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ABSTRACT
This paper presents an obstacle detection and alert system for
the pedestrians who use smartphone AR applications. The system
analyzes the input camera image to extract feature points and
determines whether the feature points come from obstacles ahead
in the path. With the obstacle detector, two experiments were made.
The first investigated the obstacle alert interfaces, and the second
investigated the orientation guide interfaces that instruct users to
hold their smartphones with some angles/orientations appropriate
to capture the environment. Then, the best interfaces identified
from the experiments were integrated and tested to examine their
usability and user experiences.
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1 INTRODUCTION
Thanks to the wide spread of smartphones equipped with good qual-
ity cameras, augmented reality (AR) has been penetrating deeper
into our daily lives. However, incautious use of AR applications
(such as AR games) may lead to dangerous accidents when the users
walk. For example, the users may run into obstacles ahead in the
path. A way to prevent such accidents is to detect the obstacles and
alert the users.

In this paper, we first propose a simple but effective obstacle
detection method. It adopts a visual-inertial odometry technique,
which utilizes the smartphone’s built-in camera and inertial mea-
surement unit. In such a method, it is important for the users to
hold the smartphone with appropriate orientations since the cam-
era’s field of view is determined by the orientations. For this, an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VRST ’19, November 12–15, 2019, Parramatta, NSW, Australia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7001-1/19/11. . . $15.00
https://doi.org/10.1145/3359996.3364256

appropriate orientation guide should be provided for the users. It is
a user interface issue. Once obstacles are detected, alerts should be
delivered to the users in the most effective manners. This leads to
another user interface issue. We conducted two experiments - one
for the orientation guide interfaces and the other for the obstacle
alert interfaces. This paper reports the results. By integrating the
results obtained from the experiments, we developed an obstacle
detection and alert system for pedestrians. This paper also presents
the user test with the system.

A few previous works were reported on the safety issue of AR
users. To the best of our knowledge, however, our work is the first
to design and test the obstacle-related interfaces for smartphone AR
users. Both the interfaces and the prototype system were tested in
the real-world environments. We believe that our study will benefit
industry as well as academia.

2 RELATEDWORK
These days AR applications are generally used on portable devices
such as smart glasses and smartphones. Users are hence allowed to
walk while experiencing AR. However, pedestrians are at serious
danger when their attention is distracted by the devices [Nasar
and Troyer 2013; Pizzamiglio et al. 2017]. Even though the real-
world environment is displayed on the device screen, people often
fail to perceive the danger as their attention is focused on the
contents. This is mainly due to the limit of concurrent multitask
processing [Ophir et al. 2009].

As a technical solution to ensure pedestrians’ safety, researchers
proposed systems that analyze the environment and alert the user
if a situation is determined as dangerous. To examine an environ-
ment, various sensors such as ultrasound and infrared sensors are
usually exploited. Shin et al. [Shin and Lim 2007] implemented a
wearable system using ultrasound sensors to detect obstacles and
determine the direction of avoidance. CrashAlert [Hincapié-Ramos
and Irani 2013] is a system that attaches a depth camera to a mobile
device and displays obstacles beyond the user’s peripheral view.
LookUp [Jain et al. 2015] used a shoe-mounted inertial sensor to
detect users’ transitions from a sidewalk into the road. The sensor
measurements were relayed to a smartphone, and then the step
pattern was extracted. UltraSee [Wen et al. 2015] and Infrasee [Liu
et al. 2017] each mounted an ultrasonic sensor and an infrared
sensor on the phone to detect changes in the ground such as stairs
or metro station platforms. However, these sensors are not often
included in portable devices and cost additional expenses.

To address the issue, there have been many attempts to ensure
pedestrians’ safety using portable devices without external sensors.
WalkSafe [Wang et al. 2012] is an android application that detects
vehicles approaching the user. For this purpose, it analyses a cap-
tured image from the rear camera of a phone based on the machine
learning technique. The system detects vehicles only when users
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are on a phone call. SpareEye [Foerster et al. 2014] is also an android
application that warns the user to avoid obstacles ahead. It finds
image blobs and separates potential obstacles from the background,
assuming that an area that touches the bottom line of the image is
regarded as a part of the background. Zhou and Zhengjuan [Zhou
2015] analyzed data from sensors embedded in phones such as ac-
celerometer and gyroscope to determine whether a user is walking
or not. Based on this, the phone screen is locked when a user is
walking. Tang et al. [Tang et al. 2016] detected tactile paver from
a given camera image to distinguish the safe sidewalks from dan-
gerous roads for the pedestrian. An alert was given to users when
they stepped out of the safe sidewalk. Uchida et al. [Uchida et al.
2017] suggested an alert system that predicts a collision between
pedestrian and vehicles using the wireless signal and sensor data
of mobile phones.

