distribution
- random order model (i.i.d model with unknown distribution)

Ad Allocation: Problems and Models

	Online Matching: $v_{i a}=s_{i a}=1$	Disp. Ads (DA): $s_{i a}=1$	AdWords (AW): $s_{i a}=v_{i a}$
Worst Case	Greedy: $\frac{1}{2}$, $[\mathrm{KVV}]: 1-\frac{1}{e}$-aprx	Inapproximable $?$	$[\mathrm{MSVV}, \mathrm{BJN}]:$
	?	$1-\frac{1}{e}$-aprx	

Stochastic i.i.d model:

- i.i.d model with known distribution
- random order model (i.i.d model with unknown distribution)

Online Stochastic Matching: Motivation

- Pageview supply from the past should tell us something about the future [Parkes, Sandholm, SSA 2005][Abrams, Mendelevitch, Tomlin, EC 07] [Boutilier, Parkes, Sandholm, Walsh AAAI 08].

Online Stochastic Matching: Motivation

- Pageview supply from the past should tell us something about the future [Parkes, Sandholm, SSA 2005][Abrams, Mendelevitch, Tomlin, EC 07] [Boutilier, Parkes, Sandholm, Walsh AAAI 08].
- Primal Algorithm:
- Construct an expected instance,
- Compute an optimal solution to this expected instance,
- Use this solution to guide the online allocation.

Online Stochastic Matching: Motivation

- Pageview supply from the past should tell us something about the future [Parkes, Sandholm, SSA 2005][Abrams, Mendelevitch, Tomlin, EC 07] [Boutilier, Parkes, Sandholm, Walsh AAAI 08].
- Primal Algorithm:
- Construct an expected instance,
- Compute an optimal solution to this expected instance,
- Use this solution to guide the online allocation.
- Can we extend the theory of online algorithms to this architecture?

Online Stochastic Matching: iid (known dist.)

Given (offline):

- Bipartite graph $G=(A, I, E)$,
- Distribution D over I.

Online:

- n indep. draws from D.
- Must assign nodes upon arrival.

Primal Algorithm: "Two-suggested-matchings"

"ALG is α-approximation?" if w.h.p., $\frac{\operatorname{ALG}(H)}{\mathrm{OPT}(H)} \geq \alpha$
Simple Primal Algorithm:

- Find one matching in expected graph G offline, and try to apply it online.
- Tight $1-\frac{1}{e}$-approximation.

Primal Algorithm: "Two-suggested-matchings"

"ALG is α-approximation?" if w.h.p., $\frac{\operatorname{ALG}(H)}{\operatorname{OPT}(H)} \geq \alpha$
Simple Primal Algorithm:

- Find one matching in expected graph G offline, and try to apply it online.
- Tight $1-\frac{1}{e}$-approximation.

Better Algorithm: Two-Suggested-Matchings

- Offline: Find two disjoint matchings, blue(B) and red(R), on the expected graph G.
- Online: try the blue matching first, then if that doesn't work, try the red one.

Primal Algorithm: "Two-suggested-matchings"

"ALG is α-approximation?" if w.h.p., $\frac{\operatorname{ALG}(H)}{\operatorname{OPT}(H)} \geq \alpha$
Simple Primal Algorithm:

- Find one matching in expected graph G offline, and try to apply it online.
- Tight $1-\frac{1}{e}$-approximation.

Better Algorithm: Two-Suggested-Matchings

- Offline: Find two disjoint matchings, blue(B) and red (R), on the expected graph G.
- Online: try the blue matching first, then if that doesn't work, try the red one.
- Thm: Tight $\frac{1-2 / e^{2}}{4 / 3-2 / 3 e} \geq 0.67$
(Feldman, M., M., Muthukrishnan, 2009).

Background: Balls in bins

- Suppose n balls thrown into n bins, i.i.d. uniform.

Background: Balls in bins

- Suppose n balls thrown into n bins, i.i.d. uniform.
- \# non-empty bins concentrates:

Background: Balls in bins

- Suppose n balls thrown into n bins, i.i.d. uniform.
- \# non-empty bins concentrates:
- $B=$ particular subset of bins.

Background: Balls in bins

- Suppose n balls thrown into n bins, i.i.d. uniform.
- \# non-empty bins concentrates:
- $B=$ particular subset of bins.
- $s=\#$ bins in B with ≥ 1 ball.

Background: Balls in bins

- Suppose n balls thrown into n bins, i.i.d. uniform.
- \# non-empty bins concentrates:
- $B=$ particular subset of bins.
- $s=\#$ bins in B with ≥ 1 ball.
- Then w.h.p., $s \approx|B|\left(1-\frac{1}{e}\right)$.

Analysis: Two-suggested-matching Algorithm

- Proof Ideas: Balls-into-Bins concentration inequalities, structural properties of min-cuts, etc.

Analysis: Two-suggested-matching Algorithm

- Proof Ideas: Balls-into-Bins concentration inequalities, structural properties of min-cuts, etc.
- Bounding ALG: Classify $a \in A$ based on its neighbors in the blue and red matchings: $A_{B R}, A_{B B}, A_{B}, A_{R}$

$$
A L G \geq\left(1-\frac{1}{e^{2}}\right)\left|A_{B B}\right|+\left(1-\frac{2}{e^{2}}\right)\left|A_{B R}\right|+\left(1-\frac{3}{2 e}\right)\left(\left|A_{B}\right|+\left|A_{R}\right|\right)
$$

Analysis: Two-suggested-matching Algorithm

- Proof Ideas: Balls-into-Bins concentration inequalities, structural properties of min-cuts, etc.
- Bounding ALG: Classify $a \in A$ based on its neighbors in the blue and red matchings: $A_{B R}, A_{B B}, A_{B}, A_{R}$

$$
A L G \geq\left(1-\frac{1}{e^{2}}\right)\left|A_{B B}\right|+\left(1-\frac{2}{e^{2}}\right)\left|A_{B R}\right|+\left(1-\frac{3}{2 e}\right)\left(\left|A_{B}\right|+\left|A_{R}\right|\right)
$$

- Bounding opt: Find min-cut in augmented expected graph G, and use it min-cut in G as a "guide" for cut in each scenario.

First Attempt: "Suggested matching"

1. Find a maximum matching in G.
2. Use that matching as nodes arrive online.

First Attempt: "Suggested matching"

1. Find a maximum matching in G.
2. Use that matching as nodes arrive online.

- Does no better than $1-1 / e$.

First Attempt: "Suggested matching"

1. Find a maximum matching in G.
2. Use that matching as nodes arrive online.

- Does no better than $1-1 / e$.
- Proof:
- Suppose $G=$ complete graph.

First Attempt: "Suggested matching"

1. Find a maximum matching in G.
2. Use that matching as nodes arrive online.

- Does no better than $1-1 / e$.
- Proof:
- Suppose $G=$ complete graph.
- Then $\operatorname{OPT}(H)=n$.

