CMSC 474, Introduction to Game Theory

Introduction to Probability Theory*

Mohammad T. Hajiaghayi University of Maryland

*: Some slides are adopted from slides by Rong Jin

Outline

- Basics of probability theory
- Bayes' rule
- Random variable and distributions: Expectation and Variance

Definition of Probability

- *Experiment*: toss a coin twice
- Sample space: possible outcomes of an experiment
 - \succ S = {HH, HT, TH, TT}
- *Event*: a subset of possible outcomes

> A={HH}, B={HT, TH}

- *Probability of an event* : an number assigned to an event Pr(A)
 - ➤ Axiom 1: 0<= Pr(A) <= 1</p>
 - > Axiom 2: Pr(S) = 1, $Pr(\emptyset) = 0$
 - Axiom 3: For two events A and B, $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$
 - > Proposition 1: $Pr(\sim A) = 1 Pr(A)$
 - > Proposition 2: For every sequence of disjoint events $Pr(\bigcup_i A_i) = \sum_i Pr(A_i)$

Joint Probability

- For events A and B, joint probability Pr(AB) (also shown as $Pr(A \cap B)$) stands for the probability that both events happen.
- Example: A={HH}, B={HT, TH}, what is the joint probability Pr(AB)?

Zero

Independence

• Two events *A* and *B* are independent in case Pr(AB) = Pr(A)Pr(B)

• A set of events $\{A_i\}$ is *independent* in case $Pr(\bigcap_i A_i) = \prod_i Pr(A_i)$

Independence

• Two events *A* and *B* are independent in case Pr(AB) = Pr(A)Pr(B)

• A set of events {A_i} is *independent* in case

$$\Pr(\bigcap_i A_i) = \prod_i \Pr(A_i)$$

• Example: Drug test

A = {A patient is a Woman}	
----------------------------	--

	Women	Men
Success	200	1800
Failure	1800	200

 $B = \{Drug fails\}$

Will event A be independent from event B ?

Pr(A)=0.5, Pr(B)=0.5, Pr(AB)=9/20

Independence

- Consider the experiment of tossing a coin twice
- Example I:
 - $\succ A = \{HT, HH\}, B = \{HT\}$
 - > Will event A independent from event B?
- Example II:
 - > $A = \{HT\}, B = \{TH\}$
 - Will event A independent from event B?
- Disjoint ≠ Independence
- If A is independent from B, B is independent from C, will A be independent from C?

Not necessarily, say A=C

Conditioning

If A and B are events with Pr(A) > 0, the conditional probability of B given A is

$$\Pr(B \mid A) = \frac{\Pr(AB)}{\Pr(A)}$$

Conditioning

If A and B are events with Pr(A) > 0, the *conditional probability of B given A* is

$$\Pr(B \mid A) = \frac{\Pr(AB)}{\Pr(A)}$$

• Example: Drug test

$A = \{Patient\}$	is a Wo	oman}
-------------------	---------	-------

	Women	Men
Success	200	1800
Failure	1800	200

B = {Drug fails}

$$Pr(B|A) = ?$$

Pr(A|B) = ?

Conditioning

• If A and B are events with Pr(A) > 0, the *conditional* probability of B given A is

$$Pr(B | A) = \frac{Pr(AB)}{Pr(A)}$$

Example: Drug test

	Women	Men
Success	200	1800
Failure	1800	200

 $A = \{Patient is a Woman\}$

B = {Drug fails} Pr(B|A) = 18/20Pr(A|B) = 18/20

Given A is independent from B, what is the relationship between Pr(A|B) and Pr(A)?

