Online Ad Serving: Theory and Practice

Vahab Mirrokni (Three papers in collaboration with Googlers)

Google Research, New York

October 20, 2010

- Pageviews (impressions) instead of queries.
- Display/Banner Ads, Video Ads, Mobile Ads.

- Pageviews (impressions) instead of queries.
- Display/Banner Ads, Video Ads, Mobile Ads.
- Cost-Per-Impression (CPM).
- ▶ Not Auction-based: offline negotiations + Online allocations.

- Pageviews (impressions) instead of queries.
- Display/Banner Ads, Video Ads, Mobile Ads.
- Cost-Per-Impression (CPM).
- ▶ Not Auction-based: offline negotiations + Online allocations.

Display/Banner Ads:

- ▶ Q1, 2010: One Trillion Display Ads in US. \$2.7 billion.
- ► Top Publishers: Facebook, Yahoo and Microsoft sites.
- ► Top Advertiser: AT&T, Verizon, Scottrade.

- Pageviews (impressions) instead of queries.
- Display/Banner Ads, Video Ads, Mobile Ads.
- Cost-Per-Impression (CPM).
- ▶ Not Auction-based: offline negotiations + Online allocations.

Display/Banner Ads:

- ▶ Q1, 2010: One Trillion Display Ads in US. \$2.7 billion.
- ► Top Publishers: Facebook, Yahoo and Microsoft sites.
- ► Top Advertiser: AT&T, Verizon, Scottrade.
- Ad Serving Systems e.g. Facebook, Google Doubleclick, AdMob.

- 1. Planning: Contracts/Commitments with Advertisers.
- 2. Ad Serving:
 - Targeting: Predicting value of impressions.
 - Ad Allocation: Assigning Impressions to Ads Online.

- 1. Planning: Contracts/Commitments with Advertisers.
- 2. Ad Serving:
 - Targeting: Predicting value of impressions.
 - Ad Allocation: Assigning Impressions to Ads Online.

- 1. Planning: Contracts/Commitments with Advertisers.
- 2. Ad Serving:
 - Targeting: Predicting value of impressions.
 - Ad Allocation: Assigning Impressions to Ads Online.

- 1. Planning: Contracts/Commitments with Advertisers.
- 2. Ad Serving:
 - Targeting: Predicting value of impressions.
 - Ad Allocation: Assigning Impressions to Ads Online.

- 1. Planning: Contracts/Commitments with Advertisers.
- 2. Ad Serving:
 - Targeting: Predicting value of impressions.
 - Ad Allocation: Assigning Impressions to Ads Online.

Objective Functions:

- Efficiency: Users and Advertisers. Revenue of the Publisher.
- Smoothness, Fairness, Delivery Penalty.

- Behavioral Targeting
 - Interest-based Advertising.
 - ► Yan, Liu, Wang, Zhang, Jiang, Chen, 2009, How much can Behavioral Targeting Help Online Advertising?

- Behavioral Targeting
 - Interest-based Advertising.
 - ► Yan, Liu, Wang, Zhang, Jiang, Chen, 2009, How much can Behavioral Targeting Help Online Advertising?
- Contextual Targeting
 - Information Retrieval (IR).
 - Broder, Fontoura, Josifovski, Riedel, A semantic approach to contextual advertising

- Behavioral Targeting
 - Interest-based Advertising.
 - ► Yan, Liu, Wang, Zhang, Jiang, Chen, 2009, How much can Behavioral Targeting Help Online Advertising?
- Contextual Targeting
 - Information Retrieval (IR).
 - Broder, Fontoura, Josifovski, Riedel, A semantic approach to contextual advertising
- Creative Optimization
 - Experimentation

Predicting value of Impressions for Display Ads

- Estimating Click-Through-Rate (CTR).
 - Budgeted Multi-armed Bandit
- Probability of Conversion.

Predicting value of Impressions for Display Ads

- Estimating Click-Through-Rate (CTR).
 - Budgeted Multi-armed Bandit
- Probability of Conversion.
- Long-term vs. Short-term value of display ads?
 - Archak, Mirrokni, Muthukrishnan, 2010 Graph-based Models.
 - Computing Adfactors based on AdGraphs
 - Markov Models for Advertiser-specific User Behavior

Contract-based Ad Delivery: Outline

- Basic Information
- Ad Planning: Reservation
- Ad Serving.
 - ► Targeting.
 - Online Ad Allocation

Outline: Online Allocation

Online Stochastic Assignment Problems

- Online (Stochastic) Matching
- Online Generalized Assignment (with free disposal)
- Online Stochastic Packing
- Experimental Results
- Online Learning and Allocation

Online Ad Allocation

• When page arrives, assign an eligible ad.

value of assigning page i to ad a: via

Online Ad Allocation

- When page arrives, assign an eligible ad.
 - value of assigning page i to ad a: via
- Display Ads (DA) problem:
 - Maximize value of ads served: $\max \sum_{i,a} v_{ia} x_{ia}$
 - Capacity of ad *a*: $\sum_{i \in A(a)} x_{ia} \leq C_a$

Online Ad Allocation

- When page arrives, assign an eligible ad.
 - revenue from assigning page i to ad a: b_{ia}
- "AdWords" (AW) problem:
 - Maximize revenue of ads served: $\max \sum_{i,a} b_{ia} x_{ia}$
 - Budget of ad a: $\sum_{i \in A(a)} b_{ia} x_{ia} \leq B_a$

General Form of LP

$$\max \sum_{i,a} v_{ia} x_{ia}$$

$$\sum_{a} x_{ia} \leq 1 \qquad (\forall i)$$

$$\sum_{i} s_{ia} x_{ia} \leq C_{a} \qquad (\forall a)$$

$$x_{ia} \geq 0 \qquad (\forall i, a)$$

Online Matching: Disp. Ads (DA): AdWords (AW):
$$v_{ia} = s_{ia} = 1$$
 $s_{ia} = 1$ $s_{ia} = v_{ia}$

General Form of LP

$$\max \sum_{i,a} v_{ia} x_{ia}$$

 $\sum_{a} x_{ia} \leq 1$ ($\forall i$)
 $\sum_{i} s_{ia} x_{ia} \leq C_{a}$ ($\forall a$)
 $x_{ia} \geq 0$ ($\forall i, a$)

	Online Matching:	Disp. Ads (DA):	AdWords (AW):
	$v_{ia}=s_{ia}=1$	$s_{ia} = 1$	$s_{ia} = v_{ia}$
Worst-Case	Greedy: $\frac{1}{2}$, [KVV]: $1 - \frac{1}{e}$ -aprx	Inapproximable	$[MSVV,BJN]: 1 - \frac{1}{e} - aprx$