First Attempt: "Suggested matching"

1. Find a maximum matching in G.
2. Use that matching as nodes arrive online.

- Does no better than $1-1 / e$.
- Proof:
- Suppose $G=$ complete graph.
- Then $\operatorname{OPT}(\mathrm{H})=n$.
- But w.h.p. only $1-1$ /e fraction of I will ever arrive.
$\Longrightarrow A L G \approx(1-1 / e) n$.

First Attempt: "Suggested matching"

1. Find a maximum matching in G.
2. Use that matching as nodes arrive online.

- Does no better than $1-1 / e$.
- Proof:
- Suppose $G=$ complete graph.
- Then $\operatorname{OPT}(\mathrm{H})=n$.
- But w.h.p. only $1-1$ /e fraction of I will ever arrive. $\Longrightarrow A L G \approx(1-1 / e) n$.
- In fact, this algorithm does achieve $1-1$ /e (in paper).

New ALG: "Two suggested matchings"

1. Offline: Find two disjoint matchings
2. Online: try the first one, then if that doesn't work, try the second one.

New ALG: "Two suggested matchings"

Warmup: complete graph

- Two disjoint perfect matchings: blue (1-ary), red (2-ary).

New ALG: "Two suggested matchings"

Warmup: complete graph

- Two disjoint perfect matchings: blue (1-ary), red (2-ary).
- Union of matchings $=$ cycles with alt. blue and red edges

New ALG: "Two suggested matchings"

For particular node $a \in A$:
$\operatorname{Pr}[a$ is chosen $] \geq \operatorname{Pr}\left[i\right.$ arrives once, or i^{\prime} arrives twice $]$

$$
\begin{aligned}
& =1-\operatorname{Pr}\left[i \text { never arrives } \& i^{\prime} \text { arrives } \leq \text { once }\right] \\
& =1-\left((1-2 / n)^{n}+n(1 / n)(1-2 / n)^{n-1}\right) \\
& \approx 1-2 / e^{2}
\end{aligned}
$$

Thus, $\mathrm{E}[\#$ nodes in A chosen $] \approx\left(1-2 / e^{2}\right) n \approx .729 n$ (This also concentrates...)

Algorithm (Offline)

- How to find a matching with flow.

Algorithm (Offline)

- How to find a matching with flow.

Algorithm (Offline)

- How to find a matching with flow.

Algorithm (Offline)

- Solve an "augmented flow" problem instead.

Algorithm (Offline)

- Solve an "augmented flow" problem instead.

Algorithm (Offline)

- Examine edges in flow.

Algorithm (Offline)

- Color the edges as shown

Algorithm (Online)

- When node $i \in I$ arrives:
- Try the blue edge first, then the red edge.

Algorithm (Online)

- Consider a node $a \in A$:
- $\operatorname{Pr}[a$ is chosen $] \geq \operatorname{Pr}\left[i\right.$ arrives once, or i^{\prime} arrives twice $]$

Performance of the Algorithm

- Classify $a \in A$ based on its neighbors in the flow.

$$
\mid \text { flow }|=2| A_{B R}|+2| A_{B B}\left|+\left|A_{B}\right|+\left|A_{R}\right|\right.
$$

Performance of the Algorithm

- Classify $a \in A$ based on its neighbors in the flow.

$$
\mid \text { flow }|=2| A_{B R}|+2| A_{B B}\left|+\left|A_{B}\right|+\left|A_{R}\right|\right.
$$

- Using Balls-in-bins concentration results (Azuma's inequality):

Performance of the Algorithm

- Classify $a \in A$ based on its neighbors in the flow.

$$
\mid \text { flow }|=2| A_{B R}|+2| A_{B B}\left|+\left|A_{B}\right|+\left|A_{R}\right|\right.
$$

- Using Balls-in-bins concentration results (Azuma's inequality):
- $a \in A_{B}$. We get at least $\left|A_{B}\right|(1-1 / e)$.

Performance of the Algorithm

- Classify $a \in A$ based on its neighbors in the flow.

$$
\mid \text { flow }|=2| A_{B R}|+2| A_{B B}\left|+\left|A_{B}\right|+\left|A_{R}\right|\right.
$$

- Using Balls-in-bins concentration results (Azuma's inequality):
- $a \in A_{B}$. We get at least $\left|A_{B}\right|(1-1 / e)$.
- $a \in A_{B R}$. We get at least $\left|A_{B R}\right|\left(1-2 / e^{2}\right)$.

Performance of the Algorithm

- Classify $a \in A$ based on its neighbors in the flow.

$$
\mid \text { flow }|=2| A_{B R}|+2| A_{B B}\left|+\left|A_{B}\right|+\left|A_{R}\right|\right.
$$

- Using Balls-in-bins concentration results (Azuma's inequality):
- $a \in A_{B}$. We get at least $\left|A_{B}\right|(1-1 / e)$.
- $a \in A_{B R}$. We get at least $\left|A_{B R}\right|\left(1-2 / e^{2}\right)$.
- $a \in A_{B B}$. We get at least $\left|A_{B B}\right|\left(1-1 / e^{2}\right)$.

Performance of the Algorithm

- Classify $a \in A$ based on its neighbors in the flow.

$$
\mid \text { flow }|=2| A_{B R}|+2| A_{B B}\left|+\left|A_{B}\right|+\left|A_{R}\right|\right.
$$

- Using Balls-in-bins concentration results (Azuma's inequality):
- $a \in A_{B}$. We get at least $\left|A_{B}\right|(1-1 / e)$.
- $a \in A_{B R}$. We get at least $\left|A_{B R}\right|\left(1-2 / e^{2}\right)$.
- $a \in A_{B B}$. We get at least $\left|A_{B B}\right|\left(1-1 / e^{2}\right)$.
- $a \in A_{R}$. We get at least $\left|A_{R}\right|(1-2 / e)$.