With the increase in AR usage, several studies have focused on
the safety of a pedestrian AR user. Jain et al. [Jain et al. 2014] used
the inertial sensor of a mobile phone and GPS to determine whether
pedestrians were at risk of a traffic accident. Using a convolutional
neural network (CNN) model, Jung et al. [Jung et al. 2018] esti-
mated the 3D position between a user and a vehicle. Then, they
identified the most efficient method to visualize detected vehicles
to AR user. However, the user test of the system was done with a
virtual simulation on a desktop rather than a mobile environment.
Gruenefeld et al. [Gruenefeld et al. 2018] developed a prototype
of peripheral AR glasses to support pedestrians in critical traffic
encounters and to evaluate three different light stimuli for shift-
ing user’s attention. Kanamori et al. [Kanamori et al. 2019, 2018]
proposed obstacle avoidance methods for VR users. Their main
idea was to superimpose the real-space information on the VR
environment.

As an alert system for a pedestrian AR user, alert interfaces are
also a crucial part of the system. Patterson [Patterson 1989] referred
that the alert needs to be detectable, reliable, and has to lead users to
an appropriate behavioral response. If an alert has not been detected
by users, they cannot use it. If an alert is unreliable due to the high
ratio of missed alert and false alert, it can become annoying and lead
to more accidents [Baber 1995; Bliss and Acton 2003; Dingus et al.
1997]. Even highly detectable and reliable alerts can lead users to
respond inappropriately. For example, Edworthy [Edworthy 1994]
found that very loud warnings can cause startle reactions of users.

In the context of alert modalities, numerous studies have investi-
gated which sensory modality is best for the alerts. Several studies
conducted under simulated conditions with experienced aircraft
pilots have found that auditory warnings produce faster response
times than the visual warnings presented on panel indicators. [Rei-
necke 1976, 1981; Wheale 1981, 1983]. Kiefer et al. [Kiefer et al.
1999] conducted a user test with various alert modalities to find
the best assistance method for drivers in avoiding a rear-end crash.
Straughn et al. [Straughn et al. 2009] examined the change in reac-
tion time when stimulus-response compatible warnings were given
to drivers. It was found that tactile warnings elicit faster reaction
time than auditory warnings. Braun et al. [Braun et al. 2018] inves-
tigated various warning modalities on a smartphone user facing an
obstacle and found that auditive modalities lead significantly faster
user’s response than visual modalities.

Figure 1: Features and region of interest (ROI) (a) Features
are depicted as white dots. (b) ROI is depicted as a pink box
and the walking path is in gray.

3 OBSTACLE DETECTION
Our system first detects obstacles within the field of view of a
smartphone’s camera. Section 3.1 presents how to build the obstacle
detector, and Section 3.2 reports the results of a test made to validate
its performances with real-world obstacles.

3.1 Design and Implementation
Visual-inertial Odometry. Our obstacle detector is built upon the

Android platform of Samsung Galaxy S8+. The screen resolution
is 2960 × 1440, and the rear camera’s field of view is 77◦. The
current implementation uses the visual-inertial odometry platform
of Google ARCore [Google 2018]. Our obstacle detector takes two
kinds of information it returns: a set of visually distinct 3D feature
points (or simply features) located within the camera’s field of view
(Figure 1-(a)), and the 6DOF camera pose.

Region of Interest. Consider the box illustrated in Figure 1-(b). It
represents a space located in front of the user’s smartphone and
is named the region of interest (ROI). The feature points that are
out of the ROI are ignored. The ROI dimensions are 3m × 1m × 3m.
They were determined through the preliminary tests conducted
indoor and outdoor with seven volunteers (one female, six males)
with heights between 164cm to 180cm (µ = 172.5, σ = 5.78).

• The ROI’s height (H ) is 3m. It is divided into the upward height,
1m, above the smartphone and the downward height, 2m. When
the upward height was too tall (e.g., 2m), the corridor ceiling was
often detected as an obstacle. When it was too short, our system
often failed to detect the obstacles above the smartphone, such as
tree branches. On the other hand, the downward height was set
to 2m considering the smartphone’s elevation from the indoor
floor or outdoor ground. If the downward height is too short,
the obstacles under the smartphone, such as downward staircase,
may not be detected.

• The ROI’s width (W ) is 1m. WhenW was too large, the corridor
walls on the sides of a user were often detected as obstacles,
falsely alerting the user who was safely walking down the corri-
dor.

• The ROI’s depth (D) is 3m. It is the most important dimension
as the obstacle detector’s effectiveness highly depends on it. If
D were too large, users would be unnecessarily alerted to the
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far-away obstacles. On the other hand, if D were too small, users
would be alerted too late, making them unable to avoid the ob-
stacles.

walking direction
holding orientation

cam
era’
s vi
ew 
dire
ctio
n

Figure 2: The holding orientation is defined as the angle be-
tween the user’s walking direction and the camera’s view di-
rection.