Ad Allocation: Problems and Models

	Online Matching:	Disp. Ads (DA):	AdWords (AW):
	$v_{ia} = s_{ia} = 1$	$s_{ia} = 1$	$s_{ia} = v_{ia}$
Worst Case	Greedy: $\frac{1}{2}$, [KVV]: $1 - \frac{1}{e}$ -aprx	Inapproximable ?	$\frac{[MSVV,BJN]}{1-\frac{1}{e}-aprx}$

Ad Allocation: Problems and Models

	Online Matching:	Disp. Ads (DA):	AdWords (AW):
	$v_{ia}=s_{ia}=1$	$s_{ia} = 1$	$s_{ia} = v_{ia}$
Worst Case	Greedy: $\frac{1}{2}$,	Inapproximable	[MSVV,BJN]:
	[KVV]: $1 - \frac{1}{e}$ -aprx	?	$1 - \frac{1}{e}$ -aprx
Stochastic (i.i.d.)			[DH09]:
		2	$1 - \epsilon$ -aprx,
			if
			OPT ≫ max v _{ia}

Stochastic i.i.d model:

- i.i.d model with known distribution
- random order model (i.i.d model with unknown distribution)

Ad Allocation: Problems and Models

	Online Matching:	Disp. Ads (DA):	AdWords (AW):
	$v_{ia}=s_{ia}=1$	$s_{ia} = 1$	$s_{ia} = v_{ia}$
Worst Case	Greedy: $\frac{1}{2}$,	Inapproximable	[MSVV,BJN]:
	[KVV]: $1 - \frac{1}{e}$ -aprx	?	$1 - \frac{1}{e}$ -aprx
Stochastic (i.i.d.)	[FMMM09]:	2	[DH09]:
	0.67-aprx		$1 - \epsilon$ -aprx,
	i.i.d with known	•	if
	distribution		OPT ≫ max v _{ia}

Stochastic i.i.d model:

- i.i.d model with known distribution
- random order model (i.i.d model with unknown distribution)

Online Stochastic Matching: Motivation

 Pageview supply from the past should tell us something about the future [Parkes, Sandholm, SSA 2005][Abrams, Mendelevitch, Tomlin, EC 07] [Boutilier, Parkes, Sandholm, Walsh AAAI 08].

Online Stochastic Matching: Motivation

- Pageview supply from the past should tell us something about the future [Parkes, Sandholm, SSA 2005][Abrams, Mendelevitch, Tomlin, EC 07] [Boutilier, Parkes, Sandholm, Walsh AAAI 08].
- Primal Algorithm:
 - Construct an expected instance,
 - Compute an optimal solution to this expected instance,
 - Use this solution to guide the online allocation.

Online Stochastic Matching: Motivation

- Pageview supply from the past should tell us something about the future [Parkes, Sandholm, SSA 2005][Abrams, Mendelevitch, Tomlin, EC 07] [Boutilier, Parkes, Sandholm, Walsh AAAI 08].
- Primal Algorithm:
 - Construct an expected instance,
 - Compute an optimal solution to this expected instance,
 - Use this solution to guide the online allocation.
- Can we extend the theory of online algorithms to this architecture?

Online Stochastic Matching: iid (known dist.)

Given (offline):

- Bipartite graph G = (A, I, E),
- Distribution *D* over *I*. Online:
- *n* indep. draws from *D*.
- Must assign nodes upon arrival.

Primal Algorithm: "Two-suggested-matchings"

"ALG is α -approximation?" if w.h.p., $\frac{ALG(H)}{OPT(H)} \ge \alpha$

Simple Primal Algorithm:

- ► Find one matching in expected graph *G* offline, and try to apply it online.
- Tight $1 \frac{1}{e}$ -approximation.

Primal Algorithm: "Two-suggested-matchings"

"ALG is α -approximation?" if w.h.p., $\frac{ALG(H)}{OPT(H)} \ge \alpha$

Simple Primal Algorithm:

- ► Find one matching in expected graph *G* offline, and try to apply it online.
- Tight $1 \frac{1}{e}$ -approximation.
- Better Algorithm: Two-Suggested-Matchings
 - ► Offline: Find two disjoint matchings, blue(B) and red(R), on the expected graph G.
 - Online: try the blue matching first, then if that doesn't work, try the red one.

Primal Algorithm: "Two-suggested-matchings"

"ALG is α -approximation?" if w.h.p., $\frac{ALG(H)}{OPT(H)} \ge \alpha$

Simple Primal Algorithm:

- ► Find one matching in expected graph *G* offline, and try to apply it online.
- Tight $1 \frac{1}{e}$ -approximation.

Better Algorithm: Two-Suggested-Matchings

- ► Offline: Find two disjoint matchings, blue(B) and red(R), on the expected graph G.
- Online: try the blue matching first, then if that doesn't work, try the red one.

• Thm: Tight
$$\frac{1-2/e^2}{4/3-2/3e} \ge 0.67$$

(Feldman, M., M., Muthukrishnan, 2009).

Background: Balls in bins

Suppose *n* balls thrown into *n* bins, i.i.d. uniform.

Background: Balls in bins

- Suppose *n* balls thrown into *n* bins, i.i.d. uniform.
- ▶ # non-empty bins concentrates:
Background: Balls in bins

- Suppose n balls thrown into n bins, i.i.d. uniform.
- # non-empty bins concentrates:
 - B = particular subset of bins.

Background: Balls in bins

- Suppose n balls thrown into n bins, i.i.d. uniform.
- # non-empty bins concentrates:
 - B = particular subset of bins.
 - s = # bins in B with ≥ 1 ball.

Background: Balls in bins

- Suppose n balls thrown into n bins, i.i.d. uniform.
- # non-empty bins concentrates:
 - B = particular subset of bins.
 - s = # bins in B with ≥ 1 ball.

• Then w.h.p.,
$$s \approx |B|(1-\frac{1}{e})$$
.

Analysis: Two-suggested-matching Algorithm

Proof Ideas: Balls-into-Bins concentration inequalities, structural properties of min-cuts, etc.

