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Contract-based Online Advertising

I Pageviews (impressions) instead of queries.

I Display/Banner Ads, Video Ads, Mobile Ads.

I Cost-Per-Impression (CPM).

I Not Auction-based: offline negotiations + Online allocations.

Display/Banner Ads:

I Q1, 2010: One Trillion Display Ads in US. $2.7 billion.

I Top Publishers: Facebook, Yahoo and Microsoft sites.

I Top Advertiser: AT&T, Verizon, Scottrade.

I Ad Serving Systems e.g. Facebook, Google Doubleclick,
AdMob.
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Display Ad Delivery: Overview

Planning:

Display Ad Delivery

Ad Serving: Targeting: Allocation:

1. Planning: Contracts/Commitments with Advertisers.
2. Ad Serving:

I Targeting: Predicting value of impressions.
I Ad Allocation: Assigning Impressions to Ads Online.

I Objective Functions:
I Efficiency: Users and Advertisers. Revenue of the Publisher.
I Smoothness, Fairness, Delivery Penalty.
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Targeting

Estimating Value of an impression.

I Behavioral Targeting
I Interest-based Advertising.
I Yan, Liu, Wang, Zhang, Jiang, Chen, 2009, How much can

Behavioral Targeting Help Online Advertising?

I Contextual Targeting
I Information Retrieval (IR).
I Broder, Fontoura, Josifovski, Riedel, A semantic approach to

contextual advertising

I Creative Optimization
I Experimentation
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Predicting value of Impressions for Display Ads

I Estimating Click-Through-Rate (CTR).
I Budgeted Multi-armed Bandit

I Probability of Conversion.

I Long-term vs. Short-term value of display ads?
I Archak, Mirrokni, Muthukrishnan, 2010 Graph-based Models.

I Computing Adfactors based on AdGraphs
I Markov Models for Advertiser-specific User Behavior
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Contract-based Ad Delivery: Outline

I Basic Information

I Ad Planning: Reservation
I Ad Serving.

I Targeting.
I Online Ad Allocation



Outline: Online Allocation

I Online Stochastic Assignment Problems
I Online (Stochastic) Matching
I Online Generalized Assignment (with free disposal)
I Online Stochastic Packing
I Experimental Results

I Online Learning and Allocation



Online Ad Allocation

I When page arrives, assign an eligible ad.
I value of assigning page i to ad a: via

I Display Ads (DA) problem:
I Maximize value of ads served: max

∑
i,a viaxia

I Capacity of ad a:
∑

i∈A(a) xia ≤ Ca
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Online Ad Allocation

I When page arrives, assign an eligible ad.
I revenue from assigning page i to ad a: bia

I “AdWords” (AW) problem:
I Maximize revenue of ads served: max

∑
i,a biaxia

I Budget of ad a:
∑

i∈A(a) biaxia ≤ Ba



General Form of LP

max
∑
i ,a

viaxia∑
a

xia ≤ 1 (∀ i)∑
i

siaxia ≤ Ca (∀ a)

xia ≥ 0 (∀ i , a)

Online Matching:
via = sia = 1

Disp. Ads (DA):
sia = 1

AdWords (AW):
sia = via

Worst-Case Greedy: 1
2 ,

[KVV]: 1− 1
e -aprx

Inapproximable
[MSVV,BJN]:
1− 1

e -aprx
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I i.i.d model with known distribution

I random order model (i.i.d model with unknown distribution)
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Online Stochastic Matching: Motivation

I Pageview supply from the past should tell us something about
the future [Parkes, Sandholm, SSA 2005][Abrams,
Mendelevitch, Tomlin, EC 07] [Boutilier, Parkes, Sandholm,
Walsh AAAI 08].

I Primal Algorithm:
I Construct an expected instance,
I Compute an optimal solution to this expected instance,
I Use this solution to guide the online allocation.

I Can we extend the theory of online algorithms to this
architecture?



Online Stochastic Matching: Motivation

I Pageview supply from the past should tell us something about
the future [Parkes, Sandholm, SSA 2005][Abrams,
Mendelevitch, Tomlin, EC 07] [Boutilier, Parkes, Sandholm,
Walsh AAAI 08].

