CMSC 474, Introduction to Game Theory

Introduction to Probability Theory*

Mohammad T. Hajiaghayi
University of Maryland

Outline

- Basics of probability theory
- Bayes' rule
- Random variable and distributions: Expectation and Variance

Definition of Probability

- Experiment: toss a coin twice
- Sample space: possible outcomes of an experiment
$>S=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
- Event: a subset of possible outcomes
$>\mathrm{A}=\{\mathrm{HH}\}, \mathrm{B}=\{\mathrm{HT}, \mathrm{TH}\}$
- Probability of an event $:$ an number assigned to an event $\operatorname{Pr}(\mathrm{A})$
$>$ Axiom 1: $0<=\operatorname{Pr}(\mathrm{A})<=1$
\Rightarrow Axiom 2: $\operatorname{Pr}(S)=1, \operatorname{Pr}(\varnothing)=0$
$>$ Axiom 3: For two events A and $\mathrm{B}, \operatorname{Pr}(\mathrm{A} \cup \mathrm{B})=\operatorname{Pr}(\mathrm{A})+\operatorname{Pr}(\mathrm{B})-$ $\operatorname{Pr}(\mathrm{A} \cap \mathrm{B})$
$>$ Proposition 1: $\operatorname{Pr}(\sim \mathrm{A})=1-\operatorname{Pr}(\mathrm{A})$
$>$ Proposition 2: For every sequence of disjoint events $\operatorname{Pr}\left(\bigcup_{i} A_{i}\right)=\sum_{i} \operatorname{Pr}\left(A_{i}\right)$

Joint Probability

- For events A and B, joint probability $\operatorname{Pr}(\mathrm{AB})$ (also shown as $\operatorname{Pr}(A \cap B))$ stands for the probability that both events happen.
- Example: $\mathrm{A}=\{\mathrm{HH}\}, \mathrm{B}=\{\mathrm{HT}, \mathrm{TH}\}$, what is the joint probability $\operatorname{Pr}(\mathrm{AB})$?

Zero

Independence

- Two events \boldsymbol{A} and \boldsymbol{B} are independent in case

$$
\operatorname{Pr}(\mathrm{AB})=\operatorname{Pr}(\mathrm{A}) \operatorname{Pr}(\mathrm{B})
$$

- A set of events $\left\{\mathrm{A}_{\mathrm{i}}\right\}$ is independent in case

$$
\operatorname{Pr}\left(\bigcap_{i} A_{i}\right)=\prod_{i} \operatorname{Pr}\left(A_{i}\right)
$$

Independence

- Two events \boldsymbol{A} and \boldsymbol{B} are independent in case

$$
\operatorname{Pr}(\mathrm{AB})=\operatorname{Pr}(\mathrm{A}) \operatorname{Pr}(\mathrm{B})
$$

- A set of events $\left\{\mathrm{A}_{\mathrm{i}}\right\}$ is independent in case

$$
\operatorname{Pr}\left(\bigcap_{i} A_{i}\right)=\prod_{i} \operatorname{Pr}\left(A_{i}\right)
$$

- Example: Drug test

	Women	Men
Success	200	1800
Failure	1800	200

$\mathrm{A}=\{\mathrm{A}$ patient is a Woman $\}$
$B=\{$ Drug fails $\}$
Will event A be independent from event B ?

$$
\operatorname{Pr}(\mathrm{A})=0.5, \operatorname{Pr}(\mathrm{~B})=0.5, \operatorname{Pr}(\mathrm{AB})=9 / 20
$$

Independence

- Consider the experiment of tossing a coin twice
- Example I:
$>\mathrm{A}=\{\mathrm{HT}, \mathrm{HH}\}, \mathrm{B}=\{\mathrm{HT}\}$
> Will event A independent from event B ?
- Example II:
$>A=\{H T\}, B=\{T H\}$
$>$ Will event A independent from event B ?
- Disjoint \neq Independence
- If A is independent from B, B is independent from C , will A be independent from C ?
Not necessarily, say $A=C$

Conditioning

- If A and B are events with $\operatorname{Pr}(\mathrm{A})>0$, the conditional probability of B given A is

$$
\operatorname{Pr}(B \mid A)=\frac{\operatorname{Pr}(A B)}{\operatorname{Pr}(A)}
$$

Conditioning

- If A and B are events with $\operatorname{Pr}(\mathrm{A})>0$, the conditional probability of B given A is

$$
\operatorname{Pr}(B \mid A)=\frac{\operatorname{Pr}(A B)}{\operatorname{Pr}(A)}
$$

- Example: Drug test

	Women	Men
Success	200	1800
Failure	1800	200

$B=\{$ Drug fails $\}$
$\operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=$?
$\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=$?