Analysis: Two-suggested-matching Algorithm

- Proof Ideas: Balls-into-Bins concentration inequalities, structural properties of min-cuts, etc.
- ▶ Bounding ALG: Classify a ∈ A based on its neighbors in the blue and red matchings: A_{BR}, A_{BB}, A_B, A_R

$$ALG \ge \left(1 - rac{1}{e^2}
ight)|A_{BB}| + \left(1 - rac{2}{e^2}
ight)|A_{BR}| + \left(1 - rac{3}{2e}
ight)(|A_B| + |A_R|)$$

Analysis: Two-suggested-matching Algorithm

- Proof Ideas: Balls-into-Bins concentration inequalities, structural properties of min-cuts, etc.
- ▶ Bounding ALG: Classify a ∈ A based on its neighbors in the blue and red matchings: A_{BR}, A_{BB}, A_B, A_R

$$ALG \ge \left(1 - rac{1}{e^2}
ight)|A_{BB}| + \left(1 - rac{2}{e^2}
ight)|A_{BR}| + \left(1 - rac{3}{2e}
ight)(|A_B| + |A_R|)$$

▶ Bounding OPT: Find min-cut in augmented expected graph *G*, and use it min-cut in *G* as a "guide" for cut in each scenario.

- 1. Find a maximum matching in G.
- 2. Use that matching as nodes arrive online.

- 1. Find a maximum matching in G.
- 2. Use that matching as nodes arrive online.
- Does no better than 1 1/e.

- 1. Find a maximum matching in G.
- 2. Use that matching as nodes arrive online.
- Does no better than 1 1/e.
- Proof:
 - Suppose G = complete graph.

- 1. Find a maximum matching in G.
- 2. Use that matching as nodes arrive online.
- Does no better than 1 1/e.
- Proof:
 - Suppose G = complete graph.
 - Then OPT(H) = n.

- 1. Find a maximum matching in G.
- 2. Use that matching as nodes arrive online.
- Does no better than 1 1/e.
- Proof:
 - Suppose G = complete graph.
 - Then OPT(H) = n.
 - ► But w.h.p. only 1 1/e fraction of *I* will ever arrive. ⇒ ALG ≈ (1 - 1/e)n.

- 1. Find a maximum matching in G.
- 2. Use that matching as nodes arrive online.
- Does no better than 1 1/e.
- Proof:
 - Suppose G = complete graph.
 - Then OPT(H) = n.
 - ► But w.h.p. only 1 1/e fraction of *I* will ever arrive. \implies ALG $\approx (1 - 1/e)n$.
- In fact, this algorithm does achieve 1 1/e (in paper).

- 1. Offline: Find two disjoint matchings
- 2. Online: try the first one, then if that doesn't work, try the second one.

Warmup: complete graph

► Two disjoint perfect matchings: blue (1-ary), red (2-ary).

Warmup: complete graph

- ► Two disjoint perfect matchings: blue (1-ary), red (2-ary).
- Union of matchings = cycles with alt. blue and red edges

For particular node $a \in A$:

$$\begin{aligned} \Pr[a \text{ is chosen }] &\geq & \Pr[i \text{ arrives once, or } i' \text{ arrives twice}] \\ &= & 1 - \Pr[i \text{ never arrives } \& i' \text{ arrives } \le \text{ once}] \\ &= & 1 - \left((1 - 2/n)^n + n(1/n)(1 - 2/n)^{n-1}\right) \\ &\approx & 1 - 2/e^2 \end{aligned}$$

Thus, E[# nodes in A chosen] $\approx (1 - 2/e^2)n \approx .729n$ (This also concentrates...)

► How to find a matching with flow.

How to find a matching with flow.

How to find a matching with flow.

Solve an "augmented flow" problem instead.

Solve an "augmented flow" problem instead.

Color the edges as shown

- When node $i \in I$ arrives:
 - Try the blue edge first, then the red edge.

- Consider a node $a \in A$:
 - $\Pr[a \text{ is chosen }] \ge \Pr[i \text{ arrives once, or } i' \text{ arrives twice}]$

• Classify $a \in A$ based on its neighbors in the flow.

 $|\text{flow}| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|$

• Classify $a \in A$ based on its neighbors in the flow.

 $|flow| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|$

Using Balls-in-bins concentration results (Azuma's inequality):

• Classify $a \in A$ based on its neighbors in the flow.

 $|flow| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|$

Using Balls-in-bins concentration results (Azuma's inequality):

• $a \in A_B$. We get at least $|A_B|(1-1/e)$.

• Classify $a \in A$ based on its neighbors in the flow.

 $|flow| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|$

Using Balls-in-bins concentration results (Azuma's inequality):

- $a \in A_B$. We get at least $|A_B|(1-1/e)$.
- $a \in A_{BR}$. We get at least $|A_{BR}|(1-2/e^2)$.

• Classify $a \in A$ based on its neighbors in the flow.

 $|flow| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|$

Using Balls-in-bins concentration results (Azuma's inequality):

- $a \in A_B$. We get at least $|A_B|(1-1/e)$.
- $a \in A_{BR}$. We get at least $|A_{BR}|(1-2/e^2)$.
- $a \in A_{BB}$. We get at least $|A_{BB}|(1-1/e^2)$.

• Classify $a \in A$ based on its neighbors in the flow.

 $|flow| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|$

Using Balls-in-bins concentration results (Azuma's inequality):

a ∈ *A_B*. We get at least |*A_B*|(1 − 1/*e*). *a* ∈ *A_{BR}*. We get at least |*A_{BR}*|(1 − 2/*e*²). *a* ∈ *A_{BB}*. We get at least |*A_{BB}*|(1 − 1/*e*²). *a* ∈ *A_R*. We get at least |*A_B*|(1 − 2/*e*).

• Classify $a \in A$ based on its neighbors in the flow.

 $|flow| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|$

Using Balls-in-bins concentration results (Azuma's inequality):

▶ Bound on ALG in terms of flow (using $|B| \ge |R|$):

$$ALG \geq \left(1 - rac{1}{e^2}
ight)|A_{BB}| + \left(1 - rac{2}{e^2}
ight)|A_{BR}| + \left(1 - rac{3}{2e}
ight)(|A_B| + |A_R|)$$

Bounding OPT

- ▶ Find min-cut in augmented flow graph (from G).
- E_{δ} is a matching.
- By max-flow min-cut,

$$|flow| = 2(|A_T| + |I_S|) + |E_{\delta}|.$$

Bounding OPT

- OPT $\leq \operatorname{cut}(H)$. (Remember $H = (A, \hat{I}, \hat{E})$.)
- ▶ Use min-cut in G as "guide" for cut in H.
- W.h.p., $|I_S| \approx |\hat{I}_S|$. E_{δ} ?
- ▶ For any node $a \in S$ with an edge in the cut in $\hat{E}(H)$, move it to $T \Rightarrow \#$ nonempty nodes in $E_{\delta} \Rightarrow (1 \frac{1}{e})E_{\delta}$.