Keyframes. Once the feature points within the ROI are selected,
we determine whether to take the current frame as a keyframe. The
obstacles are detected only from the keyframes. A keyframe should
satisfy the following three criteria:

• The number of feature points within the ROI is at least 20.
• The holding orientation, defined in Figure 2, is in [30◦, 60◦].
• The interval from the previous keyframe is at least 0.1s .

These criteria were set also through the preliminary tests. The
first criterion is to ensure the reliability of obstacle detection. An
alert based on an insufficient number of features might be false. On
the other hand, if the lower limit of the feature count is too high,
dangerous obstacles may not be detected, thus skipping necessary
alerts. The preliminary tests on the Android and Google ARCore
platforms recommended to choose the minimum number of fea-
tures from the range of [10, 30] depending on the users’ walking
environments.

The second criterion is also to ensure the obstacle detector’s
reliability. When the holding orientation was greater than 60◦,
the user’s legs were often captured by the camera, occluding the
features on the floor/ground. When it was smaller than 30◦, the
small objects near the user’s feet were hardly detectable.

The third criterion prevents our detector from repeating un-
necessary computations. When the interval was too narrow, the
computational load increased with little improvement on the ob-
stacle detector’s performances. When the interval was too wide,
however, users would be alerted too late.

Feature Classification. Given a keyframe, random sample consen-
sus (RANSAC) [Fischler and Bolles 1981] is applied to the feature
points to identify a reference planewith two constraints: (1) it should
be perpendicular to the vertical axis (y-axis) of the world space, and
(2) it should be under the smartphone. In most cases, the reference
plane corresponds to the floor/ground.

Then, the vertical distance between each feature point and the
reference plane is computed. If it is greater than a threshold, α , the
feature point is classified as an obstacle’s. In the current implemen-
tation, α is 10cm. If the number of the obstacle features is greater

than another threshold, β , our system takes the front area as unsafe
and issues an alert. In the current implementation, β is 3. Based
on the subjects’ feedbacks obtained in the preliminary tests, α and
β were empirically determined. Many subjects complained about
unnecessary alerts when α was smaller than 10cm since uneven
road surfaces were often detected as obstacles. When β was 1 or 2,
some noises were often misinterpreted as obstacles and unneces-
sary alerts were issued. This way, our obstacle detector identifies
evident protrusions or depressions on the floor/ground.

3.2 Validation Test
An experiment was conducted to validate the obstacle detector in
the real-world environments. The same seven volunteers were re-
recruited from the preliminary tests. They were asked to walk with
a speed of 1m/s along a straight path of 12m, at the end of which an
obstacle was placed. The subjects were instructed to continuously
walk towards the obstacle even after an alert was issued. A safety
guard near the obstacle prevented collisions. The subjects were
advised to maintain the holding orientation of 45◦. All alerts were
delivered as a beep sound. (Throughout this paper, we will use
‘alert’ and ‘alarm’ interchangeably.)

We selected eight kinds of obstacles, shown in Figure 3, which
represent the obstacles frequently encountered in everyday life.
They can be categorized into four classes:

• Obstruction: We used three instances of obstruction, named 1
cube, 2 cubes and 3 cubes. They were realized by stacking 40cm ×

40cm × 40cm sized cubes, which were made of soft material, and
therefore they did not hurt the users even when collided.

• Wall: This was 8m high and made the 12m-long path a dead end.
• Staircases: For both upward staircase and downward staircase, a
step was 26cm high and 150cm wide, and the tread depth was
40cm.

• Curbs: For both upward curb and downward curb, the height
difference from the ground was 30cm.

A volunteer tried each obstacle four times, and we collected
224 (= 7 volunteers × 8 obstacles × 4 repetitions) trials. They were
analyzed to show that volunteers walked at the average speed
of 1.04m/s , the average holding orientation was 47.41◦, and our
system ran at about 60fps.

Suppose that an obstacle enters the ROI and the alarm is issued.
When it lasts longer than 0.3s , we consider it as a valid alarm. Then,
the user-obstacle distance at the time of alarm initiation is taken
as the first detection distance (FDD). Obviously, the largest possible
FDD is the ROI depth, 3m, but the alarm was not always issued
as soon as the obstacle entered the ROI. In the experiments, we
measured the FDDs for all obstacle types. Table 1 lists their means
and standard deviations. The FDDs for downward staircase and
downward curb were about 2m while those for other obstacles were
about 2.8m. Such a difference is not unexpected because downward
staircase and downward curb are hardly visible from the camera at
far distances.