Conditioning

- If A and B are events with $\operatorname{Pr}(\mathrm{A})>0$, the conditional probability of B given \boldsymbol{A} is
- Example: Drug test $\operatorname{Pr}(A)$

$$
A=\{\text { Patient is a Woman }\}
$$

	Women	Men
Success	200	1800
Failure	1800	200

- Given A is independent from B, what is the relationship between $\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})$ and $\operatorname{Pr}(\mathrm{A})$?
$\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A})$

Conditional Independence

- Event A and B are conditionally independent given C in case

$$
\operatorname{Pr}(\mathrm{AB} \mid \mathrm{C})=\operatorname{Pr}(\mathrm{A} \mid \mathrm{C}) \operatorname{Pr}(\mathrm{B} \mid \mathrm{C})
$$

- A set of events $\left\{A_{i}\right\}$ is conditionally independent given C in case

$$
\operatorname{Pr}\left(\cap_{i} A_{i} \mid C\right)=\Pi_{i} \operatorname{Pr}\left(A_{i} \mid C\right)
$$

Conditional Independence (cont'd)

- Example: There are three events: A, B, C
$\Rightarrow \operatorname{Pr}(\mathrm{A})=\operatorname{Pr}(\mathrm{B})=\operatorname{Pr}(\mathrm{C})=1 / 5$
$>\operatorname{Pr}(\mathrm{A}, \mathrm{C})=\operatorname{Pr}(\mathrm{B}, \mathrm{C})=1 / 25, \operatorname{Pr}(\mathrm{~A}, \mathrm{~B})=1 / 10$
$>\operatorname{Pr}(\mathrm{A}, \mathrm{B}, \mathrm{C})=1 / 125$
$>$ Whether A, B are independent? $1 / 5 * 1 / 5 \neq 1 / 10$
$>$ Whether A, B are conditionally independent given C?

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{A} \mid \mathrm{C})=(1 / 25) /(1 / 5)=1 / 5, \operatorname{Pr}(\mathrm{~B} \mid \mathrm{C})= \\
& (1 / 25) /(1 / 5)=1 / 5 \\
& \operatorname{Pr}(\mathrm{AB} \mid \mathrm{C})=(1 / 125) /(1 / 5)=1 / 25=\operatorname{Pr}(\mathrm{A} \mid \mathrm{C}) \operatorname{Pr}(\mathrm{B} \mid \mathrm{C})
\end{aligned}
$$

- A and B are independent $\neq A$ and B are conditionally independent

Outline

- Basics of probability theory
- Bayes' rule
- Random variables and distributions: Expectation and Variance

Bayes' Rule

- Given two events A and B and suppose that $\operatorname{Pr}(\mathrm{A})>0$. Then

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A B)}{\operatorname{Pr}(B)}=\frac{\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)}{\operatorname{Pr}(B)}
$$

- Why do we make things this complicated?
- Often $P(B \mid A), P(A), P(B)$ are easier to get
- Some names:
- Prior $\mathbf{P (A)}$: probability before any evidence
- Likelihood $\mathbf{P}(\mathbf{B} \mid \mathrm{A})$: assuming A , how likely is the evidence
- Posterior $\mathbf{P}(\mathbf{A} \mid \mathbf{B})$: conditional prob. after knowing evidence
- Inference: deriving unknown probability from known ones

Inference with Bayes' Rule: Example

- In a bag there are two envelopes
- one has a red ball (worth \$100) and a black ball
- one has two black balls. Black balls worth nothing

- You randomly grabbed an envelope, randomly took out one ball - it's black.
- At this point you're given the option to switch the envelope. To switch or not to switch?