Performance of the Algorithm

- Classify $a \in A$ based on its neighbors in the flow.

$$
\mid \text { flow }|=2| A_{B R}|+2| A_{B B}\left|+\left|A_{B}\right|+\left|A_{R}\right|\right.
$$

- Using Balls-in-bins concentration results (Azuma's inequality):
- $a \in A_{B}$. We get at least $\left|A_{B}\right|(1-1 / e)$.
- $a \in A_{B R}$. We get at least $\left|A_{B R}\right|\left(1-2 / e^{2}\right)$.
- $a \in A_{B B}$. We get at least $\left|A_{B B}\right|\left(1-1 / e^{2}\right)$.
- $a \in A_{R}$. We get at least $\left|A_{R}\right|(1-2 / e)$.
- Bound on ALG in terms of flow (using $|B| \geq|R|$):

$$
A L G \geq\left(1-\frac{1}{e^{2}}\right)\left|A_{B B}\right|+\left(1-\frac{2}{e^{2}}\right)\left|A_{B R}\right|+\left(1-\frac{3}{2 e}\right)\left(\left|A_{B}\right|+\left|A_{R}\right|\right)
$$

Bounding OPT

- Find min-cut in augmented flow graph (from G).
- E_{δ} is a matching.
- By max-flow min-cut,

$$
\mid \text { flow }\left|=2\left(\left|A_{T}\right|+\left|I_{S}\right|\right)+\left|E_{\delta}\right| .\right.
$$

Bounding OPT

- OPT $\leq \operatorname{cut}(H) .($ Remember $H=(A, \hat{l}, \hat{E})$.
- Use min-cut in G as "guide" for cut in H.
- W.h.p., $\left|I_{S}\right| \approx\left|\hat{I}_{S}\right| . E_{\delta}$?
- For any node $a \in S$ with an edge in the cut in $\hat{E}(H)$, move it to $T \Rightarrow$ \# nonempty nodes in $E_{\delta} \Rightarrow\left(1-\frac{1}{e}\right) E_{\delta}$.

Putting things together

- Eventually (after moving a few nodes around) you get
- OPT $\lesssim\left|I_{S}\right|+\left|A_{T}\right|+(1-1 / e)\left|E_{\delta}\right|$.

Putting things together

- Eventually (after moving a few nodes around) you get
- $O P T \lesssim\left|I_{S}\right|+\left|A_{T}\right|+(1-1 / e)\left|E_{\delta}\right|$.
- A lemma relating the decomposition to the cut gives
- $\left|E_{\delta}\right| \leq \frac{2}{3}\left|A_{B R}\right|+\frac{4}{3}\left|A_{B B}\right|+\left|A_{B}\right|+\frac{1}{3}\left|A_{R}\right|$,

Putting things together

- Eventually (after moving a few nodes around) you get
$-O P T \lesssim\left|I_{S}\right|+\left|A_{T}\right|+(1-1 / e)\left|E_{\delta}\right|$.
- A lemma relating the decomposition to the cut gives
- $\left|E_{\delta}\right| \leq \frac{2}{3}\left|A_{B R}\right|+\frac{4}{3}\left|A_{B B}\right|+\left|A_{B}\right|+\frac{1}{3}\left|A_{R}\right|$,
- which, when combined with
- \mid flow $\left|=2\left(\left|A_{T}\right|+\left|I_{S}\right|\right)+\left|E_{\delta}\right|\right.$
- \mid flow $|=2| A_{B R}|+2| A_{B B}\left|+\left|A_{B}\right|+\left|A_{R}\right|\right.$,
- $\operatorname{ALG} \geq\left(1-\frac{1}{e^{2}}\right)\left|A_{B B}\right|+\left(1-\frac{2}{e^{2}}\right)\left|A_{B R}\right|+\left(1-\frac{3}{2 e}\right)\left(\left|A_{B}\right|+\left|A_{R}\right|\right)$,
- gives
- $\frac{A L G}{O P T} \geq \min \left\{\frac{1-1 / e^{2}}{5 / 3-4 / 3 e}, \frac{1-2 / e^{2}}{4 / 3-2 / 3 e}, \frac{1-3 / 2 e}{1-1 / e}\right\}$
- $\frac{A L G}{O P T} \geq .67$

Putting things together

- Eventually (after moving a few nodes around) you get
$-O P T \lesssim\left|I_{S}\right|+\left|A_{T}\right|+(1-1 / e)\left|E_{\delta}\right|$.
- A lemma relating the decomposition to the cut gives
- $\left|E_{\delta}\right| \leq \frac{2}{3}\left|A_{B R}\right|+\frac{4}{3}\left|A_{B B}\right|+\left|A_{B}\right|+\frac{1}{3}\left|A_{R}\right|$,
- which, when combined with
- \mid flow $\left|=2\left(\left|A_{T}\right|+\left|I_{S}\right|\right)+\left|E_{\delta}\right|\right.$
- \mid flow $|=2| A_{B R}|+2| A_{B B}\left|+\left|A_{B}\right|+\left|A_{R}\right|\right.$,
- ALG $\geq\left(1-\frac{1}{e^{2}}\right)\left|A_{B B}\right|+\left(1-\frac{2}{e^{2}}\right)\left|A_{B R}\right|+\left(1-\frac{3}{2 e}\right)\left(\left|A_{B}\right|+\left|A_{R}\right|\right)$,
- gives
- $\frac{A L G}{O P T} \geq \min \left\{\frac{1-1 / e^{2}}{5 / 3-4 / 3 e}, \frac{1-2 / e^{2}}{4 / 3-2 / 3 e}, \frac{1-3 / 2 e}{1-1 / e}\right\}$
- $\frac{A L G}{O P T} \geq .67$
- The analysis is tight.

Ad Allocation: Problems and Models

	Online Matching: $v_{i a}=s_{i a}=1$	Disp. Ads (DA): $s_{i a}=1$	AdWords (AW): $s_{i a}=v_{i a}$
Worst Case	$\begin{aligned} & \text { Greedy: } \frac{1}{2} \text {, } \\ & \text { [KVV]: } 1-\frac{1}{e} \text {-aprx } \end{aligned}$	Inapproximable ?	$\begin{aligned} & \text { [MSVV,BJN]: } \\ & 1-\frac{1}{e} \text {-aprx } \end{aligned}$
Stochastic (i.i.d.)	[FMMM09]: 0.67-aprx i.i.d with known distribution	?	$\begin{aligned} & \text { [DH09]: } \\ & 1-\epsilon \text {-aprx, } \\ & \text { if } \\ & \text { OPT } \gg \max v_{i a} \end{aligned}$

Ad Allocation: Problems and Models

	Online Matching: $v_{i a}=s_{i a}=1$	Disp. Ads (DA): $s_{i a}=1$	AdWords (AW): $s_{i a}=v_{i a}$
Worst Case	$\begin{aligned} & \text { Greedy: } \frac{1}{2}, \\ & \text { [KVV]: } 1-\frac{1}{e} \text {-aprx } \end{aligned}$	Inapproximable ?	$\begin{aligned} & \text { [MSVV,BJN]: } \\ & 1-\frac{1}{e} \text {-aprx } \end{aligned}$
Stochastic (i.i.d.)	[FMMM09]: 0.67-aprx i.i.d with known distribution	[FHKMS10,AWY]: $1-\epsilon$-aprx, if OPT $\gg \max v_{i a}$ and $n \gg m$	$\begin{aligned} & \text { [DH09]: } \\ & 1-\epsilon \text {-aprx, } \\ & \text { if } \\ & \text { OPT } \gg \max v_{i a} \end{aligned}$

random order $=$ i.i.d. model with unknown distribution

Stochastic DA: Dual Algorithm

$$
\begin{array}{rlrl}
\max \sum_{i, a} v_{i a} x_{i a} & & \min \sum_{a} C_{a} \beta_{a} & +\sum_{i} z_{i} \\
\sum_{a} x_{i a} \leq 1 & (\forall i) & z_{i} & \geq v_{i a}-\beta_{a} \\
\sum_{i} x_{i a} & \leq C_{a} & (\forall i, a) \\
x_{i a} & \geq 0 & (\forall a) & \\
\beta_{a}, z_{i} & \geq 0 & (\forall i, a) \\
& & &
\end{array}
$$

Algorithm:

- Observe the first ϵ fraction sample of impressions.
- Learn a dual variable for each ad β_{a}, by solving the dual program on the sample.
- Assign each impression i to ad a that maximizes $v_{i a}-\beta_{a}$.