If the alarm at the FDD halted and there has been no alarm since
then, we call it missed alarm. On the other hand, we have several
kinds of false alarm. If an alarm is issued when no obstacle is in the
ROI, it is false. If the first alarm issued after the obstacle’s entering
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Figure 3: Eight obstacles used in the validation test.

the ROI lasts just for 0.2s , for example, it is also taken as a false
alarm. We counted the missed and false alarms for 224 trials, but
there were neither missed alarms nor false alarms at all. These
perfect counts and the FDD statistics reported in Table 1 validated
our obstacle detector.

Table 1: First detection distances (FDDs) for eight obstacles,
where µ and σ denote the mean and standard deviation, re-
spectively.

obstacle 1 cube 2 cubes 3 cubes wall

FDD µ 2.82m 2.78m 2.77m 2.80m
σ 0.07 0.06 0.05 0.06

obstacle
upward
staircase

downward
staircase

upward
curb

downward
curb

FDD µ 2.84m 1.93m 2.79m 2.08m
σ 0.06 0.23 0.06 0.08

4 EXPERIMENT 1: OBSTACLE ALERT
INTERFACES

Wemade two experiments (henceforth, called EXP1 and EXP2) with
the obstacle detector. The goal of EXP1 was to find the interfaces
that can most effectively alert the user while least disturbing the
use of AR applications.

4.1 AR Game
It was reported that playing mobile games distracted the pedestri-
ans’ attention significantly [Haga et al. 2015]. In our experiments,
the participants were instructed to play an AR game while walking.

We developed a prototype game shown in Figure 4, where the
player touches a target character repeatedly appearing on the
screen. A red outline appears simultaneously with the target. Ini-
tially, the outline’s size is twice the target’s. For 0.6s , the outline
keeps shrinking to the target’s boundary, and then for another 0.6s ,
it continues to shrink into a dot. If the target is not touched for
the 1.2s duration, we call it ‘miss.’ As the interaction posture, the

(b)(a)

Figure 4: AR game: (a) The target (cat face) and the initial
outline. (b) When the target is touched, a score is displayed.

two-handed index finger input was used [Azenkot and Zhai 2012;
Hoober 2013], as shown in Figure 4-(b). For each touch, a score is
given. The player gets the highest score, 100 points, if the target is
touched when the shrinking outline exactly matches the target’s.
The accumulated scores are displayed on the screen to make the
user focus on the game, but the scores were not analysed after the
experiments.

The screen is divided into 3× 3 rectangular cells, and the targets
appear in a counterbalanced order between the cells. Within a cell,
the target’s position is randomly determined. The target sizes vary
randomly between small, medium and large. The game features
two difficulty levels, which we name LV1 and LV2. In LV1, the
interval between two consecutive targets’ appearances is randomly
determined in the range of [0.45s, 0.55s]. In LV2, it is in [0.3s, 0.37s].

For both EXP1 and EXP2 (to be presented in Section 5), a 90s-
long version of the game was used. In contrast, 120s-long version
was used for the application test (to be presented in Section 6).
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4.2 Participants
Twenty subjects (8 females, 12 males) took part in EXP1. They aged
between 21 to 30 (µ = 25.85, σ = 2.52), and their heights ranged
between 162cm and 184cm (µ = 172.09, σ = 6.35). Ten subjects
had experiences in mobile AR applications. We asked the subjects
two questions: (Q1) how often they would use their smartphones
while walking, and (Q2) how often they would play mobile games
while walking. The answers in a 5-point Likert scale showed that
µ = 4.35 and σ = 1.06 for Q1 and µ = 3 and σ = 1.48 for Q2. All
subjects were right-handed, and each was paid 10 USD for their
participation.

4.3 Method and Procedure
We used three common-modality alert methods and “no alert.”
• Visual: An alert icon appeared
on the screen’s upper bar. It was
a yellow triangle with an excla-
mation mark, which most users
would be familiar with. See the
right inset. In addition, the screen
turned into translucent yellow.

• Auditory: We used an abstract
sound, a siren, which is known
to induce faster reaction from
users compared to auditory
icons [Braun et al. 2018].

• Tactile: A vibration of about
200Hz was delivered via the
smartphone.

• No alert: No alerts were presented
at all. (Henceforth, denoted sim-
ply as No.)
In EXP1, subjects were first asked to fill out a demographic survey

and were provided with a brief introduction of the experiment. Prior
to the main experiment, they were given 10 minutes to practice the
AR game.

In the main experiment, the subjects played the game while
walking a 90m-long outdoor straight path. As was done in the
previous works [Ng et al. 2014a,b], an experimenter performed
a pacesetter’s role to keep each subject’s walking speed at about
1m/s . We advised subjects to maintain the holding orientation of
45◦.