Pr(A|B) = P(A)

Conditional Independence

• Event A and B are *conditionally independent given C* in case

Pr(AB|C)=Pr(A|C)Pr(B|C)

• A set of events {A_i} is conditionally independent given C in case

 $\Pr(\cap_i A_i | C) = \prod_i \Pr(A_i | C)$

Conditional Independence (cont'd)

- Example: There are three events: A, B, C
 - > Pr(A) = Pr(B) = Pr(C) = 1/5
 - > Pr(A,C) = Pr(B,C) = 1/25, Pr(A,B) = 1/10
 - > Pr(A,B,C) = 1/125
 - > Whether A, B are independent? $1/5*1/5 \neq 1/10$
 - Whether A, B are conditionally independent given C?
 - Pr(A|C) = (1/25)/(1/5) = 1/5, Pr(B|C) = (1/25)/(1/5) = 1/5

Pr(AB|C)=(1/125)/(1/5)=1/25=Pr(A|C)Pr(B|C)

 A and B are independent ≠ A and B are conditionally independent

Outline

- Basics of probability theory
- Bayes' rule

• Random variables and distributions: Expectation and Variance

Bayes' Rule

• Given two events A and B and suppose that Pr(A) > 0. Then $Pr(A|B) = \frac{Pr(AB)}{Pr(B)} = \frac{Pr(B|A)Pr(A)}{Pr(B)}$

- Why do we make things this complicated?
 - Often P(B|A), P(A), P(B) are easier to get
 - Some names:
 - Prior P(A): probability before any evidence
 - Likelihood P(B|A): assuming A, how likely is the evidence
 - Posterior P(A|B): conditional prob. after knowing evidence
 - Inference: deriving unknown probability from known ones

Inference with Bayes' Rule: Example

- In a bag there are two envelopes
 - one has a red ball (worth \$100) and a black ball
 - one has two black balls. Black balls worth nothing

- You randomly grabbed an envelope, randomly took out one ball – it's black.
- At this point you're given the option to switch the envelope. To switch or not to switch?

Inference with Bayes' Rule: Example

- E: envelope, 1=(R,B), 2=(B,B)
- B: the event of drawing a black ball
- P(E|B) = P(B|E)*P(E) / P(B)
- We want to compare P(E=1|B) vs. P(E=2|B)
- P(B|E=1) = 0.5, P(B|E=2) = 1
- P(E=1)=P(E=2)=0.5
- P(B)=3/4 (it in fact doesn't matter for the comparison)
- P(E=1|B)=1/3, P(E=2|B)=2/3
- After seeing a black ball, the posterior probability of this envelope being 1 (thus worth \$100) is smaller than it being 2
- Thus you should switch

Bayes' Rule: More Complicated

• Suppose that $B_1, B_2, \dots B_k$ form a partition of S:

$$B_i \bigcap B_j = \emptyset; \ \bigcup_i B_i = S$$

Suppose that $Pr(B_i) > 0$ and Pr(A) > 0. Then

$$\Pr(B_i \mid A) = \frac{\Pr(A \mid B_i) \Pr(B_i)}{\Pr(A)}$$

Bayes' Rule: More Complicated

• Suppose that $B_1, B_2, \dots B_k$ form a partition of S:

$$B_i \bigcap B_j = \emptyset; \ \bigcup_i B_i = S$$

Suppose that $Pr(B_i) > 0$ and Pr(A) > 0. Then

$$\Pr(B_i \mid A) = \frac{\Pr(A \mid B_i) \Pr(B_i)}{\Pr(A)}$$
$$= \frac{\Pr(A \mid B_i) \Pr(B_i)}{\sum_{j=1}^k \Pr(AB_j)}$$

Bayes' Rule: More Complicated

• Suppose that $B_1, B_2, \dots B_k$ form a partition of S:

$$B_i \bigcap B_j = \emptyset; \ \bigcup_i B_i = S$$

Suppose that $Pr(B_i) > 0$ and Pr(A) > 0. Then

$$Pr(B_i | A) = \frac{Pr(A | B_i) Pr(B_i)}{Pr(A)}$$
$$= \frac{Pr(A | B_i) Pr(B_i)}{\sum_{j=1}^{k} Pr(AB_j)}$$
$$= \frac{Pr(A | B_i) Pr(B_i)}{\sum_{j=1}^{k} Pr(B_j) Pr(A | B_j)}$$