Putting things together

Eventually (after moving a few nodes around) you get

• $OPT \lesssim |I_S| + |A_T| + (1 - 1/e)|E_{\delta}|.$

Putting things together

- Eventually (after moving a few nodes around) you get
 - $OPT \leq |I_S| + |A_T| + (1 1/e)|E_{\delta}|.$
- A lemma relating the decomposition to the cut gives
 - $|E_{\delta}| \leq \frac{2}{3}|A_{BR}| + \frac{4}{3}|A_{BB}| + |A_B| + \frac{1}{3}|A_R|,$
Putting things together

Eventually (after moving a few nodes around) you get

• $OPT \leq |I_S| + |A_T| + (1 - 1/e)|E_{\delta}|.$

A lemma relating the decomposition to the cut gives

•
$$|E_{\delta}| \leq \frac{2}{3}|A_{BR}| + \frac{4}{3}|A_{BB}| + |A_B| + \frac{1}{3}|A_R|,$$

- which, when combined with
 - $|\text{flow}| = 2(|A_T| + |I_S|) + |E_{\delta}|$
 - $|\text{flow}| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|,$
 - ► ALG ≥ $(1 \frac{1}{e^2})|A_{BB}| + (1 \frac{2}{e^2})|A_{BR}| + (1 \frac{3}{2e})(|A_B| + |A_R|),$

gives

$$\begin{array}{l} \bullet \quad \frac{ALG}{OPT} \geq \min\{\frac{1-1/e^2}{5/3-4/3e}, \frac{1-2/e^2}{4/3-2/3e}, \frac{1-3/2e}{1-1/e}\} \\ \bullet \quad \frac{ALG}{OPT} \geq .67 \end{array}$$

Putting things together

Eventually (after moving a few nodes around) you get

• $OPT \leq |I_S| + |A_T| + (1 - 1/e)|E_{\delta}|.$

A lemma relating the decomposition to the cut gives

•
$$|E_{\delta}| \leq \frac{2}{3}|A_{BR}| + \frac{4}{3}|A_{BB}| + |A_B| + \frac{1}{3}|A_R|,$$

- which, when combined with
 - $|\text{flow}| = 2(|A_T| + |I_S|) + |E_{\delta}|$
 - $|\text{flow}| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|,$
 - ► ALG ≥ $(1 \frac{1}{e^2})|A_{BB}| + (1 \frac{2}{e^2})|A_{BR}| + (1 \frac{3}{2e})(|A_B| + |A_R|),$

gives

The analysis is tight.

Ad Allocation: Problems and Models

	Online Matching:	Disp. Ads (DA):	AdWords (AW):
	$v_{ia} = s_{ia} = 1$	$s_{ia} = 1$	$s_{ia} = v_{ia}$
Worst Case	Greedy: $\frac{1}{2}$,	Inapproximable	[MSVV,BJN]:
	[KVV]: $1 - \frac{1}{e}$ -aprx	?	$1 - \frac{1}{e}$ -aprx
	[FMMM09]:		[DH09]:
Stochastic (i.i.d.)	0.67-aprx	7	$1-\epsilon$ -aprx,
	i.i.d with known	•	if
	distribution		OPT ≫ max v _{ia}

Ad Allocation: Problems and Models

	Online Matching:	Disp. Ads (DA):	AdWords (AW):
	$v_{ia} = s_{ia} = 1$	$s_{ia} = 1$	$s_{ia} = v_{ia}$
Worst Case	Greedy: $\frac{1}{2}$,	Inapproximable	[MSVV,BJN]:
	[KVV]: $1 - \frac{1}{e}$ -aprx	?	$1 - \frac{1}{e}$ -aprx
	[FMMM09]:	[FHKMS10,AWY]:	[DH09]:
Stochastic (i.i.d.)	0.67-aprx	$1 - \epsilon$ -aprx,	$1 - \epsilon$ -aprx,
	i.i.d with known	if OPT $\gg \max v_{ia}$	if
	distribution	and $n \gg m$	OPT $\gg \max v_{ia}$

random order = i.i.d. model with unknown distribution

Algorithm:

- Observe the first ϵ fraction sample of impressions.
- Learn a dual variable for each ad β_a, by solving the dual program on the sample.
- Assign each impression *i* to ad a that maximizes $v_{ia} \beta_a$.

Algorithm:

- Observe the first ϵ fraction sample of impressions.
- Learn a dual variable for each ad β_a, by solving the dual program on the sample.
- Assign each impression *i* to ad a that maximizes $v_{ia} \beta_a$.

Feldman, Henzinger, Korula, M., Stein 2010 Thm[FHKMS10,AWY]: W.h.p, this algorithm is a $(1 - O(\epsilon))$ -aprx, as long as each item has low value $(v_{ia} \leq \frac{\epsilon \text{OPT}}{m \log n})$, and large capacity $(C_a \leq \frac{m \log n}{\epsilon^3})$

Feldman, Henzinger, Korula, M., Stein 2010 Thm[FHKMS10,AWY]: W.h.p, this algorithm is a $(1 - O(\epsilon))$ -aprx, as long as each item has low value $(v_{ia} \leq \frac{\epsilon \text{OPT}}{m \log n})$, and large capacity $(C_a \leq \frac{m \log n}{\epsilon^3})$

Fact: If optimum $\beta_{\textit{a}}^{*}$ are known, this alg. finds \mbox{OPT}

▶ Proof: Comp. slackness. Given β_a^* , compute x^* as follows: $x_{ia}^* = 1$ if $a = \operatorname{argmax}(v_{ia} - \beta_a^*)$.

Feldman, Henzinger, Korula, M., Stein 2010 Thm[FHKMS10,AWY]: W.h.p, this algorithm is a $(1 - O(\epsilon))$ -aprx, as long as each item has low value $(v_{ia} \leq \frac{\epsilon \text{OPT}}{m \log n})$, and large capacity $(C_a \leq \frac{m \log n}{\epsilon^3})$

Fact: If optimum $\beta_{\textit{a}}^{*}$ are known, this alg. finds \mbox{OPT}

Proof: Comp. slackness. Given β^{*}_a, compute x^{*} as follows: x^{*}_{ia} = 1 if a = argmax(v_{ia} − β^{*}_a).

Lemma: In the random order model, W.h.p., the sample β_a' are close to $\beta_a^*.$

Extending DH09.

General Stochastic Packing LPs

- m fixed resources with capacity C_a
- Items i arrive online with options O_i, values v_{io}, rsrc. use s_{ioa}.
 - Choose $o \in O_i$, using up capacity s_{ioa} in all a.

Thm[FHKMS10,AWY]: W.h.p., the PD algorithm is a $(1 - O(\epsilon))$ -aprx, as long as items have low value $(v_{io} \leq \frac{\epsilon^{OPT}}{\log n})$ and small size $(s_{ioa} \leq \frac{\epsilon^3 C_a}{\log n})$.