A subject was provided with the four alert methods one by one.
For each method, the subject went through two difficulty levels,
LV1 and LV2. We used three obstructions, i.e., 1 cube, 2 cubes and
3 cubes presented in Figure 3. For each trial, we selected one of
three obstructions and placed it at random position on the path. In
total, a subject made 24 trials (= 4 alert methods × 2 difficulty levels
× 3 obstacles). The orders of the alert methods, difficulty levels,
and obstacles were counterbalanced between subjects. As soon as
the subjects found the obstruction ahead, they were instructed to
promptly touch the OK button at the upper-right corner of the AR
game screen, shown in Figure 4, and then walk around it.

After three obstacles were tested for a level, the subject was
asked to fill out a subjective evaluation questionnaire shown in
Table 2. In total, the questionnaire was answered eight times per

Table 2: The subjective evaluation questionnaire in EXP1.
Every question was answered in a 5-point Likert scale (1:
strongly disagree, 5: strongly agree).

category question
immersion Q1. I was immersed in the game.
distraction Q2. I was distracted by the surrounding environment.
safety Q3. I felt safe with the alert system.

effectiveness Q4. The alert was effective for avoiding obstacles.
preference Q5. I prefer the presented alert.

subject. A trial took about 90s and the entire experiment consumed
about an hour.

4.4 Result and Analysis
The subjects’ average walking speed was 1.06m/s and the holding
orientation was 41.34◦. The analysis results will be presented in
terms of detection time differences, miss ratios, and questionnaire
responses.

Figure 5: EXP1: Median, mean, interquartile ranges, and
max/min values of DTDs (whiskers).

Detection Time Difference (DTD). Let ts denote the time when our
system detects obstacles and let tu denote the time when the user
touches the OK button. DTD is defined as tu − ts . No users detected
obstacles before the system did, i.e., DTD was always positive.

Figure 5 illustrates the DTD statistics. Wilcoxon signed-rank
test was conducted to find whether the DTDs were significantly
different between the game levels for each alert method. The test
revealed that there were significant differences for Visual (Z =
−5.253,p < 0.05), Audio (Z = −6.448,p < 0.05), Tactile (Z =
−6.413,p < 0.05), and No (Z = −4.693,p < 0.05).

We evaluated DTD differences among the four methods in LV1.
A Friedman test, which is a non-parametric statistical test, was
conducted. The test revealed that there was a significant differ-
ence (X 2(3) = 98.629,p < 0.05). Post hoc analysis using Wilcoxon
signed-rank test was conducted with a Bonferroni correction ap-
plied, resulting in a significance level set at p < 0.008. The post hoc
results are presented in Table 3.

We also investigated whether the obstacle sizes affected DTDs
for each alert method. A Friedman test was conducted for each
interface and found that DTD in No was significantly different
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Table 3: EXP1: Post hoc test results of DTD differences be-
tween the alert methods in LV1.

test pairs
(LV1)

Visual
-Audio

Visual
-Tactile

Visual
-No

Audio
-Tactile

Audio
-No

Tactile
-No

Z -6.129 -6.652 -4.767 -1.981 -5.639 -5.761
p < .008 < .008 < .008 > .008 < .008 < .008

between obstacle sizes (X 2(2) = 30.700,p < 0.05). Post hoc analysis
found that there were significant DTD differences between all test
pairs of obstacle sizes: 1 cube and 2 cubes (Z = −3.584,p < 0.017),
1 cube and 3 cubes (Z = −3.173,p < 0.017), and 2 cubes and 3 cubes
(Z = −3.061,p < 0.017).

With LV2, we made the same analysis. We conducted a Friedman
test to compare DTDs among the four alert methods. The test indi-
cated that there was a significant difference (X 2(3) = 102.005,p <
0.05). The results of post hoc analysis are shown in Table 4.

Table 4: EXP1: Post hoc test results of DTD differences be-
tween the alert methods in LV2.

test pairs
(LV2)

Visual
-Audio

Visual
-Tactile

Visual
-No

Audio
-Tactile

Audio
-No

Tactile
-No

Z -4.546 -4.907 -5.856 -0.659 -6.368 -6.390
p < .008 < .008 < .008 > .008 < .008 < .008

We conducted a Friedman test to find the correlation between
obstacle sizes and DTDs within each alert method. The test result
showed that DTDs in No were significantly different between ob-
stacle sizes (X 2(2) = 22.500,p < 0.05). Post hoc analysis found
that there were significant DTD differences between all pairs of
obstacle sizes: 1 cube and 2 cubes (Z = −2.688,p < 0.017), 1 cube
and 3 cubes (Z = −3.360,p < 0.017), and 2 cubes and 3 cubes
(Z = −3.024,p < 0.017).

Figure 6: EXP1: Median, mean, interquartile ranges, and
max/min values of MRs (whiskers).