Stochastic DA: Dual Algorithm

$$
\begin{array}{rlrl}
\max \sum_{i, a} v_{i a} x_{i a} & & \min \sum_{a} C_{a} \beta_{a} & +\sum_{i} z_{i} \\
\sum_{a} x_{i a} \leq 1 & (\forall i) & z_{i} & \geq v_{i a}-\beta_{a} \\
\sum_{i} x_{i a} & \leq C_{a} & (\forall i, a) \\
x_{i a} & \geq 0 & (\forall a) & \\
\beta_{a}, z_{i} & \geq 0 & (\forall i, a) \\
& & &
\end{array}
$$

Algorithm:

- Observe the first ϵ fraction sample of impressions.
- Learn a dual variable for each ad β_{a}, by solving the dual program on the sample.
- Assign each impression i to ad a that maximizes $v_{i a}-\beta_{a}$.

Stochastic DA: Dual Algorithm

Feldman, Henzinger, Korula, M., Stein 2010
Thm[FHKMS10,AWY]: W.h.p, this algorithm is a $(1-O(\epsilon))$-aprx, as long as each item has low value ($v_{i a} \leq \frac{\epsilon \mathrm{OPT}}{m \log n}$), and large capacity $\left(C_{a} \leq \frac{m \log n}{\epsilon^{3}}\right)$

Stochastic DA: Dual Algorithm

Feldman, Henzinger, Korula, M., Stein 2010
Thm[FHKMS10,AWY]: W.h.p, this algorithm is a $(1-O(\epsilon))$-aprx, as long as each item has low value ($v_{i a} \leq \frac{\epsilon \mathrm{OPT}}{m \log n}$), and large capacity ($C_{a} \leq \frac{m \log n}{\epsilon^{3}}$)

Fact: If optimum β_{a}^{*} are known, this alg. finds OPT

- Proof: Comp. slackness. Given β_{a}^{*}, compute x^{*} as follows:

$$
x_{i a}^{*}=1 \text { if } a=\operatorname{argmax}\left(v_{i a}-\beta_{a}^{*}\right) .
$$

Stochastic DA: Dual Algorithm

Feldman, Henzinger, Korula, M., Stein 2010
Thm[FHKMS10,AWY]: W.h.p, this algorithm is a $(1-O(\epsilon))$-aprx, as long as each item has low value ($v_{i a} \leq \frac{\epsilon \mathrm{OPT}}{m \log n}$), and large capacity $\left(C_{a} \leq \frac{m \log n}{\epsilon^{3}}\right)$

Fact: If optimum β_{a}^{*} are known, this alg. finds OPT

- Proof: Comp. slackness. Given β_{a}^{*}, compute x^{*} as follows:

$$
x_{i a}^{*}=1 \text { if } a=\operatorname{argmax}\left(v_{i a}-\beta_{a}^{*}\right) .
$$

Lemma: In the random order model, W.h.p., the sample β_{a}^{\prime} are close to β_{a}^{*}.

- Extending DH09.

General Stochastic Packing LPs

- m fixed resources with capacity C_{a}
- Items i arrive online with options O_{i}, values $v_{i o}$, rsrc. use $s_{i o a}$.
- Choose $o \in O_{i}$, using up capacity $s_{i o a}$ in all a.

Thm[FHKMS10,AWY]: W.h.p, the PD algorithm is a $(1-O(\epsilon))$-aprx, as long as items have low value ($v_{i o} \leq \frac{\epsilon \text { OPT }}{\log n}$) and small size $\left(s_{i o a} \leq \frac{\epsilon^{3} C_{a}}{\log n}\right)$.

General Stochastic Packing LPs

- m fixed resources with capacity C_{a}
- Items i arrive online with options O_{i}, values $v_{i o}$, rsrc. use $s_{i o a}$.
- Choose $o \in O_{i}$, using up capacity $s_{i o a}$ in all a.

Thm[FHKMS10,AWY]: W.h.p, the PD algorithm is a $(1-O(\epsilon))$-aprx, as long as items have low value ($v_{i o} \leq \frac{\epsilon \mathrm{OPT}}{\log n}$) and small size $\left(s_{i o a} \leq \frac{\epsilon^{3} C_{a}}{\log n}\right)$.

Other Results and Extensions (random order model):

- Agrawal, Wang, Ye: Updating dual variables by periodic solution of the dual program: $C_{a} \leq \frac{m \log n}{\epsilon^{2}}$ or $s_{i o a} \leq \frac{\epsilon^{2} C_{a}}{M}$

General Stochastic Packing LPs

- m fixed resources with capacity C_{a}
- Items i arrive online with options O_{i}, values $v_{i o}$, rsrc. use $s_{i o a}$.
- Choose $o \in O_{i}$, using up capacity $s_{i o a}$ in all a.

Thm[FHKMS10,AWY]: W.h.p, the PD algorithm is a $(1-O(\epsilon))$-aprx, as long as items have low value ($v_{i o} \leq \frac{\epsilon \text { OPT }}{\log n}$) and small size $\left(s_{i o a} \leq \frac{\epsilon^{3} C_{a}}{\log n}\right)$.

Other Results and Extensions (random order model):

- Agrawal, Wang, Ye: Updating dual variables by periodic solution of the dual program: $C_{a} \leq \frac{m \log n}{\epsilon^{2}}$ or $s_{\text {ioa }} \leq \frac{\epsilon^{2} C_{a}}{M}$
- Vee, Vassilvitskii , Shanmugasundaram 2010: extension to convex objective functions: Using KKT conditions.