I Primal Algorithm:
I Construct an expected instance,
I Compute an optimal solution to this expected instance,
I Use this solution to guide the online allocation.

I Can we extend the theory of online algorithms to this
architecture?



Online Stochastic Matching: Motivation

I Pageview supply from the past should tell us something about
the future [Parkes, Sandholm, SSA 2005][Abrams,
Mendelevitch, Tomlin, EC 07] [Boutilier, Parkes, Sandholm,
Walsh AAAI 08].

I Primal Algorithm:
I Construct an expected instance,
I Compute an optimal solution to this expected instance,
I Use this solution to guide the online allocation.

I Can we extend the theory of online algorithms to this
architecture?



Online Stochastic Matching: iid (known dist.)

Given (offline):
- Bipartite graph G = (A, I ,E ),
- Distribution D over I .
Online:
- n indep. draws from D.
- Must assign nodes upon arrival.



Primal Algorithm: “Two-suggested-matchings”

“ALG is α-approximation?” if w.h.p.,ALG(H)
OPT(H) ≥ α

Simple Primal Algorithm:

I Find one matching in expected graph G offline, and try to
apply it online.

I Tight 1− 1
e -approximation.

Better Algorithm: Two-Suggested-Matchings

I Offline: Find two disjoint matchings, blue(B) and red(R), on
the expected graph G .

I Online: try the blue matching first, then if that doesn’t work,
try the red one.

I Thm: Tight 1−2/e2
4/3−2/3e ≥ 0.67

(Feldman, M., M., Muthukrishnan, 2009).
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Background: Balls in bins

I Suppose n balls thrown into n bins, i.i.d. uniform.

I # non-empty bins concentrates:

I B = particular subset of bins.

I s = # bins in B with ≥ 1 ball.

I Then w.h.p., s ≈ |B|(1− 1
e ).
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Analysis: Two-suggested-matching Algorithm

I Proof Ideas: Balls-into-Bins concentration inequalities,
structural properties of min-cuts, etc.

I Bounding ALG: Classify a ∈ A based on its neighbors in the
blue and red matchings: ABR ,ABB ,AB ,AR

ALG ≥
(

1− 1

e2

)
|ABB |+

(
1− 2

e2

)
|ABR |+

(
1− 3

2e

)
(|AB |+ |AR |)

I Bounding opt: Find min-cut in augmented expected graph G ,
and use it min-cut in G as a “guide” for cut in each scenario.
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First Attempt: “Suggested matching”

1. Find a maximum matching in G .

2. Use that matching as nodes arrive online.

I Does no better than 1− 1/e.

I Proof:

I Suppose G = complete graph.
I Then OPT(H) = n.
I But w.h.p. only 1− 1/e fraction of I will ever arrive.

=⇒ ALG ≈ (1− 1/e)n.

I In fact, this algorithm does achieve 1− 1/e (in paper).
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New ALG: “Two suggested matchings”

1. Offline: Find two disjoint matchings

2. Online: try the first one, then if that doesn’t work, try the
second one.



New ALG: “Two suggested matchings”

Warmup: complete graph

I Two disjoint perfect matchings: blue (1-ary), red (2-ary).

I Union of matchings = cycles with alt. blue and red edges



New ALG: “Two suggested matchings”

Warmup: complete graph

I Two disjoint perfect matchings: blue (1-ary), red (2-ary).

I Union of matchings = cycles with alt. blue and red edges



New ALG: “Two suggested matchings”

For particular node a ∈ A:

Pr[a is chosen ] ≥ Pr[i arrives once, or i ′ arrives twice]

= 1− Pr[i never arrives & i ′ arrives ≤ once]

= 1−
(
(1− 2/n)n + n(1/n)(1− 2/n)n−1

)
≈ 1− 2/e2

Thus, E[# nodes in A chosen] ≈ (1− 2/e2)n ≈ .729n
(This also concentrates...)



Algorithm (Offline)

I How to find a matching with flow.

I Solve an “augmented flow” problem instead.

I Examine edges in flow.

I Color the edges as shown
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Algorithm (Online)

I When node i ∈ I arrives:
I Try the blue edge first, then the red edge.