Miss Ratio (MR). Recall that, if the target in the AR game is
not touched for the 1.2s duration, we call it ‘miss.’ Figure 6 il-
lustrates the MR statistics. We conducted Wilcoxon signed-rank

test to find whether MRs were significantly different between
game levels for each alert method. The test found that there were
significant differences for Visual (Z = −6.716,p < 0.05), Audio
(Z = −6.738,p < 0.05), Tactile (Z = −6.513,p < 0.05), and No
(Z = −5.465,p < 0.05).

Similar to the analysis of DTDs, we first investigated the MR
differences among four alert methods in LV1. A Friedman test
showed that there was a significant difference (X 2(3) = 72.005,p <
0.05). Post hoc analysis results are shown in Table 5.

Table 5: EXP1: Post hoc test results of MR differences be-
tween the alert methods in LV1.

test pairs
(LV1)

Visual
-Audio

Visual
-Tactile

Visual
-No

Audio
-Tactile

Audio
-No

Tactile
-No

Z -3.030 -0.422 -5.285 -3.100 -6.504 -3.100
p < .008 > .008 < .008 < .008 < .008 < .008

We investigated whether the obstacle sizes affected MRs in LV1.
A Friedman test showed that MRs in No were significantly different
between obstacle sizes (X 2(2) = 6.872,p < 0.05). Post hoc analysis
found that there was a significant MR difference between the trials
with 1 cube and 2 cubes (Z = −2.841,p < 0.017).

With LV2, we made the same analysis. We conducted a Friedman
test to compare the MRs among the four alert methods. The test
revealed that there was a significant difference (X 2(3) = 34.074,p <
0.05). The results of post hoc analysis are presented in Table 6.

Table 6: EXP1: Post hoc test results of MR differences be-
tween the alert methods in LV2.

test pairs
(LV2)

Visual
-Audio

Visual
-Tactile

Visual
-No

Audio
-Tactile

Audio
-No

Tactile
-No

Z -1.016 -3.166 -2.929 -1.961 -3.666 -5.352
p > .008 < .008 < .008 > .008 < .008 < .008

We conducted a Friedman test to find the correlation between
obstacle sizes and MRs within each alert method. The test result
showed that there was no significant difference in MRs between
obstacle sizes.

Questionnaire Response. Figure 7 illustrates the statistics of the
questionnaire responses for four alert methods with two game
levels. We tested whether the responses were significantly different
between game levels. Wilcoxon signed-rank test found that there
was a significant difference between the responses to Q5 in LV1
and LV2 (Z = −2.104,p < 0.05) whereas there were no significant
differences in Q1, Q2, Q3 and Q4.

We investigated whether there were significant differences in
responses between four alert methods for each game level. A Fried-
man test and post hoc results are presented in Table 7 and Table 8,
respectively.

4.5 Discussion
For the trials in both LV1 and LV2, No had the largest DTD. This
implies that the common-modality alerts contributed to improving
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Figure 7: EXP1: Median, mean, interquartile ranges, and
max/min values of the questionnaire responses (whiskers).

Table 7: EXP1:A Friedman test results for the subjective eval-
uation questionnaire.

Q1 Q2 Q3 Q4 Q5
LV1 LV2 LV1 LV2 LV1 LV2 LV1 LV2 LV1 LV2

X 2(3) 0.2 1.2 21.4 14.1 30.4 15.9 37.8 35.1 24.7 26.0
p >.05 >.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05

Table 8: EXP1: Post hoc test results of the differences in
subjective evaluation questionnaire responses between the
alert methods.

test pairs Visual
-Audio

Visual
-Tactile

Visual
-No

Audio
-Tactile

Audio
-No

Tactile
-No

Q2
(LV1)

Z -0.188 -1.167 -3.014 -1.208 -3.309 -3.067
p > .013 > .013 < .013 > .013 < .013 < .013

Q2
(LV2)

Z -0.832 -1.508 -2.196 -0.586 -2.480 -2.388
p > .013 > .013 > .013 > .013 < .013 < .013

Q3
(LV1)

Z -2.066 -1.706 -3.474 -3.397 -2.652 -3.477
p > .013 > .013 < .013 < .013 < .013 < .013

Q3
(LV2)

Z -0.157 -2.264 -2.669 -2.214 -2.441 -3.093
p > .013 > .013 < .013 > .013 < .013 < .013

Q4
(LV1)

Z -1.713 -3.087 -3.431 -0.865 -3.965 -3.767
p > .013 < .013 < .013 > .013 < .013 < .013

Q4
(LV2)

Z -2.481 -3.078 -3.318 -0.090 -3.985 -3.677
p < .013 < .013 < .013 > .013 < .013 < .013

Q5
(LV1)

Z -2.231 -3.436 -0.992 -2.185 -3.225 -3.412
p > .013 < .013 > .013 > .013 < .013 < .013

Q5
(LV2)

Z -2.208 -3.470 -1.428 -2.193 -3.497 -3.583
p > .013 < .013 > .013 > .013 < .013 < .013

users’ reactions to obstacles. Furthermore, all common-modality
alerts had lower MRs than No. Many subjects commented that
they could concentrate more on the game thanks to the obstacle
detectors. Only No was significantly different between obstacle
sizes, and the DTD was larger when the obstacle was smaller (when
the number of the stacked cubes is fewer). This is mainly because
human eyes have difficulties in detecting small obstacles. These
findings prove the usefulness of our obstacle alert system.