General Stochastic Packing LPs

- m fixed resources with capacity C_a
- Items i arrive online with options O_i, values v_{io}, rsrc. use s_{ioa}.
 - Choose $o \in O_i$, using up capacity s_{ioa} in all a.

Thm[FHKMS10,AWY]: W.h.p., the PD algorithm is a $(1 - O(\epsilon))$ -aprx, as long as items have low value $(v_{io} \leq \frac{\epsilon^{OPT}}{\log n})$ and small size $(s_{ioa} \leq \frac{\epsilon^3 C_a}{\log n})$.

Other Results and Extensions (random order model):

► Agrawal, Wang, Ye: Updating dual variables by periodic solution of the dual program: C_a ≤ m log n / ε²/_{c²} or s_{ioa} ≤ ε²C_a/M

General Stochastic Packing LPs

- m fixed resources with capacity C_a
- Items i arrive online with options O_i, values v_{io}, rsrc. use s_{ioa}.
 - Choose $o \in O_i$, using up capacity s_{ioa} in all a.

Thm[FHKMS10,AWY]: W.h.p., the PD algorithm is a $(1 - O(\epsilon))$ -aprx, as long as items have low value $(v_{io} \leq \frac{\epsilon^{OPT}}{\log n})$ and small size $(s_{ioa} \leq \frac{\epsilon^3 C_a}{\log n})$.

Other Results and Extensions (random order model):

- ► Agrawal, Wang, Ye: Updating dual variables by periodic solution of the dual program: C_a ≤ m log n / ε² or s_{ioa} ≤ ε²C_a/M
- Vee, Vassilvitskii , Shanmugasundaram 2010: extension to convex objective functions: Using KKT conditions.

Ad Allocation: Problems and Models

	Online Matching:	Disp. Ads (DA):	AdWords (AW):
	$v_{ia} = s_{ia} = 1$	$s_{ia} = 1$	$s_{ia} = v_{ia}$
Worst Case	Greedy: $\frac{1}{2}$,	Inapproximable	[MSVV,BJN]:
	[KVV]: $1 - \frac{1}{e}$ -aprx	?	$1 - \frac{1}{e}$ -aprx
	[FMMM09]:	[FHKMS10,AWY]:	[DH09]:
Stochastic (i.i.d.)	0.67-aprx	$1 - \epsilon$ -aprx,	$1 - \epsilon$ -aprx,
	i.i.d with known	if OPT $\gg \max v_{ia}$	if
	distribution	and $n \gg m$	OPT ≫ max v _{ia}

Ad Allocation: Problems and Models

	Online Matching:	Disp. Ads (DA):	AdWords (AW):
	$v_{ia} = s_{ia} = 1$	$s_{ia} = 1$	$s_{ia} = v_{ia}$
		Inapproximable	
Worst Case	Greedy: $\frac{1}{2}$, [KVV]: $1 - \frac{1}{e}$ -aprx	Free Disposal [FKMMP09]: $1 - \frac{1}{e}$ -aprx	$\frac{[MSVV,BJN]}{1 - \frac{1}{e}}$ -aprx
	[FMMM09]:	[FHKMS10,AWY]:	[DH09]:
Stochastic (i.i.d.)	0.67-aprx	$1 - \epsilon$ -aprx,	$1 - \epsilon$ -aprx,
	i.i.d with known	if OPT $\gg \max v_{ia}$	if
	distribution	and $n \gg m$	OPT $\gg \max v_{ia}$

 Advertisers may not complain about extra impressions, but no bonus points for extra impressions, either.

- Advertisers may not complain about extra impressions, but no bonus points for extra impressions, either.
- Value of advertiser = sum of values of top C_a items she gets.

Assign impression to an advertiser

maximizing Marginal Gain = (imp. value - min. impression value).

Assign impression to an advertiser

maximizing Marginal Gain = (imp. value - min. impression value).

- Competitive Ratio: 1/2. [NWF78]
 - Follows from submodularity of the value function.

Assign impression to an advertiser

maximizing Marginal Gain = (imp. value - min. impression value).

Competitive Ratio: 1/2. [NWF78]

Follows from submodularity of the value function.

Assign impression to an advertiser

maximizing Marginal Gain = (imp. value - min. impression value).

Competitive Ratio: 1/2. [NWF78]

Follows from submodularity of the value function.

Assign impression to an advertiser

maximizing Marginal Gain = (imp. value - min. impression value).

Competitive Ratio: 1/2. [NWF78]

Follows from submodularity of the value function.

A better algorithm?

Assign impression to an advertiser a maximizing (imp. value - β_a), where β_a = average value of top C_a impressions assigned to a.

A better algorithm?

A better algorithm?

- Competitive Ratio: $\frac{1}{2}$ if $C_a >> 1$. [FKMMP09]
 - Primal-Dual Approach.

An Optimal Algorithm

Assign impression to an advertiser *a*: maximizing (imp. value - β_a),

- Greedy: $\beta_a = \min$. impression assigned to *a*.
- Better (pd-avg): β_a = average value of top C_a impressions assigned to a.

An Optimal Algorithm

Assign impression to an advertiser *a*: maximizing (imp. value - β_a),

- Greedy: $\beta_a = \min$. impression assigned to *a*.
- Better (pd-avg): β_a = average value of top C_a impressions assigned to a.
- ▶ Optimal (pd-exp): order value of edges assigned to a: v(1) ≥ v(2)... ≥ v(C_a):

$$\beta_{a} = rac{1}{C_{a}(e-1)} \sum_{j=1}^{C_{a}} v(j)(1+rac{1}{C_{a}})^{j-1}$$

An Optimal Algorithm

Assign impression to an advertiser *a*: maximizing (imp. value - β_a),

- Greedy: $\beta_a = \min$. impression assigned to *a*.
- Better (pd-avg): β_a = average value of top C_a impressions assigned to a.
- ▶ Optimal (pd-exp): order value of edges assigned to a: v(1) ≥ v(2)... ≥ v(C_a):

$$\beta_a = \frac{1}{C_a(e-1)} \sum_{j=1}^{C_a} v(j) (1 + \frac{1}{C_a})^{j-1}$$

► Thm: pd-exp achieves optimal competitive Ratio: 1 - ¹/_e - ε if C_a > O(¹/_ε). [Feldman, Korula, M., Muthukrishnan, Pal 2009]

Online Generalized Assignment (with free disposal)

Multiple Knapsack: Item i may have different value (v_{ia}) and different size s_{ia} for different ads a.

• DA:
$$s_{ia} = 1$$
, AW: $v_{ia} = s_{ia}$.