I Consider a node a ∈ A:

I Pr[a is chosen ] ≥ Pr[i arrives once, or i ′ arrives twice]
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Performance of the Algorithm

I Classify a ∈ A based on its neighbors in the flow.

|flow| = 2|ABR |+ 2|ABB |+ |AB |+ |AR |

I Using Balls-in-bins concentration results (Azuma’s inequality):

I a ∈ AB . We get at least |AB |(1− 1/e).
I a ∈ ABR . We get at least |ABR |(1− 2/e2).
I a ∈ ABB . We get at least |ABB |(1− 1/e2).
I a ∈ AR . We get at least |AR |(1− 2/e).

I Bound on ALG in terms of flow (using |B| ≥ |R|):

ALG ≥
(

1− 1

e2

)
|ABB |+

(
1− 2

e2

)
|ABR |+

(
1− 3

2e

)
(|AB |+ |AR |)
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I a ∈ AB . We get at least |AB |(1− 1/e).
I a ∈ ABR . We get at least |ABR |(1− 2/e2).
I a ∈ ABB . We get at least |ABB |(1− 1/e2).

I a ∈ AR . We get at least |AR |(1− 2/e).

I Bound on ALG in terms of flow (using |B| ≥ |R|):

ALG ≥
(

1− 1

e2

)
|ABB |+

(
1− 2

e2

)
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Bounding OPT

I Find min-cut in augmented flow graph (from G ).
I Eδ is a matching.
I By max-flow min-cut,

|flow| = 2(|AT |+ |IS |) + |Eδ|.

I OPT ≤ cut(H). (Remember H = (A, Î , Ê ).)
I Use min-cut in G as “guide” for cut in H.
I W.h.p., |IS | ≈ |̂IS |. Eδ?
I For any node a ∈ S with an edge in the cut in Ê (H), move it

to T ⇒ # nonempty nodes in Eδ ⇒ (1− 1
e )Eδ.
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Putting things together

I Eventually (after moving a few nodes around) you get
I OPT . |IS |+ |AT |+ (1− 1/e)|Eδ|.

I A lemma relating the decomposition to the cut gives
I |Eδ| ≤ 2

3 |ABR |+ 4
3 |ABB |+ |AB |+ 1

3 |AR |,
I which, when combined with

I |flow| = 2(|AT |+ |IS |) + |Eδ|
I |flow| = 2|ABR |+ 2|ABB |+ |AB |+ |AR |,
I ALG ≥ (1− 1

e2 )|ABB |+ (1− 2
e2 )|ABR |+ (1− 3

2e )(|AB |+ |AR |),

I gives

I ALG
OPT ≥ min{ 1−1/e2

5/3−4/3e ,
1−2/e2

4/3−2/3e ,
1−3/2e
1−1/e }

I ALG
OPT ≥ .67

I The analysis is tight.
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Ad Allocation: Problems and Models

Online Matching:
via = sia = 1

Disp. Ads (DA):
sia = 1

AdWords (AW):
sia = via

Worst Case Greedy: 1
2 ,

[KVV]: 1− 1
e -aprx

Inapproximable
?

[MSVV,BJN]:
1− 1

e -aprx

Stochastic
(i.i.d.)

[FMMM09]:
0.67-aprx
i.i.d with known
distribution

?

[DH09]:
1−ε-aprx,
if
opt� max via
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Stochastic DA: Dual Algorithm

max
∑
i ,a

viaxia∑
a

xia ≤ 1 (∀ i)∑
i

xia ≤ Ca (∀ a)

xia ≥ 0 (∀ i , a)

min
∑
a

Caβa +
∑
i

zi

zi ≥ via − βa (∀i , a)

βa, zi ≥ 0 (∀i , a)

Algorithm:
I Observe the first ε fraction sample of impressions.
I Learn a dual variable for each ad βa, by solving the dual

program on the sample.
I Assign each impression i to ad a that maximizes via − βa.