Among the three common-modality alertmethods,Visual showed
the largest DTD in both LV1 and LV2. However, there was no sig-
nificant difference between Auditory and Tactile. Several subjects

commented that Visual did not deliver as much sense of danger as
Auditory and Tactile. The subjective questionnaire responses also
show that users preferred Auditory and Tactile the most.

5 EXPERIMENT 2: ORIENTATION GUIDE
INTERFACES

As discussed earlier, our system’s obstacle detection performance
is dependent on the camera’s holding orientation. The goal of EXP2
was to find the interfaces that can most effectively guide users
to hold the smartphones with desired orientations. For this, we
designed a set of orientation guide interfaces and conducted user
tests. The same subjects were re-recruited from EXP1, and each
was paid 10 USD for their participation.

5.1 Method and Procedure
The desired range of holding orientations was set to [40◦, 50◦].
Once the orientation went out of this range, an instruction was
provided. In EXP2, we used two visual guides, two auditory guides,
a vibrational tactile guide, and “no guide.” The first five methods
belong to the common-modality interfaces.

(c)(a) (b)

Figure 8: Brightness and Pointing Guides in EXP2: (a) Ini-
tial orientation in [40◦, 50◦]. (b) Brightness Guide. (c) Point-
ing Guide.

• Brightness Guide (BG): This interface guides users how to tilt the
phones by changing the brightness of a subarea of the screen.
If the angle goes over 50◦, the upper part of the screen fades to
black, i.e., the screen in Figure 8-(a) changes to that in Figure 8-(b).
In order to restore the part, users have to tilt the phones upwards.
By the same token, if the angle goes below 40◦, the lower part
fades to black and users have to tilt the phones downwards.

• Pointing Guide (PG): Arrows appear on the screen’s upper bar
to guide the users: ↑ and ↓ for upward and downward tilting,
respectively. Observe that Figure 8-(b) and -(c) provide the same
guide.

• Abstract Auditory Guide (AAG): A siren is issued when the hold-
ing orientation is out of range. This guide brings no directional
information.

• Specific Auditory Guide (SAG): A recorded sound of “Up” or
“Down” is played back according to the same metaphor as BG
and PG.

• Tactile Guide (TG): A vibration of 200Hz is delivered when the
holding orientation is out of range. This guide brings no direc-
tional information.
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Table 9: The subjective evaluation questionnaire in EXP2.

category question
immersion Q1. I was immersed in the game.

distraction Q2. I was distracted from the game due to the task of
maintaining the desired orientation.

convenience Q3. The guide was convenient for me.
effectiveness Q4. The guide was effective in maintaining the orientation.
preference Q5. I prefer the guiding method.

• No Guide (NG): At the beginning of the experiment, the users are
instructed to maintain the desired holding orientations. However,
no guides are given while walking.

As in EXP1, subjects walked down the 90m-long path while
playing the AR game at LV2. In EXP2, however, no obstacles were
in the path. An experimenter performed a pacesetter’s role to keep
each subject’s walking speed at about 1m/s . A subject walked the
path six times, each with a distinct orientation guide. The order of
the orientation guides was counterbalanced between subjects. The
holding orientations were measured every frame, and a subjective
evaluation questionnaire was filled after each trial. The questions
are listed in Table 9. The experiment took about 20 minutes.

5.2 Result and Analysis
In EXP2, we collected three kinds of data: (1) the average holding
orientation, (2) the total amount of time, denoted as To , when the
holding orientation was out of the desired range, and (3) the miss
ratio (MR). Figure 9 illustrates their statistics.

A Friedman test found that there was no significant differences
of the average holding orientations between the six guide meth-
ods (X 2(5) = 8.400,p > 0.05). In contrast, there were significant
differences between the guide methods in terms of To (X 2(5) =
24.814,p < 0.05) and MR (X 2(5) = 12.092,p < 0.05). Post hoc
analysis using Wilcoxon signed-rank test was conducted with a
Bonferroni correction applied, resulting in a significance level set
at p < 0.003. The post hoc test for To found that there were sig-
nificant differences between BG and NG (Z = −2.987,p < 0.003),
between PG and NG (Z = −3.248,p < 0.003) and between SAG
and NG (Z = −3.173,p < 0.003). The post hoc test for MRs
showed that there was a significant difference between BG and
NG (Z = −3.073,p < 0.003).