Ad Allocation: Problems and Models

	Online Matching: $v_{i a}=s_{i a}=1$	Disp. Ads (DA): $s_{i a}=1$	AdWords (AW): $s_{i a}=v_{i a}$
Worst Case	$\begin{aligned} & \text { Greedy: } \frac{1}{2}, \\ & {[\mathrm{KVV}]: 1-\frac{1}{e} \text {-aprx }} \end{aligned}$	Inapproximable ?	$\begin{aligned} & \text { [MSVV,BJN]: } \\ & 1-\frac{1}{e} \text {-aprx } \end{aligned}$
Stochastic (i.i.d.)	[FMMM09]: 0.67-aprx i.i.d with known distribution	[FHKMS10,AWY]: $1-\epsilon$-aprx, if OPT $\gg \max v_{i a}$ and $n \gg m$	$\begin{aligned} & \text { [DH09]: } \\ & 1-\epsilon \text {-aprx, } \\ & \text { if } \\ & \text { OPT } \gg \max v_{i a} \end{aligned}$

Ad Allocation: Problems and Models

	Online Matching: $v_{i a}=s_{i a}=1$	Disp. Ads (DA): $s_{i a}=1$	AdWords (AW): $s_{i a}=v_{i a}$
Worst Case	Greedy: $\frac{1}{2}$, [KVV]: $1-\frac{1}{e}$-aprx	Inapproximable Free Disposal [FKMMP09]: $1-\frac{1}{e}$-aprx	[MSVV,BJN]: 1- $\frac{1}{e}$-aprx
Stochastic (i.i.d.)	[FMMM09]: 0.67-aprx i.i.d with known distribution	$\begin{aligned} & \text { [FHKMS10,AWY]: } \\ & 1-\epsilon \text {-aprx, } \\ & \text { if OPT } \gg \max v_{i a} \\ & \text { and } n \gg m \end{aligned}$	$\begin{aligned} & \text { [DH09]: } \\ & 1-\epsilon \text {-aprx, } \\ & \text { if } \\ & \text { OPT } \gg \max v_{i a} \end{aligned}$

DA: Free Disposal Model

- Advertisers may not complain about extra impressions, but no bonus points for extra impressions, either.

DA: Free Disposal Model

- Advertisers may not complain about extra impressions, but no bonus points for extra impressions, either.
- Value of advertiser $=$ sum of values of top C_{a} items she gets.

Greedy Algorithm

Assign impression to an advertiser maximizing Marginal Gain $=$ (imp. value -min . impression value).

Greedy Algorithm

Assign impression to an advertiser maximizing Marginal Gain $=$ (imp. value -min . impression value).

- Competitive Ratio: 1/2. [NWF78]
- Follows from submodularity of the value function.

Greedy Algorithm

Assign impression to an advertiser maximizing Marginal Gain $=$ (imp. value -min . impression value).

- Competitive Ratio: 1/2. [NWF78]
- Follows from submodularity of the value function.

Greedy Algorithm

Assign impression to an advertiser maximizing Marginal Gain $=$ (imp. value -min . impression value).

- Competitive Ratio: 1/2. [NWF78]
- Follows from submodularity of the value function.

Greedy Algorithm

Assign impression to an advertiser maximizing Marginal Gain $=$ (imp. value -min . impression value).

- Competitive Ratio: 1/2. [NWF78]
- Follows from submodularity of the value function.

Evenly Split?

A better algorithm?

Assign impression to an advertiser a maximizing (imp. value - β_{a}), where $\beta_{a}=$ average value of top C_{a} impressions assigned to a.

A better algorithm?

Assign impression to an advertiser a maximizing (imp. value - β_{a}), where $\beta_{a}=$ average value of top C_{a} impressions assigned to a.

A better algorithm?

Assign impression to an advertiser a maximizing (imp. value - β_{a}), where $\beta_{a}=$ average value of top C_{a} impressions assigned to a.

- Competitive Ratio: $\frac{1}{2}$ if $C_{a} \gg 1$. [FKMMP09]
- Primal-Dual Approach.

An Optimal Algorithm

Assign impression to an advertiser a: maximizing (imp. value - β_{a}),

- Greedy: $\beta_{a}=\min$. impression assigned to a.
- Better (pd-avg): $\beta_{a}=$ average value of top C_{a} impressions assigned to a.

An Optimal Algorithm

Assign impression to an advertiser a: maximizing (imp. value - β_{a}),

- Greedy: $\beta_{a}=\min$. impression assigned to a.
- Better (pd-avg): $\beta_{a}=$ average value of top C_{a} impressions assigned to a.
- Optimal (pd-exp): order value of edges assigned to a: $v(1) \geq v(2) \ldots \geq v\left(C_{a}\right):$

$$
\beta_{a}=\frac{1}{C_{a}(e-1)} \sum_{j=1}^{C_{a}} v(j)\left(1+\frac{1}{C_{a}}\right)^{j-1}
$$

An Optimal Algorithm

Assign impression to an advertiser a: maximizing (imp. value - β_{a}),

- Greedy: $\beta_{a}=$ min. impression assigned to a.
- Better (pd-avg): $\beta_{a}=$ average value of top C_{a} impressions assigned to a.
- Optimal (pd-exp): order value of edges assigned to a: $v(1) \geq v(2) \ldots \geq v\left(C_{a}\right):$

$$
\beta_{a}=\frac{1}{C_{a}(e-1)} \sum_{j=1}^{C_{a}} v(j)\left(1+\frac{1}{C_{a}}\right)^{j-1}
$$

- Thm: pd-exp achieves optimal competitive Ratio: $1-\frac{1}{e}-\epsilon$ if $C_{a}>O\left(\frac{1}{\epsilon}\right)$. [Feldman, Korula, M., Muthukrishnan, Pal 2009]

Online Generalized Assignment (with free disposal)

- Multiple Knapsack: Item i may have different value ($v_{i a}$) and different size $s_{i a}$ for different ads a.
- DA: $s_{i a}=1$, AW: $v_{i a}=s_{i a}$.

$$
\begin{aligned}
& \max \sum_{i, a} v_{i a} x_{i a} \\
& \min \sum_{a} C_{a} \beta_{a}+\sum_{i} z_{i} \\
& \sum_{a} x_{i a} \leq 1 \\
& \sum_{i} s_{i a} x_{i a} \leq C_{a} \\
& x_{i a} \geq 0 \quad(\forall i, a)
\end{aligned}
$$

Online Generalized Assignment (with free disposal)

- Multiple Knapsack: Item i may have different value ($v_{i a}$) and different size $s_{i a}$ for different ads a.
- DA: $s_{i a}=1$, AW: $v_{i a}=s_{i a}$.

$$
\begin{array}{rlrlr}
\max & \sum_{i, a} v_{i a} x_{i a} & & \min \sum_{a} C_{a} \beta_{a} & +\sum_{i} z_{i} \\
& & \\
\sum_{a} x_{i a} & \leq 1 & (\forall i) & s_{i a} \beta_{a}+z_{i} & \geq v_{i a} \\
\sum_{i} s_{i a} x_{i a} & \leq C_{a} & (\forall a) & \beta_{a}, z_{i} & \geq 0
\end{array} \quad(\forall i, a)
$$

- Offline Optimization: $1-\frac{1}{e}-\delta$-aprx[FGMS07,FV08].
- Thm[FKMMP09]: There exists a $1-\frac{1}{e}-\epsilon$-approximation algorithm if $\frac{C_{a}}{\max s_{i a}} \geq \frac{1}{\epsilon}$.