Feldman, Henzinger, Korula, M., Stein 2010
Thm[FHKMS10,AWY]: W.h.p, this algorithm is a (1−O(ε))-aprx,
as long as each item has low value (via ≤ εopt

m log n ), and large

capacity (Ca ≤ m log n
ε3

)

Fact: If optimum β∗a are known, this alg. finds opt
I Proof: Comp. slackness. Given β∗a , compute x∗ as follows:

x∗ia = 1 if a = argmax(via − β∗a).
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Stochastic DA: Dual Algorithm
Feldman, Henzinger, Korula, M., Stein 2010
Thm[FHKMS10,AWY]: W.h.p, this algorithm is a (1−O(ε))-aprx,
as long as each item has low value (via ≤ εopt

m log n ), and large

capacity (Ca ≤ m log n
ε3

)

Fact: If optimum β∗a are known, this alg. finds opt
I Proof: Comp. slackness. Given β∗a , compute x∗ as follows:

x∗ia = 1 if a = argmax(via − β∗a).

Lemma: In the random order model, W.h.p., the sample β′a are
close to β∗a .

I Extending DH09.



General Stochastic Packing LPs

I m fixed resources with capacity Ca

I Items i arrive online with options Oi , values vio , rsrc. use sioa.
I Choose o ∈ Oi , using up capacity sioa in all a.

Thm[FHKMS10,AWY]: W.h.p, the PD algorithm is a
(1−O(ε))-aprx, as long as items have low value (vio ≤ εopt

log n ) and

small size (sioa ≤ ε3Ca
log n ).

Other Results and Extensions (random order model):

I Agrawal, Wang, Ye: Updating dual variables by periodic
solution of the dual program: Ca ≤ m log n

ε2
or sioa ≤ ε2Ca

M

I Vee, Vassilvitskii , Shanmugasundaram 2010: extension to
convex objective functions: Using KKT conditions.
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DA: Free Disposal Model
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I Advertisers may not complain about extra impressions, but no
bonus points for extra impressions, either.
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DA: Free Disposal Model

0.07
Ad 1: C1 = 1

0.7

I Advertisers may not complain about extra impressions, but no
bonus points for extra impressions, either.

I Value of advertiser = sum of values of top Ca items she gets.



Greedy Algorithm

Assign impression to an advertiser
maximizing Marginal Gain = (imp. value - min. impression value).

I Competitive Ratio: 1/2. [NWF78]
I Follows from submodularity of the value function.

1

1 + ε

Ad 1: C1 = n

Ad 2: C2 = n
1

n copiesn copies

n copies

Evenly Split?
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A better algorithm?

Assign impression to an advertiser a
maximizing (imp. value - βa),

where βa = average value of top Ca impressions assigned to a.

1

1 + ε

Ad 1: C1 = n

Ad 2: C2 = n
1

n copiesn copies

n copies

I Competitive Ratio: 1
2 if Ca >> 1. [FKMMP09]

I Primal-Dual Approach.
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An Optimal Algorithm

Assign impression to an advertiser a:
maximizing (imp. value - βa),

I Greedy: βa = min. impression assigned to a.

I Better (pd-avg): βa = average value of top Ca impressions
assigned to a.

I Optimal (pd-exp): order value of edges assigned to a:
v(1) ≥ v(2) . . . ≥ v(Ca):

βa =
1

Ca(e − 1)

Ca∑
j=1

v(j)(1 +
1

Ca
)j−1.

I Thm: pd-exp achieves optimal competitive Ratio: 1− 1
e − ε if

Ca > O(1ε ). [Feldman, Korula, M., Muthukrishnan, Pal 2009]
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Online Generalized Assignment (with free disposal)

I Multiple Knapsack: Item i may have different value (via) and
different size sia for different ads a.

I DA: sia = 1, AW: via = sia.

max
∑
i ,a

viaxia∑
a

xia ≤ 1 (∀ i)∑
i

siaxia ≤ Ca (∀ a)

xia ≥ 0 (∀ i , a)

min
∑
a

Caβa +
∑
i

zi

siaβa + zi ≥ via (∀i , a)

βa, zi ≥ 0 (∀i , a)

I Offline Optimization: 1− 1
e − δ-aprx[FGMS07,FV08].