Inference with Bayes' Rule: Example

- E: envelope, 1=(R,B), 2=(B,B)
- B : the event of drawing a black ball
- $P(E \mid B)=P(B \mid E)^{*} P(E) / P(B)$
- We want to compare $P(E=1 \mid B)$ vs. $P(E=2 \mid B)$
- $P(B \mid E=1)=0.5, P(B \mid E=2)=1$
- $P(E=1)=P(E=2)=0.5$
- $P(B)=3 / 4$ (it in fact doesn't matter for the comparison)
- $P(E=1 \mid B)=1 / 3, P(E=2 \mid B)=2 / 3$
- After seeing a black ball, the posterior probability of this envelope being 1 (thus worth $\$ 100$) is smaller than it being 2
- Thus you should switch

Bayes' Rule: More Complicated

- Suppose that $\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots \mathrm{~B}_{\mathrm{k}}$ form a partition of S :

$$
B_{i} \bigcap B_{j}=\varnothing ; \bigcup_{i} B_{i}=S
$$

Suppose that $\operatorname{Pr}\left(\mathrm{B}_{\mathrm{i}}\right)>0$ and $\operatorname{Pr}(\mathrm{A})>0$. Then

$$
\operatorname{Pr}\left(B_{i} \mid A\right)=\frac{\operatorname{Pr}\left(A \mid B_{i}\right) \operatorname{Pr}\left(B_{i}\right)}{\operatorname{Pr}(A)}
$$

Bayes' Rule: More Complicated

- Suppose that $\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots \mathrm{~B}_{\mathrm{k}}$ form a partition of S :

$$
B_{i} \bigcap B_{j}=\varnothing ; \bigcup_{i} B_{i}=S
$$

Suppose that $\operatorname{Pr}\left(\mathrm{B}_{\mathrm{i}}\right)>0$ and $\operatorname{Pr}(\mathrm{A})>0$. Then

$$
\begin{gathered}
\operatorname{Pr}\left(B_{i} \mid A\right)=\frac{\operatorname{Pr}\left(A \mid B_{i}\right) \operatorname{Pr}\left(B_{i}\right)}{\operatorname{Pr}(A)} \\
=\frac{\operatorname{Pr}\left(A \mid B_{i}\right) \operatorname{Pr}\left(B_{i}\right)}{\sum_{j=1}^{k} \operatorname{Pr}\left(A B_{j}\right)}
\end{gathered}
$$

Bayes' Rule: More Complicated

- Suppose that $\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots \mathrm{~B}_{\mathrm{k}}$ form a partition of S :

$$
B_{i} \bigcap B_{j}=\varnothing ; \bigcup_{i} B_{i}=S
$$

Suppose that $\operatorname{Pr}\left(\mathrm{B}_{\mathrm{i}}\right)>0$ and $\operatorname{Pr}(\mathrm{A})>0$. Then

$$
\begin{aligned}
& \operatorname{Pr}\left(B_{i} \mid A\right)=\frac{\operatorname{Pr}\left(A \mid B_{i}\right) \operatorname{Pr}\left(B_{i}\right)}{\operatorname{Pr}(A)} \\
&=\frac{\operatorname{Pr}\left(A \mid B_{i}\right) \operatorname{Pr}\left(B_{i}\right)}{\sum_{j=1}^{k} \operatorname{Pr}\left(A B_{j}\right)} \\
&=\frac{\operatorname{Pr}\left(A \mid B_{i}\right) \operatorname{Pr}\left(B_{i}\right)}{\sum_{j=1}^{k} \operatorname{Pr}\left(B_{j}\right) \operatorname{Pr}\left(A \mid B_{j}\right)}
\end{aligned}
$$

Outline

- Basics of probability theory
- Bayes’ rule
- Random variable and probability distribution: Expectation and Variance

Random Variable and Distribution

- A random variable \boldsymbol{X} is a numerical outcome of a random experiment
- The distribution of a random variable is the collection of possible outcomes along with their probabilities:
\Rightarrow Discrete case: $\quad \operatorname{Pr}(X=x)=p_{\theta}(x)$
$>$ Continuous case: $\operatorname{Pr}(a \leq X \leq b)=\int_{a}^{b} p_{\theta}(x) d x$
- The support of a discrete distribution is the set of all x for which $\operatorname{Pr}(X=x)>0$
- The joint distribution of two random variables X and Y is the collection of possible outcomes along with the joint probability $\operatorname{Pr}(X=x, Y=y)$.

Random Variable: Example

- Let S be the set of all sequences of three rolls of a die. Let X be the sum of the number of dots on the three rolls.
- What are the possible values for X ?
- $\operatorname{Pr}(\mathrm{X}=3)=1 / 6 * 1 / 6 * 1 / 6=1 / 216$,
- $\operatorname{Pr}(\mathrm{X}=5)=$?