Online Generalized Assignment (with free disposal)

Multiple Knapsack: Item i may have different value (v_{ia}) and different size s_{ia} for different ads a.

• DA:
$$s_{ia} = 1$$
, AW: $v_{ia} = s_{ia}$.

- Offline Optimization: $1 \frac{1}{e} \delta$ -aprx[FGMS07,FV08].
- ► Thm[FKMMP09]: There exists a $1 \frac{1}{e} \epsilon$ -approximation algorithm if $\frac{C_a}{\max s_{ia}} \ge \frac{1}{\epsilon}$.

Proof Idea: Primal-Dual Analysis [BJN]

$$\begin{array}{rcl} \max \sum_{i,a} v_{ia} x_{ia} \\ \sum_{a} x_{ia} &\leq 1 & (\forall i) \\ \sum_{a} s_{ia} x_{ia} &\leq C_{a} & (\forall a) & \min \sum_{a} C_{a} \beta_{a} + \sum_{i} z_{i} \\ & & s_{ia} \beta_{a} + z_{i} \geq v_{ia} & (\forall i, a) \\ & & x_{ia} \geq 0 & (\forall i, a) & \beta_{a}, z_{i} \geq 0 & (\forall i, a) \end{array}$$

Proof Idea: Primal-Dual Analysis [BJN]

$$\max \sum_{i,a} v_{ia} x_{ia}$$

$$\sum_{a} x_{ia} \leq 1 \qquad (\forall i)$$

$$\sum_{a} s_{ia} x_{ia} \leq C_{a} \qquad (\forall a) \qquad \min \sum_{a} C_{a}\beta_{a} + \sum_{i} z_{i}$$

$$\sum_{i} s_{ia} x_{ia} \leq C_{a} \qquad (\forall a) \qquad s_{ia}\beta_{a} + z_{i} \geq v_{ia} \qquad (\forall i, a)$$

$$x_{ia} \geq 0 \qquad (\forall i, a) \qquad \beta_{a}, z_{i} \geq 0 \qquad (\forall i, a)$$

Proof:

- 1. Start from feasible primal and dual ($x_{ia} = 0$, $\beta_a = 0$, and $z_i = 0$, i.e., Primal=Dual=0).
- 2. After each assignment, update x, β, z variables and keep primal and dual solutions.
- 3. Show $\Delta(\text{Dual}) \leq (1 \frac{1}{e})\Delta(\text{Primal})$.

Ad Allocation: Problems and Models

	Online Matching:	Disp. Ads (DA):	AdWords (AW):
	$v_{ia}=s_{ia}=1$	$s_{ia} = 1$	$s_{ia} = v_{ia}$
		Inapproximable	
Worst Case	Greedy: $\frac{1}{2}$, [KVV]: $1 - \frac{1}{e}$ -aprx	Free Disposal [FKMMP09]: $1-\frac{1}{e}$ -aprx	[MSVV,BJN]: $1 - \frac{1}{e}$ -aprx
Stochastic		[FHKMS10,AWY]:	[DH09]:
(random	[FMMM09]:	$1 - \epsilon$ -aprx,	$1 - \epsilon$ -aprx,
arrival	0.67-aprx	if OPT ≫ max v _{ia}	if
order)		and $n \gg m$	OPT $\gg \max v_{ia}$

Outline: Online Allocation

Online Stochastic Assignment Problems

- Online (Stochastic) Matching
- Online Generalized Assignment (with free disposal)
- Online Stochastic Packing
- Experimental Evaluation
- Online Learning and Allocation
- Algorithm:
 - Assign each item *i* to ad *a* that maximizes $v_{ia} \beta_a$.

- Algorithm:
 - Assign each item *i* to ad *a* that maximizes $v_{ia} \beta_a$.

- More practical compared to Primal Algorithms:
 - Just keep one number β_a per advertiser.
 - Suitable for Distributed Ad Serving Schemes.

- Algorithm:
 - Assign each item *i* to ad *a* that maximizes $v_{ia} \beta_a$.

- More practical compared to Primal Algorithms:
 - Just keep one number β_a per advertiser.
 - Suitable for Distributed Ad Serving Schemes.
- Training-based Algorithms
 - Compute β_a based on historical/sample data.

- Algorithm:
 - Assign each item *i* to ad *a* that maximizes $v_{ia} \beta_a$.

- More practical compared to Primal Algorithms:
 - Just keep one number β_a per advertiser.
 - Suitable for Distributed Ad Serving Schemes.
- Training-based Algorithms
 - Compute β_a based on historical/sample data.
- Hybrid approach (see also [MNS07]):
 - Start with trained β_a (past history), blend in online algorithm.

Experiments: setup

- Real ad impression data from several large publishers
- 200k 1.5M impressions in simulation period
- 100 2600 advertisers
- Edge weights = predicted click probability
- Efficiency: free disposal model
- Algorithms:
 - greedy: maximum marginal value
 - pd-avg, pd-exp: pure online primal-dual from [FKMMP09].
 - dualbase: training-based primal-dual [FHKMS10]
 - hybrid: convex combo of training based, pure online.
 - Ip-weight: optimum efficiency

Experimental Evaluation: Summary

Algorithm	Avg Efficiency%
opt	100
greedy	69
pd-avg	77
pd-exp	82
dualbase	87
hybrid	89

- pd-exp & pd-avg outperform greedy by 9% and 14% (with more improvements in *tight* competition.)
- dualbase outperforms pure online algorithms by 6% to 12%.
- ▶ Hybrid has a mild improvement of 2% (up to 10%).
- pd-avg performs much better than the theoretical analysis.

Qualititative definition: advertisers are "treated equally."

- Qualititative definition: advertisers are "treated equally."
- Quantitative definition that achieves this:
 - varied and often subjective.

- Qualititative definition: advertisers are "treated equally."
- Quantitative definition that achieves this:
 - varied and often subjective.
- ► One suggestion[FHKMS10]: Compute "fair" solution x*, measure ℓ₁ distance to x*.

- Qualititative definition: advertisers are "treated equally."
- Quantitative definition that achieves this:
 - varied and often subjective.
- ► One suggestion[FHKMS10]: Compute "fair" solution x*, measure ℓ₁ distance to x*.
- Fair solution:
 - ▶ Each *a* chooses best *C*_{*a*} impressions (highest *v*_{*ia*})
 - Repeat:
 - Impressions shared among those who chose them.
 - If some a not receiving C_a imps, a chooses an additional imp.