I Thm[FKMMP09]: There exists a 1− 1
e − ε-approximation

algorithm if Ca
max sia

≥ 1
ε .
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Proof Idea: Primal-Dual Analysis [BJN]

max
∑
i ,a

viaxia∑
a

xia ≤ 1 (∀ i)∑
i

siaxia ≤ Ca (∀ a)

xia ≥ 0 (∀ i , a)

min
∑
a

Caβa +
∑
i

zi

siaβa + zi ≥ via (∀i , a)

βa, zi ≥ 0 (∀i , a)

I Proof:

1. Start from feasible primal and dual (xia = 0, βa = 0, and
zi = 0, i.e., Primal=Dual=0).

2. After each assignment, update x , β, z variables and keep
primal and dual solutions.

3. Show ∆(Dual) ≤ (1− 1
e )∆(Primal).
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Outline: Online Allocation

I Online Stochastic Assignment Problems
I Online (Stochastic) Matching
I Online Generalized Assignment (with free disposal)
I Online Stochastic Packing
I Experimental Evaluation

I Online Learning and Allocation



Dual-based Algorithms in Practice

I Algorithm:
I Assign each item i to ad a that maximizes via − βa.

I More practical compared to Primal Algorithms:
I Just keep one number βa per advertiser.
I Suitable for Distributed Ad Serving Schemes.

I Training-based Algorithms
I Compute βa based on historical/sample data.

I Hybrid approach (see also [MNS07]):
I Start with trained βa (past history), blend in online algorithm.
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Experiments: setup

I Real ad impression data from several large publishers

I 200k - 1.5M impressions in simulation period

I 100 - 2600 advertisers

I Edge weights = predicted click probability

I Efficiency: free disposal model
I Algorithms:

I greedy: maximum marginal value
I pd-avg, pd-exp: pure online primal-dual from [FKMMP09].
I dualbase: training-based primal-dual [FHKMS10]
I hybrid: convex combo of training based, pure online.
I lp-weight: optimum efficiency



Experimental Evaluation: Summary

Algorithm Avg Efficiency%
opt 100

greedy 69
pd-avg 77
pd-exp 82

dualbase 87
hybrid 89

I pd-exp & pd-avg outperform greedy by 9% and 14% (with
more improvements in tight competition.)

I dualbase outperforms pure online algorithms by 6% to 12%.

I Hybrid has a mild improvement of 2% (up to 10%).

I pd-avg performs much better than the theoretical analysis.



Other Metrics: Fairness

I Qualititative definition: advertisers are “treated equally.”

I Quantitative definition that achieves this:
I varied and often subjective.

I One suggestion[FHKMS10]: Compute ”fair” solution x∗,
measure `1 distance to x∗.

I Fair solution:
I Each a chooses best Ca impressions (highest via)
I Repeat:

I Impressions shared among those who chose them.
I If some a not receiving Ca imps, a chooses an additional imp.

I Sharing policies:
I Equal: all interested advertisers share equally
I Proportional: share ∼ via.
I Stable matching: highest via gets all. [Thm: eff ≥ opt/2]
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Online Ad Allocation: Interesting Problems

I Online Stochastic DA:
I Simultaneous online worst-case & stochastic optimization.
I Bicriteria fairness, efficiency analysis
I Tradeoff between delivery penalty and efficiency
I More complex stochastic modeling (drift, seasonality, etc.)
I Practical utility of primal algorithms?

I Online matching:
I Power of 3 choices?
I Gap between lower and upper bound (0.67 < 0.98).
I Apply ”power of 2 choices” in stochastic optimization.
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Results: Three Recent Papers

I Online Stochastic Matching: Beating 1− 1
e , FOCS 2009.

I online stochastic matching in iid model with known dist.
I 0.67-approximation (idea: power of two choices)
I Feldman, Mehta, M., Muthukrishnan

I Online Stochastic Packing applied to Display Ad Allocation,
ESA 2010.