Expectation

- A random variable $X \sim \operatorname{Pr}(X=x)$. Then, its expectation is

$$
E[X]=\sum_{x} x \operatorname{Pr}(X=x)
$$

$>$ In an empirical sample, $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}$,

$$
E[X]=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

- Continuous case: $E[X]=\int_{-\infty}^{\infty} x p_{\theta}(x) d x$
- In the discrete case, expectation is indeed the average of numbers in the support weighted by their probabilities
- Expectation of sum of random variables

$$
E\left[X_{1}+X_{2}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]
$$

Expectation: Example

- Let S be the set of all sequence of three rolls of a die. Let X be the sum of the number of dots on the three rolls.
- Exercise: What is $\mathrm{E}(\mathrm{X})$?
- Let S be the set of all sequence of three rolls of a die. Let X be the product of the number of dots on the three rolls.
- Exercise: What is $\mathrm{E}(\mathrm{X})$?

Variance

- The variance of a random variable X is the expectation of $(\mathrm{X}-\mathrm{E}[\mathrm{X}])^{2}$:

$$
\begin{aligned}
& \operatorname{Var}(\mathrm{X})=\mathrm{E}\left[(\mathrm{X}-\mathrm{E}[\mathrm{X}])^{2}\right] \\
& =\mathrm{E}\left[\mathrm{X}^{2}+\mathrm{E}[\mathrm{X}]^{2}-2 \mathrm{XE}[\mathrm{X}]\right]= \\
& =\mathrm{E}\left[\mathrm{X}^{2}\right]+\mathrm{E}[\mathrm{X}]^{2}-2 \mathrm{E}[\mathrm{X}] \mathrm{E}[\mathrm{X}] \\
& =\mathrm{E}\left[\mathrm{X}^{2}\right]-\mathrm{E}[\mathrm{X}]^{2}
\end{aligned}
$$

Bernoulli Distribution

- The outcome of an experiment can either be success (i.e., 1) and failure (i.e., 0).
- $\operatorname{Pr}(\mathrm{X}=1)=\mathrm{p}, \operatorname{Pr}(\mathrm{X}=0)=1-\mathrm{p}$, or

$$
p_{\theta}(x)=p^{x}(1-p)^{1-x}
$$

- $\mathrm{E}[\mathrm{X}]=\mathrm{p}, \operatorname{Var}(\mathrm{X})=\mathrm{E}\left[\mathrm{X}^{2}\right]-\mathrm{E}[\mathrm{X}]^{2}=\mathrm{p}-\mathrm{p}^{2}$

Binomial Distribution

- n draws of a Bernoulli distribution
$>\mathrm{X}_{\mathrm{i}} \sim \operatorname{Bernoulli}(\mathrm{p}), \mathrm{X}=\sum_{\mathrm{i}=1}{ }^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}, \mathrm{X} \sim \operatorname{Bin}(\mathrm{p}, \mathrm{n})$
- Random variable X stands for the number of times that experiments are successful.

$$
\operatorname{Pr}(X=x)=p_{\theta}(x)=\left\{\begin{array}{cc}
\binom{n}{x} p^{x}(1-p)^{n-x} & x=1,2, \ldots, n \\
0 & \text { otherwise }
\end{array}\right.
$$

- $E[X]=n p, \operatorname{Var}(X)=n p(1-p)$

Plots of Binomial Distribution

Poisson Distribution

- Coming from Binomial distribution
$>$ Fix the expectation $\lambda=n \mathrm{p}$
$>$ Let the number of trials $\mathrm{n} \rightarrow \infty$
A Binomial distribution will become a Poisson distribution

$$
\operatorname{Pr}(X=x)=p_{\theta}(x)=\left\{\begin{array}{cc}
\frac{\lambda^{x}}{x!} e^{-\lambda} & x \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

- $\mathrm{E}[\mathrm{X}]=\lambda, \operatorname{Var}(\mathrm{X})=\lambda$

Plots of Poisson Distribution

Normal (Gaussian) Distribution

- X~N($\left.\mu, \sigma^{2}\right)$

$$
\begin{aligned}
& p_{\theta}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\} \\
& \operatorname{Pr}(a \leq X \leq b)=\int_{a}^{b} p_{\theta}(x) d x=\int_{a}^{b} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\} d x
\end{aligned}
$$

- $\mathrm{E}[\mathrm{X}]=\mu, \operatorname{Var}(\mathrm{X})=\sigma^{2}$
- If $X_{1} \sim N\left(\mu_{1}, \sigma^{2}\right)$ and $X_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$, for $X=X_{1}+X_{2} \sim N\left(\mu_{1}+\mu_{2}, \sigma^{2}{ }_{1}+\sigma^{2}{ }_{2}\right)$
- Note that Binomial distributions are Normal (Gaussian)