Proof Idea: Primal-Dual Analysis [BJN]

$$
\left.\left.\begin{array}{rlrl}
\max & \sum_{i, a} v_{i a} x_{i a} & & \\
\sum_{a} x_{i a} & \leq 1 & (\forall i) & \\
\sum_{i} s_{i a} x_{i a} & \leq C_{a} & (\forall a) & \min \sum_{a} C_{a} \beta_{a}+\sum_{i} z_{i} \\
x_{i a} & \geq 0 & (\forall i, a) & s_{i a} \beta_{a}+z_{i}
\end{array}\right] v_{i a} r r e r(\forall i, a)\right)
$$

Proof Idea: Primal-Dual Analysis [BJN]

$$
\begin{align*}
\max & \sum_{i, a} v_{i a} x_{i a} & & \\
\sum_{a} x_{i a} & \leq 1 & (\forall i) & \\
\sum_{i} s_{i a} x_{i a} & \leq C_{a} & (\forall a) & \min \sum_{a} C_{a} \beta_{a}+\sum_{i} z_{i} \\
x_{i a} & \geq 0 & (\forall i, a) & s_{i a} \beta_{a}+z_{i}
\end{align*} \underbrace{v_{i a}} \quad(\forall i, a)
$$

- Proof:

1. Start from feasible primal and dual $\left(x_{i a}=0, \beta_{a}=0\right.$, and $z_{i}=0$, i.e., Primal=Dual=0).
2. After each assignment, update x, β, z variables and keep primal and dual solutions.
3. Show Δ (Dual) $\leq\left(1-\frac{1}{e}\right) \Delta$ (Primal).

Ad Allocation: Problems and Models

	Online Matching: $v_{i a}=s_{i a}=1$	Disp. Ads (DA): $s_{i a}=1$	AdWords (AW) $s_{i a}=v_{i a}$
Worst Case	Greedy: $\frac{1}{2}$, [KVV]: $1-\frac{1}{e}$-aprx	Inapproximable Free Disposal [FKMMP09]: $1-\frac{1}{e} \text {-aprx }$	$\begin{aligned} & {[\mathrm{MSVV}, \mathrm{BJN}]:} \\ & 1-\frac{1}{e} \text {-aprx } \end{aligned}$
Stochastic (random arrival order)	[FMMM09]: 0.67-aprx	$\begin{aligned} & {[F H K M S 10, \text { AWY }]:} \\ & 1-\epsilon \text {-aprx, } \\ & \text { if oPT } \gg \max v_{i a} \\ & \text { and } n \gg m \end{aligned}$	$\begin{aligned} & \text { [DH09]: } \\ & 1-\epsilon \text {-aprx, } \\ & \text { if } \\ & \text { OPT } \gg \max v_{i a} \end{aligned}$

Outline: Online Allocation

- Online Stochastic Assignment Problems
- Online (Stochastic) Matching
- Online Generalized Assignment (with free disposal)
- Online Stochastic Packing
- Experimental Evaluation
- Online Learning and Allocation

Dual-based Algorithms in Practice

- Algorithm:
- Assign each item i to ad a that maximizes $v_{i a}-\beta_{a}$.

Dual-based Algorithms in Practice

- Algorithm:
- Assign each item i to ad a that maximizes $v_{i a}-\beta_{a}$.
- More practical compared to Primal Algorithms:
- Just keep one number β_{a} per advertiser.
- Suitable for Distributed Ad Serving Schemes.

Dual-based Algorithms in Practice

- Algorithm:
- Assign each item i to ad a that maximizes $v_{i a}-\beta_{a}$.
- More practical compared to Primal Algorithms:
- Just keep one number β_{a} per advertiser.
- Suitable for Distributed Ad Serving Schemes.
- Training-based Algorithms
- Compute β_{a} based on historical/sample data.

Dual-based Algorithms in Practice

- Algorithm:
- Assign each item i to ad a that maximizes $v_{i a}-\beta_{a}$.
- More practical compared to Primal Algorithms:
- Just keep one number β_{a} per advertiser.
- Suitable for Distributed Ad Serving Schemes.
- Training-based Algorithms
- Compute β_{a} based on historical/sample data.
- Hybrid approach (see also [MNS07]):
- Start with trained β_{a} (past history), blend in online algorithm.

Experiments: setup

- Real ad impression data from several large publishers
- 200k - 1.5 M impressions in simulation period
- 100-2600 advertisers
- Edge weights $=$ predicted click probability
- Efficiency: free disposal model
- Algorithms:
- greedy: maximum marginal value
- pd-avg, pd-exp: pure online primal-dual from [FKMMP09].
- dualbase: training-based primal-dual [FHKMS10]
- hybrid: convex combo of training based, pure online.
- Ip-weight: optimum efficiency

Experimental Evaluation: Summary

Algorithm	Avg Efficiency\%
opt	100
greedy	69
pd-avg	77
pd-exp	82
dualbase	87
hybrid	89

- pd-exp \& pd-avg outperform greedy by 9% and 14% (with more improvements in tight competition.)
- dualbase outperforms pure online algorithms by 6% to 12%.
- Hybrid has a mild improvement of 2% (up to 10%).
- pd-avg performs much better than the theoretical analysis.

Other Metrics: Fairness

- Qualititative definition: advertisers are "treated equally."

Other Metrics: Fairness

- Qualititative definition: advertisers are "treated equally."
- Quantitative definition that achieves this:
- varied and often subjective.

Other Metrics: Fairness

- Qualititative definition: advertisers are "treated equally."
- Quantitative definition that achieves this:
- varied and often subjective.
- One suggestion[FHKMS10]: Compute "fair" solution x^{*}, measure ℓ_{1} distance to x^{*}.

Other Metrics: Fairness

- Qualititative definition: advertisers are "treated equally."
- Quantitative definition that achieves this:
- varied and often subjective.
- One suggestion[FHKMS10]: Compute "fair" solution x^{*}, measure ℓ_{1} distance to x^{*}.
- Fair solution:
- Each a chooses best C_{a} impressions (highest $v_{i a}$)
- Repeat:
- Impressions shared among those who chose them.
- If some a not receiving C_{a} imps, a chooses an additional imp.

Other Metrics: Fairness

- Qualititative definition: advertisers are "treated equally."
- Quantitative definition that achieves this:
- varied and often subjective.
- One suggestion[FHKMS10]: Compute "fair" solution x^{*}, measure ℓ_{1} distance to x^{*}.
- Fair solution:
- Each a chooses best C_{a} impressions (highest $v_{i a}$)
- Repeat:
- Impressions shared among those who chose them.
- If some a not receiving C_{a} imps, a chooses an additional imp.
- Sharing policies:
- Equal: all interested advertisers share equally
- Proportional: share $\sim v_{i a}$.
- Stable matching: highest $v_{i a}$ gets all. [Thm: eff \geq opt/2]

Experiments: highlights

Experiments: highlights

Online Ad Allocation: Interesting Problems

- Online Stochastic DA:
- Simultaneous online worst-case \& stochastic optimization.
- Bicriteria fairness, efficiency analysis
- Tradeoff between delivery penalty and efficiency
- More complex stochastic modeling (drift, seasonality, etc.)
- Practical utility of primal algorithms?