I Online stoch. packing in random order model: online routing.
I 1− ε-approximation under assumptions (idea: learn dual

variables.)
I Feldman, Henzinger, Korula, M., Stein

I Online Ad Assignment with Free Disposal, WINE 2009.
I online generalized assignment problems with free disposal.
I 1− 1

e -competitive algorithm (idea: primal-dual analysis.)
I Feldman, Korula, M., Muthukrishnan, Pal
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Outline: Online Allocation

I Online Stochastic Assignment Problems
I Online (Stochastic) Matching
I Online Generalized Assignment (with free disposal)
I Online Stochastic Packing
I Experimental Results

I Online Learning and Allocation



Display Ad Delivery

Planning:

Display Ad Delivery

Ad Serving: Targeting: Allocation:

Delivery Constraints, Budget

CTR

Strategic, Stochastic

Online, Stochastic

Offline, Online Forecasting

Demand for ads

Supply of impressions
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Online Learning & Allocation

I Value: Estimated Click-Through-Rate (CTR).

I Combined online capacity planning & learning?
I Budgeted Active Learning

I Madani, Lizotte, Greiner 2004, Active Model Selection.

I Bayesian Budgeted Multi-armed Bandits:
I Guha, Munagala, Multi-armed Bandits with Metric Switching

Costs.
I Goel, Khanna, Null, The Ratio Index for Budgeted Learning,

with Applications.
I Guha, Munagala, Pal, Multi-armed Bandit with Delayed

Feedback.

I Budgeted Unknown-CTR Multi-armed Bandit
I Pandey, Olston 2007, Handling Advertisement of Unknown

Quality.
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Online CTR Learning: Mixed Explore/Exploit

I Pandey, Olston 2007, Handling Advertisement of Unknown
Quality.

I Algorithm: Revised Greedy
I Upon arrival of query of type i , assign it to an ad a maximizing

Pia = (ĉia +
√

2 ln ni
nia

)bia

where ĉia is the current estimate of CTR, nia is the number of
times i has been assigned to a, ni is the number of queries of
type i so far.

I Thm[PO07]: ALG ≥ opt
2 − O(ln n) where n is the number of

arrivals.
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Outline of this talk

I Ad serving in repeated auction settings
I General architecture.
I Allocation for budget constrained advertisers.

I Ad delivery for contract based settings
I Planning
I Ad Serving

I Other interactions
I Learning + allocation
I Learning + auction
I Auction + contracts



Three main theory/practice problems
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Online Learning & Auction Incentives

[Devanur,Kakade’09, Babaioff,Sharma,Slivkins’09]

I Multi-Armed Bandit algorithms achieve an “implicit”
exploration-exploitation tradeoff to get a regret of O(

√
T )

(e.g., UCB).

I Can these be run in tandem with truthful auctions? (e.g., 2nd
price for a single slot).

I A naive explore-exploit method gets O(T 2/3) regret:
I Explore ads for the first phase, giving them out for free.
I Fix the CTRs thus learned in the first phase.
I Run 2nd price auction for the 2nd phase.

I Can you do better that this simpe decoupling?

I No!

Theorem
[DK09,BSS09] For every truthful auction (under certain
assumptions), there exist bids, ctrs, s.t. regret = Ω(T 2/3).



Online Learning & Auction Incentives

[Devanur,Kakade’09, Babaioff,Sharma,Slivkins’09]

I Multi-Armed Bandit algorithms achieve an “implicit”
exploration-exploitation tradeoff to get a regret of O(

√
T )

(e.g., UCB).

I Can these be run in tandem with truthful auctions? (e.g., 2nd
price for a single slot).

I A naive explore-exploit method gets O(T 2/3) regret:
I Explore ads for the first phase, giving them out for free.
I Fix the CTRs thus learned in the first phase.
I Run 2nd price auction for the 2nd phase.

I Can you do better that this simpe decoupling?

I No!

Theorem
[DK09,BSS09] For every truthful auction (under certain
assumptions), there exist bids, ctrs, s.t. regret = Ω(T 2/3).



Online Learning & Auction Incentives

[Devanur,Kakade’09, Babaioff,Sharma,Slivkins’09]

I Multi-Armed Bandit algorithms achieve an “implicit”
exploration-exploitation tradeoff to get a regret of O(

√
T )

(e.g., UCB).

I Can these be run in tandem with truthful auctions? (e.g., 2nd
price for a single slot).