Outline

- Basics of probability theory
- Bayes' rule
- Random variable and probability distribution: Expectation and Variance

Random Variable and Distribution

- A *random variable X* is a numerical outcome of a random experiment
- The *distribution* of a random variable is the collection of possible outcomes along with their probabilities:
 - > Discrete case: $Pr(X = x) = p_{\theta}(x)$
 - > Continuous case: $Pr(a \le X \le b) = \int_{a}^{b} p_{\theta}(x) dx$
- The *support* of a discrete distribution is the set of all *x* for which Pr(X=x) > 0
- The *joint distribution* of two random variables *X* and *Y* is the collection of possible outcomes along with the joint probability Pr(X=x, Y=y).

Random Variable: Example

- Let S be the set of all sequences of three rolls of a die. Let X be the sum of the number of dots on the three rolls.
- What are the possible values for X?
- Pr(X = 3) = 1/6*1/6*1/6=1/216,
- Pr(X = 5) = ?

Expectation

• A random variable X~Pr(X=x). Then, its expectation is $E[X] = \sum_{x} x \Pr(X = x)$

> In an empirical sample,
$$x_1, x_2, ..., x_N$$
,
 $E[X] = \frac{1}{N} \sum_{i=1}^{N} x_i$

- Continuous case: $E[X] = \int_{-\infty}^{\infty} x p_{\theta}(x) dx$
- In the discrete case, expectation is indeed the average of numbers in the support weighted by their probabilities
- Expectation of sum of random variables

 $E[X_1 + X_2] = E[X_1] + E[X_2]$

Expectation: Example

- Let S be the set of all sequence of three rolls of a die. Let X be the sum of the number of dots on the three rolls.
- Exercise: What is E(X)?
- Let S be the set of all sequence of three rolls of a die. Let X be the product of the number of dots on the three rolls.
- Exercise: What is E(X)?

Variance

• The variance of a random variable X is the expectation of $(X-E[X])^2$:

 $Var(X) = E[(X-E[X])^{2}]$ = E[X²+E[X]²-2XE[X]]= = E[X²]+E[X]²-2E[X]E[X] = E[X²]-E[X]²

Bernoulli Distribution

- The outcome of an experiment can either be success (i.e., 1) and failure (i.e., 0).
- Pr(X=1) = p, Pr(X=0) = 1-p, or

$$p_{\theta}(x) = p^{x}(1-p)^{1-x}$$

• E[X] = p, $Var(X) = E[X^2] - E[X]^2 = p - p^2$

Binomial Distribution

• n draws of a Bernoulli distribution

> X_i ~Bernoulli(p), $X = \sum_{i=1}^n X_i$, $X \sim Bin(p, n)$

• Random variable X stands for the number of times that experiments are successful.

$$\Pr(X = x) = p_{\theta}(x) = \begin{cases} \binom{n}{x} p^{x} (1-p)^{n-x} & x = 1, 2, ..., n \\ 0 & \text{otherwise} \end{cases}$$

•
$$E[X] = np, Var(X) = np(1-p)$$

Plots of Binomial Distribution

Poisson Distribution

• Coming from Binomial distribution

- > Fix the expectation λ =np
- > Let the number of trials $n \rightarrow \infty$
- A Binomial distribution will become a Poisson distribution

$$\Pr(X = x) = p_{\theta}(x) = \begin{cases} \frac{\lambda^x}{x!} e^{-\lambda} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

•
$$E[X] = \lambda$$
, $Var(X) = \lambda$

Plots of Poisson Distribution

Normal (Gaussian) Distribution • $X \sim N(\mu, \sigma^2)$

$$p_{\theta}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$
$$\Pr(a \le X \le b) = \int_a^b p_{\theta}(x) dx = \int_a^b \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} dx$$

- $E[X] = \mu$, $Var(X) = \sigma^2$
- If $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$, for X=X₁+X₂~N($\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2$)

• Note that Binomial distributions are Normal (Gaussian)