Online Ad Allocation: Interesting Problems

- Online Stochastic DA:
- Simultaneous online worst-case \& stochastic optimization.
- Bicriteria fairness, efficiency analysis
- Tradeoff between delivery penalty and efficiency
- More complex stochastic modeling (drift, seasonality, etc.)
- Practical utility of primal algorithms?
- Online matching:
- Power of 3 choices?
- Gap between lower and upper bound (0.67<0.98).
- Apply "power of 2 choices" in stochastic optimization.

Results: Three Recent Papers

Google

- Online Stochastic Matching: Beating $1-\frac{1}{e}$, FOCS 2009.
- online stochastic matching in iid model with known dist.
- 0.67-approximation (idea: power of two choices)
- Feldman, Mehta, M., Muthukrishnan

Results: Three Recent Papers

- Online Stochastic Matching: Beating $1-\frac{1}{e}$, FOCS 2009.
- online stochastic matching in iid model with known dist.
- 0.67-approximation (idea: power of two choices)
- Feldman, Mehta, M., Muthukrishnan
- Online Stochastic Packing applied to Display Ad Allocation, ESA 2010.
- Online stoch. packing in random order model: online routing.
- $1-\epsilon$-approximation under assumptions (idea: learn dual variables.)
- Feldman, Henzinger, Korula, M., Stein

Results: Three Recent Papers

Google

- Online Stochastic Matching: Beating $1-\frac{1}{e}$, FOCS 2009.
- online stochastic matching in iid model with known dist.
- 0.67-approximation (idea: power of two choices)
- Feldman, Mehta, M., Muthukrishnan
- Online Stochastic Packing applied to Display Ad Allocation, ESA 2010.
- Online stoch. packing in random order model: online routing.
- $1-\epsilon$-approximation under assumptions (idea: learn dual variables.)
- Feldman, Henzinger, Korula, M., Stein
- Online Ad Assignment with Free Disposal, WINE 2009.
- online generalized assignment problems with free disposal.
- $1-\frac{1}{e}$-competitive algorithm (idea: primal-dual analysis.)
- Feldman, Korula, M., Muthukrishnan, Pal

Outline: Online Allocation

- Online Stochastic Assignment Problems
- Online (Stochastic) Matching
- Online Generalized Assignment (with free disposal)
- Online Stochastic Packing
- Experimental Results
- Online Learning and Allocation

Display Ad Delivery

Display Ad Delivery

Display Ad Delivery

Display Ad Delivery

Online Learning \& Allocation

- Value: Estimated Click-Through-Rate (CTR).

Online Learning \& Allocation

- Value: Estimated Click-Through-Rate (CTR).
- Combined online capacity planning \& learning?
- Budgeted Active Learning
- Madani, Lizotte, Greiner 2004, Active Model Selection.

Online Learning \& Allocation

- Value: Estimated Click-Through-Rate (CTR).
- Combined online capacity planning \& learning?
- Budgeted Active Learning
- Madani, Lizotte, Greiner 2004, Active Model Selection.
- Bayesian Budgeted Multi-armed Bandits:
- Guha, Munagala, Multi-armed Bandits with Metric Switching Costs.
- Goel, Khanna, Null, The Ratio Index for Budgeted Learning, with Applications.
- Guha, Munagala, Pal, Multi-armed Bandit with Delayed Feedback.

Online Learning \& Allocation

- Value: Estimated Click-Through-Rate (CTR).
- Combined online capacity planning \& learning?
- Budgeted Active Learning
- Madani, Lizotte, Greiner 2004, Active Model Selection.
- Bayesian Budgeted Multi-armed Bandits:
- Guha, Munagala, Multi-armed Bandits with Metric Switching Costs.
- Goel, Khanna, Null, The Ratio Index for Budgeted Learning, with Applications.
- Guha, Munagala, Pal, Multi-armed Bandit with Delayed Feedback.
- Budgeted Unknown-CTR Multi-armed Bandit
- Pandey, Olston 2007, Handling Advertisement of Unknown Quality.

Online CTR Learning: Mixed Explore/Exploit

- Pandey, Olston 2007, Handling Advertisement of Unknown Quality.

Online CTR Learning: Mixed Explore/Exploit

- Pandey, Olston 2007, Handling Advertisement of Unknown Quality.
- Algorithm: Revised Greedy
- Upon arrival of query of type i, assign it to an ad a maximizing $P_{i a}=\left(\hat{c}_{i a}+\sqrt{\frac{2 \ln n_{i}}{n_{i a}}}\right) b_{i a}$ where $\hat{c}_{i a}$ is the current estimate of CTR, $n_{i a}$ is the number of times i has been assigned to a, n_{i} is the number of queries of type i so far.

Online CTR Learning: Mixed Explore/Exploit

- Pandey, Olston 2007, Handling Advertisement of Unknown Quality.
- Algorithm: Revised Greedy
- Upon arrival of query of type i, assign it to an ad a maximizing $P_{i a}=\left(\hat{c}_{i a}+\sqrt{\frac{2 \ln n_{i}}{n_{i a}}}\right) b_{i a}$ where $\hat{c}_{i a}$ is the current estimate of CTR, $n_{i a}$ is the number of times i has been assigned to a, n_{i} is the number of queries of type i so far.
- Thm[PO07]: ALG $\geq \frac{\mathrm{OPT}}{2}-O(\ln n)$ where n is the number of arrivals.

Outline of this talk

- Ad serving in repeated auction settings
- General architecture.
- Allocation for budget constrained advertisers.
- Ad delivery for contract based settings
- Planning
- Ad Serving
- Other interactions
- Learning + allocation
- Learning + auction
- Auction + contracts

Three main theory/practice problems

Outline

Learning + Alloc

Hybrid ad serving

Online Learning \& Allocation

- Value: Estimated Click-Through-Rate (CTR).

Online Learning \& Allocation

- Value: Estimated Click-Through-Rate (CTR).
- Combined online capacity planning \& learning?
- Budgeted Active Learning
- Madani, Lizotte, Greiner 2004, Active Model Selection.

Online Learning \& Allocation

- Value: Estimated Click-Through-Rate (CTR).
- Combined online capacity planning \& learning?
- Budgeted Active Learning
- Madani, Lizotte, Greiner 2004, Active Model Selection.
- Bayesian Budgeted Multi-armed Bandits:
- Guha, Munagala, Multi-armed Bandits with Metric Switching Costs.
- Goel, Khanna, Null, The Ratio Index for Budgeted Learning, with Applications.
- Guha, Munagala, Pal, Multi-armed Bandit with Delayed Feedback.