I A naive explore-exploit method gets O(T 2/3) regret:
I Explore ads for the first phase, giving them out for free.
I Fix the CTRs thus learned in the first phase.
I Run 2nd price auction for the 2nd phase.

I Can you do better that this simpe decoupling?

I No!

Theorem
[DK09,BSS09] For every truthful auction (under certain
assumptions), there exist bids, ctrs, s.t. regret = Ω(T 2/3).



Outline

Learning + Alloc

Hybrid ad serving



Hybrid ad serving: Contracts + Spot Auctions

Given a page view, and two types of advertisers:

I Contract-based.

I Auction-based.

I Decide who wins and how much do they pay.
I Requirements:

I For each contract-advertiser, meet its demand.
I Implement the scheme using proxy-bidding for

contract-advertisers in the spot auction.
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Hybrid ad serving: Contracts + Spot Auctions

I Naive solution: If a contract-adv is eligible and has not
finished demand, then let it win the spot. Bid infinity for all
auctions.

I Optimize for revenue: If the auction pressure (price) is low
then let the contract-adv win. Bid a low bid for all auctions.

I Unfair to contract-adv, since low auction-price ⇒ it is a lower
value impression.

I Ideally:
I Provide contract-adv with a representative allocation, an equal

slice of impressions from each price-point.
I A price-oblivious scheme, i.e., bid without seeing the auction

bids.
I Revenue per auction: average auction-price of impressions

given away to contract-advertisers is at most some target t.



Hybrid ad serving: Contracts + Spot Auctions

I Naive solution: If a contract-adv is eligible and has not
finished demand, then let it win the spot. Bid infinity for all
auctions.

I Optimize for revenue: If the auction pressure (price) is low
then let the contract-adv win. Bid a low bid for all auctions.

I Unfair to contract-adv, since low auction-price ⇒ it is a lower
value impression.

I Ideally:
I Provide contract-adv with a representative allocation, an equal

slice of impressions from each price-point.
I A price-oblivious scheme, i.e., bid without seeing the auction

bids.
I Revenue per auction: average auction-price of impressions

given away to contract-advertisers is at most some target t.



Hybrid ad serving: Contracts + Spot Auctions

I Naive solution: If a contract-adv is eligible and has not
finished demand, then let it win the spot. Bid infinity for all
auctions.

I Optimize for revenue: If the auction pressure (price) is low
then let the contract-adv win. Bid a low bid for all auctions.

I Unfair to contract-adv, since low auction-price ⇒ it is a lower
value impression.

I Ideally:
I Provide contract-adv with a representative allocation, an equal

slice of impressions from each price-point.
I A price-oblivious scheme, i.e., bid without seeing the auction

bids.
I Revenue per auction: average auction-price of impressions

given away to contract-advertisers is at most some target t.



Hybrid ad serving: Contracts + Spot Auctions

I Naive solution: If a contract-adv is eligible and has not
finished demand, then let it win the spot. Bid infinity for all
auctions.

I Optimize for revenue: If the auction pressure (price) is low
then let the contract-adv win. Bid a low bid for all auctions.

I Unfair to contract-adv, since low auction-price ⇒ it is a lower
value impression.

I Ideally:
I Provide contract-adv with a representative allocation, an equal

slice of impressions from each price-point.
I A price-oblivious scheme, i.e., bid without seeing the auction

bids.
I Revenue per auction: average auction-price of impressions

given away to contract-advertisers is at most some target t.



Obtaining representative allocations
Two main ideas:

1. Can implement any decreasing function a(p) for fraction of
impressions of auction-price p.

2. Solve the system for well chosen distance functions:

Minimize dist(U, a)

s.t.:

∫
p
a(p)f (p)dp = d∫

p
pa(p)f (p)dp ≤ td
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Display Ad Delivery

Planning:

Display Ad Delivery

Ad Serving: Targeting: Allocation:

Delivery Constraints, Budget

CTR

Strategic, Stochastic

Online, Stochastic

Offline, Online

Feedback

Forecasting

Demand for ads

Supply of impressions

Open Problems:
I Optimal combined online allocation & learning.
I Feature selection and correlation in learning CTR.

I Optimal combined stochastic planning and serving?
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