- Qualititative definition: advertisers are "treated equally."
- Quantitative definition that achieves this:
 - varied and often subjective.
- ► One suggestion[FHKMS10]: Compute "fair" solution x*, measure ℓ₁ distance to x*.
- Fair solution:
 - ▶ Each *a* chooses best *C*_{*a*} impressions (highest *v*_{*ia*})
 - Repeat:
 - Impressions shared among those who chose them.
 - If some *a* not receiving C_a imps, *a* chooses an additional imp.
- Sharing policies:
 - Equal: all interested advertisers share equally
 - Proportional: share $\sim v_{ia}$.
 - ▶ Stable matching: highest v_{ia} gets all. [Thm: eff $\geq OPT/2$]

Experiments: highlights

Experiments: highlights

Online Ad Allocation: Interesting Problems

Online Stochastic DA:

- Simultaneous online worst-case & stochastic optimization.
- Bicriteria fairness, efficiency analysis
- Tradeoff between delivery penalty and efficiency
- More complex stochastic modeling (drift, seasonality, etc.)
- Practical utility of primal algorithms?

Online Ad Allocation: Interesting Problems

- Online Stochastic DA:
 - Simultaneous online worst-case & stochastic optimization.
 - Bicriteria fairness, efficiency analysis
 - Tradeoff between delivery penalty and efficiency
 - More complex stochastic modeling (drift, seasonality, etc.)
 - Practical utility of primal algorithms?
- Online matching:
 - Power of 3 choices?
 - Gap between lower and upper bound (0.67 < 0.98).
 - Apply "power of 2 choices" in stochastic optimization.

Results: Three Recent Papers

• Online Stochastic Matching: Beating $1 - \frac{1}{e}$, FOCS 2009.

- online stochastic matching in iid model with known dist.
- ▶ 0.67-approximation (idea: power of two choices)
- Feldman, Mehta, M., Muthukrishnan

Results: Three Recent Papers

- Online Stochastic Matching: Beating $1 \frac{1}{e}$, FOCS 2009.
 - online stochastic matching in iid model with known dist.
 - ▶ 0.67-approximation (idea: power of two choices)
 - Feldman, Mehta, M., Muthukrishnan
- Online Stochastic Packing applied to Display Ad Allocation, ESA 2010.
 - Online stoch. packing in random order model: online routing.
 - ► 1 e-approximation under assumptions (idea: learn dual variables.)
 - Feldman, Henzinger, Korula, M., Stein

Results: Three Recent Papers

- Online Stochastic Matching: Beating $1 \frac{1}{e}$, FOCS 2009.
 - online stochastic matching in iid model with known dist.
 - 0.67-approximation (idea: power of two choices)
 - Feldman, Mehta, M., Muthukrishnan
- Online Stochastic Packing applied to Display Ad Allocation, ESA 2010.
 - Online stoch. packing in random order model: online routing.
 - ► 1 ε-approximation under assumptions (idea: learn dual variables.)
 - Feldman, Henzinger, Korula, M., Stein
- Online Ad Assignment with Free Disposal, WINE 2009.
 - online generalized assignment problems with free disposal.
 - $1 \frac{1}{e}$ -competitive algorithm (idea: primal-dual analysis.)
 - Feldman, Korula, M., Muthukrishnan, Pal

Outline: Online Allocation

Online Stochastic Assignment Problems

- Online (Stochastic) Matching
- Online Generalized Assignment (with free disposal)
- Online Stochastic Packing
- Experimental Results
- Online Learning and Allocation

Display Ad Delivery

Display Ad Delivery

► Value: Estimated Click-Through-Rate (CTR).

- ► Value: Estimated Click-Through-Rate (CTR).
- Combined online capacity planning & learning?
 - Budgeted Active Learning
 - Madani, Lizotte, Greiner 2004, Active Model Selection.

- ► Value: Estimated Click-Through-Rate (CTR).
- Combined online capacity planning & learning?
 - Budgeted Active Learning
 - Madani, Lizotte, Greiner 2004, Active Model Selection.
 - Bayesian Budgeted Multi-armed Bandits:
 - Guha, Munagala, Multi-armed Bandits with Metric Switching Costs.
 - Goel, Khanna, Null, The Ratio Index for Budgeted Learning, with Applications.
 - Guha, Munagala, Pal, Multi-armed Bandit with Delayed Feedback.

- ► Value: Estimated Click-Through-Rate (CTR).
- Combined online capacity planning & learning?
 - Budgeted Active Learning
 - Madani, Lizotte, Greiner 2004, Active Model Selection.
 - Bayesian Budgeted Multi-armed Bandits:
 - Guha, Munagala, Multi-armed Bandits with Metric Switching Costs.
 - Goel, Khanna, Null, The Ratio Index for Budgeted Learning, with Applications.
 - Guha, Munagala, Pal, Multi-armed Bandit with Delayed Feedback.
 - Budgeted Unknown-CTR Multi-armed Bandit
 - Pandey, Olston 2007, Handling Advertisement of Unknown Quality.

 Pandey, Olston 2007, Handling Advertisement of Unknown Quality.

- Pandey, Olston 2007, Handling Advertisement of Unknown Quality.
- Algorithm: Revised Greedy
 - ► Upon arrival of query of type *i*, assign it to an ad *a* maximizing $P_{ia} = (\hat{c}_{ia} + \sqrt{\frac{2 \ln n_i}{n_{ia}}}) b_{ia}$

where \hat{c}_{ia} is the current estimate of CTR, n_{ia} is the number of times *i* has been assigned to *a*, n_i is the number of queries of type *i* so far.

- Pandey, Olston 2007, Handling Advertisement of Unknown Quality.
- Algorithm: Revised Greedy
 - Upon arrival of query of type *i*, assign it to an ad *a* maximizing $P_{ia} = (\hat{c}_{ia} + \sqrt{\frac{2 \ln n_i}{n_{ia}}})b_{ia}$ where \hat{c}_{ia} is the current estimate of CTR, n_{ia} is the number of times *i* has been assigned to *a*, n_i is the number of queries of

type *i* so far.

► Thm[PO07]: ALG ≥ OPT / 2 − O(ln n) where n is the number of arrivals.

Outline of this talk

Ad serving in repeated auction settings

- General architecture.
- Allocation for budget constrained advertisers.

Ad delivery for contract based settings

- Planning
- Ad Serving

Other interactions

- Learning + allocation
- Learning + auction
- Auction + contracts

Three main theory/practice problems

Outline

 ${\sf Learning} + {\sf Alloc}$

Hybrid ad serving

► Value: Estimated Click-Through-Rate (CTR).

- ► Value: Estimated Click-Through-Rate (CTR).
- Combined online capacity planning & learning?
 - Budgeted Active Learning
 - Madani, Lizotte, Greiner 2004, Active Model Selection.