Online Learning \& Allocation

- Value: Estimated Click-Through-Rate (CTR).
- Combined online capacity planning \& learning?
- Budgeted Active Learning
- Madani, Lizotte, Greiner 2004, Active Model Selection.
- Bayesian Budgeted Multi-armed Bandits:
- Guha, Munagala, Multi-armed Bandits with Metric Switching Costs.
- Goel, Khanna, Null, The Ratio Index for Budgeted Learning, with Applications.
- Guha, Munagala, Pal, Multi-armed Bandit with Delayed Feedback.
- Budgeted Unknown-CTR Multi-armed Bandit
- Pandey, Olston 2007, Handling Advertisement of Unknown Quality.

Online CTR Learning: Mixed Explore/Exploit

- Pandey, Olston 2007, Handling Advertisement of Unknown Quality.

Online CTR Learning: Mixed Explore/Exploit

- Pandey, Olston 2007, Handling Advertisement of Unknown Quality.
- Algorithm: Revised Greedy
- Upon arrival of query of type i, assign it to an ad a maximizing $P_{i a}=\left(\hat{c}_{i a}+\sqrt{\frac{2 \ln n_{i}}{n_{i a}}}\right) b_{i a}$ where $\hat{c}_{i a}$ is the current estimate of CTR, $n_{i a}$ is the number of times i has been assigned to a, n_{i} is the number of queries of type i so far.

Online CTR Learning: Mixed Explore/Exploit

- Pandey, Olston 2007, Handling Advertisement of Unknown Quality.
- Algorithm: Revised Greedy
- Upon arrival of query of type i, assign it to an ad a maximizing $P_{i a}=\left(\hat{c}_{i a}+\sqrt{\frac{2 \ln n_{i}}{n_{i a}}}\right) b_{i a}$ where $\hat{c}_{i a}$ is the current estimate of CTR, $n_{i a}$ is the number of times i has been assigned to a, n_{i} is the number of queries of type i so far.
- Thm[PO07]: ALG $\geq \frac{\mathrm{OPT}}{2}-O(\ln n)$ where n is the number of arrivals.

Online Learning \& Auction Incentives

[Devanur,Kakade'09, Babaioff,Sharma,Slivkins'09]

- Multi-Armed Bandit algorithms achieve an "implicit" exploration-exploitation tradeoff to get a regret of $O(\sqrt{T})$ (e.g., UCB).
- Can these be run in tandem with truthful auctions? (e.g., 2nd price for a single slot).

Online Learning \& Auction Incentives

[Devanur,Kakade'09, Babaioff,Sharma,Slivkins'09]

- Multi-Armed Bandit algorithms achieve an "implicit" exploration-exploitation tradeoff to get a regret of $O(\sqrt{T})$ (e.g., UCB).
- Can these be run in tandem with truthful auctions? (e.g., 2nd price for a single slot).
- A naive explore-exploit method gets $O\left(T^{2 / 3}\right)$ regret:
- Explore ads for the first phase, giving them out for free.
- Fix the CTRs thus learned in the first phase.
- Run 2nd price auction for the 2nd phase.

Online Learning \& Auction Incentives

[Devanur,Kakade'09, Babaioff,Sharma,Slivkins'09]

- Multi-Armed Bandit algorithms achieve an "implicit" exploration-exploitation tradeoff to get a regret of $O(\sqrt{T})$ (e.g., UCB).
- Can these be run in tandem with truthful auctions? (e.g., 2nd price for a single slot).
- A naive explore-exploit method gets $O\left(T^{2 / 3}\right)$ regret:
- Explore ads for the first phase, giving them out for free.
- Fix the CTRs thus learned in the first phase.
- Run 2nd price auction for the 2nd phase.
- Can you do better that this simpe decoupling?
- No!

Theorem
[DK09,BSS09] For every truthful auction (under certain assumptions), there exist bids, ctrs, s.t. regret $=\Omega\left(T^{2 / 3}\right)$.

Outline

Learning + Alloc

Hybrid ad serving

Hybrid ad serving: Contracts + Spot Auctions

Given a page view, and two types of advertisers:

- Contract-based.
- Auction-based.

Hybrid ad serving: Contracts + Spot Auctions

Given a page view, and two types of advertisers:

- Contract-based.
- Auction-based.
- Decide who wins and how much do they pay.
- Requirements:
- For each contract-advertiser, meet its demand.
- Implement the scheme using proxy-bidding for contract-advertisers in the spot auction.

Hybrid ad serving: Contracts + Spot Auctions

- Naive solution: If a contract-adv is eligible and has not finished demand, then let it win the spot. Bid infinity for all auctions.

Hybrid ad serving: Contracts + Spot Auctions

- Naive solution: If a contract-adv is eligible and has not finished demand, then let it win the spot. Bid infinity for all auctions.
- Optimize for revenue: If the auction pressure (price) is low then let the contract-adv win. Bid a low bid for all auctions.

Hybrid ad serving: Contracts + Spot Auctions

- Naive solution: If a contract-adv is eligible and has not finished demand, then let it win the spot. Bid infinity for all auctions.
- Optimize for revenue: If the auction pressure (price) is low then let the contract-adv win. Bid a low bid for all auctions.
- Unfair to contract-adv, since low auction-price \Rightarrow it is a lower value impression.

Hybrid ad serving: Contracts + Spot Auctions

- Naive solution: If a contract-adv is eligible and has not finished demand, then let it win the spot. Bid infinity for all auctions.
- Optimize for revenue: If the auction pressure (price) is low then let the contract-adv win. Bid a low bid for all auctions.
- Unfair to contract-adv, since low auction-price \Rightarrow it is a lower value impression.
- Ideally:
- Provide contract-adv with a representative allocation, an equal slice of impressions from each price-point.
- A price-oblivious scheme, i.e., bid without seeing the auction bids.
- Revenue per auction: average auction-price of impressions given away to contract-advertisers is at most some target t.

Obtaining representative allocations

Two main ideas:

1. Can implement any decreasing function $a(p)$ for fraction of impressions of auction-price p.

Obtaining representative allocations

Two main ideas:

1. Can implement any decreasing function $a(p)$ for fraction of impressions of auction-price p.

2. Solve the system for well chosen distance functions:

Minimize $\operatorname{dist}(U, a)$

$$
\begin{aligned}
& \text { s.t.: } \int_{p} a(p) f(p) d p=d \\
& \int_{p} p a(p) f(p) d p \leq t d
\end{aligned}
$$

Display Ad Delivery

Display Ad Delivery

Open Problems:

- Optimal combined online allocation \& learning.
- Feature selection and correlation in learning CTR.

Display Ad Delivery

Open Problems:

- Optimal combined online allocation \& learning.
- Feature selection and correlation in learning CTR.
- Optimal combined stochastic planning and serving?

Thank You