- ► Value: Estimated Click-Through-Rate (CTR).
- Combined online capacity planning & learning?
 - Budgeted Active Learning
 - Madani, Lizotte, Greiner 2004, Active Model Selection.
 - Bayesian Budgeted Multi-armed Bandits:
 - Guha, Munagala, Multi-armed Bandits with Metric Switching Costs.
 - Goel, Khanna, Null, The Ratio Index for Budgeted Learning, with Applications.
 - Guha, Munagala, Pal, Multi-armed Bandit with Delayed Feedback.

- ► Value: Estimated Click-Through-Rate (CTR).
- Combined online capacity planning & learning?
 - Budgeted Active Learning
 - Madani, Lizotte, Greiner 2004, Active Model Selection.
 - Bayesian Budgeted Multi-armed Bandits:
 - Guha, Munagala, Multi-armed Bandits with Metric Switching Costs.
 - Goel, Khanna, Null, The Ratio Index for Budgeted Learning, with Applications.
 - Guha, Munagala, Pal, Multi-armed Bandit with Delayed Feedback.
 - Budgeted Unknown-CTR Multi-armed Bandit
 - Pandey, Olston 2007, Handling Advertisement of Unknown Quality.

 Pandey, Olston 2007, Handling Advertisement of Unknown Quality.
Online CTR Learning: Mixed Explore/Exploit

- Pandey, Olston 2007, Handling Advertisement of Unknown Quality.
- Algorithm: Revised Greedy
 - ► Upon arrival of query of type *i*, assign it to an ad *a* maximizing $P_{ia} = (\hat{c}_{ia} + \sqrt{\frac{2 \ln n_i}{n_{ia}}}) b_{ia}$

where \hat{c}_{ia} is the current estimate of CTR, n_{ia} is the number of times *i* has been assigned to *a*, n_i is the number of queries of type *i* so far.

Online CTR Learning: Mixed Explore/Exploit

- Pandey, Olston 2007, Handling Advertisement of Unknown Quality.
- Algorithm: Revised Greedy
 - Upon arrival of query of type *i*, assign it to an ad *a* maximizing $P_{ia} = (\hat{c}_{ia} + \sqrt{\frac{2 \ln n_i}{n_{ia}}})b_{ia}$ where \hat{c}_{ia} is the current estimate of CTR, n_{ia} is the number of times *i* has been assigned to *a*, n_i is the number of queries of

type *i* so far.

► Thm[PO07]: ALG ≥ OPT / 2 − O(ln n) where n is the number of arrivals.

Online Learning & Auction Incentives

[Devanur,Kakade'09, Babaioff,Sharma,Slivkins'09]

- ► Multi-Armed Bandit algorithms achieve an "implicit" exploration-exploitation tradeoff to get a regret of O(√T) (e.g., UCB).
- Can these be run in tandem with truthful auctions? (e.g., 2nd price for a single slot).

Online Learning & Auction Incentives

[Devanur,Kakade'09, Babaioff,Sharma,Slivkins'09]

- ► Multi-Armed Bandit algorithms achieve an "implicit" exploration-exploitation tradeoff to get a regret of O(√T) (e.g., UCB).
- Can these be run in tandem with truthful auctions? (e.g., 2nd price for a single slot).
- A naive explore-exploit method gets $O(T^{2/3})$ regret:
 - Explore ads for the first *phase*, giving them out for free.
 - Fix the CTRs thus learned in the first phase.
 - Run 2nd price auction for the 2nd phase.

Online Learning & Auction Incentives

[Devanur,Kakade'09, Babaioff,Sharma,Slivkins'09]

- ► Multi-Armed Bandit algorithms achieve an "implicit" exploration-exploitation tradeoff to get a regret of O(√T) (e.g., UCB).
- Can these be run in tandem with truthful auctions? (e.g., 2nd price for a single slot).
- A naive explore-exploit method gets $O(T^{2/3})$ regret:
 - Explore ads for the first *phase*, giving them out for free.
 - Fix the CTRs thus learned in the first phase.
 - Run 2nd price auction for the 2nd phase.
- Can you do better that this simpe decoupling?
- ► No!

Theorem

[DK09,BSS09] For every truthful auction (under certain assumptions), there exist bids, ctrs, s.t. regret = $\Omega(T^{2/3})$.

Outline

Learning + Alloc

Hybrid ad serving

Given a page view, and two types of advertisers:

- Contract-based.
- Auction-based.

Given a page view, and two types of advertisers:

- Contract-based.
- Auction-based.
- Decide who wins and how much do they pay.
- Requirements:
 - ► For each contract-advertiser, meet its demand.
 - Implement the scheme using proxy-bidding for contract-advertisers in the spot auction.

Naive solution: If a contract-adv is eligible and has not finished demand, then let it win the spot. Bid infinity for all auctions.

- Naive solution: If a contract-adv is eligible and has not finished demand, then let it win the spot. Bid infinity for all auctions.
- Optimize for revenue: If the auction pressure (price) is low then let the contract-adv win. Bid a low bid for all auctions.

- Naive solution: If a contract-adv is eligible and has not finished demand, then let it win the spot. Bid infinity for all auctions.
- ► Optimize for revenue: If the auction pressure (price) is low then let the contract-adv win. Bid a low bid for all auctions.
 - ► Unfair to contract-adv, since low auction-price ⇒ it is a lower value impression.

- Naive solution: If a contract-adv is eligible and has not finished demand, then let it win the spot. Bid infinity for all auctions.
- Optimize for revenue: If the auction pressure (price) is low then let the contract-adv win. Bid a low bid for all auctions.
 - ► Unfair to contract-adv, since low auction-price ⇒ it is a lower value impression.
- Ideally:
 - Provide contract-adv with a representative allocation, an equal slice of impressions from each price-point.
 - A price-oblivious scheme, i.e., bid without seeing the auction bids.
 - Revenue per auction: average auction-price of impressions given away to contract-advertisers is at most some target t.

Obtaining representative allocations

Two main ideas:

1. Can implement any decreasing function a(p) for fraction of impressions of auction-price p.

Obtaining representative allocations

Two main ideas:

1. Can implement any decreasing function a(p) for fraction of impressions of auction-price p.

2. Solve the system for well chosen distance functions:

Minimize dist(U, a) s.t.: $\int_{p} a(p)f(p)dp = d$ $\int_{p} pa(p)f(p)dp \le td$

Display Ad Delivery

Open Problems:

- Optimal combined online allocation & learning.
- Feature selection and correlation in learning CTR.

Display Ad Delivery

Open Problems:

- Optimal combined online allocation & learning.
- Feature selection and correlation in learning CTR.
- Optimal combined stochastic planning and serving?

Thank You