Figure 10 illustrates the statistics of the questionnaire responses
for the orientation guides. A Friedman test found that there were
significant differences between the responses to the six methods
in Q2 (X 2(5) = 26.786,p < 0.05), Q3 (X 2(5) = 70.943,p < 0.05), Q4
(X 2(5) = 66.765,p < 0.05), and Q5 (X 2(5) = 58.670,p < 0.05). As a
post hoc test, we conducted Wilcoxon signed-rank test. The post
hoc results are listed in Table 10.

5.3 Discussion
NG’s To was significantly larger than BG’s, PG’s, and SAG’s. This
implies that the orientation guides “with directional information”
were effective in general. Several subjects complained that they
could not figure out how to correct the holding orientation with
AAG and TG.

Table 10: EXP2: Post hoc test results of the differences in sub-
jective evaluation questionnaire responses between orienta-
tion guide methods. Only the test pairs with statistically sig-
nificant differences are listed.

test pairs with significant differences

Q2

test pairs Z

Q4

test pairs Z
BG-AAG −3.054 BG-AAG −3.787
PG-AAG −3.100 BG-SAG −3.471
PG-TG −3.002 BG-TG −3.555

AAG-SAG −3.239 BG-NG −3.364
SAG-TG −3.135 PG-AAG −3.457

Q3

test pairs Z PG-SAG −3.114
BG-AAG −3.294 PG-TG −3.460
BG-SAG −3.450 AAG-SAG −4.027
BG-TG −3.700 SAG-TG −3.903
BG-NG −3.382 SAG-NG −3.796
PG-AAG −3.783

Q5

test pairs Z
PG-SAG −3.209 BG-SAG −3.556
PG-TG −3.800 BG-TG −3.166
PG-NG −3.299 PG-SAG −3.863

AAG-SAG −3.988 PG-TG −3.471
SAG-TG −3.994 AAG-SAG −3.985
SAG-NG −3.978 SAG-TG −4.010

SAG-NG −3.872

BG’s MR was significantly higher than NG’s. Six subjects com-
mented “It was hard to see the targets with BG. It was quite annoy-
ing.”

With respect to the subjective evaluation questionnaire, SAG
was significantly higher than the others in terms of convenience,
effectiveness, and preference. On the other hand, BG and PG were
significantly higher than NG and AAG in terms of convenience and
effectiveness. However, BG had a significantly higher MR than NG.

One notable finding is that the interfaces “without directional
information” (AAG and TG) had as bad scores as NG in terms of
distraction, convenience and effectiveness. Several subjects com-
mented that, with AAG and TG, they had a hard time figuring out
which direction they should change their orientation to.

6 APPLICATION TEST
In both EXP1 and EXP2, we investigated visual, auditory and tactile
modalities. In EXP1, Auditory (using an abstract sound, which is
a siren) and Tactile were the best. In EXP2, Pointing Guide (PG;
visual) and Specific Auditory Guide (SAG) were the best. There were
no modality overlaps between the results of EXP1 and EXP2. This
inspired us to combine the best interfaces.

Let us abbreviate Auditory and Tactile in EXP1 to A and T , re-
spectively. With PG and SAG from EXP2, we defined four interface
combinations: (1) A+PG, (2) A+SAG, (3) T+PG, and (4) T+SAG. Then,
we developed a prototyping system by integrating these combina-
tions of interfaces with our obstacle detector. We name the system
SafeAR. (The name containsAR because the interfaces were tested
with anAR game, but the functionalities of SafeAR can be extended
to general mobile content through an appropriate user study.) This
section presents a user test conducted to investigate the usability
of each interface combination of SafeAR.
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Figure 9: EXP2 statistics: (a) The average holding orientation. (b) To . (c) Miss ratio (MR).

Figure 10: EXP2: Median, mean, interquartile ranges, and
max/min values of the questionnaire responses (whiskers).

6.1 Participants
Thirty subjects (13 females) were newly recruited for test. They
aged between 18 and 32 (µ = 24, σ = 3.17), and the heights ranged
between 155cm and 185cm (µ = 168.56, σ = 7.26). Sixteen subjects
had experiences with AR: Seven in AR headsets and fourteen in
mobile AR applications. We asked the subjects two questions: (Q1)
how often they would use their smartphones while walking, and
(Q2) how often they would play mobile games while walking. The
answers in a 5-point Likert scale showed that µ = 4.64 and σ = 0.48
for Q1 and µ = 2.92 and σ = 1.44 for Q2. All subjects were right-
handed, and each was paid 10 USD for their participation.

6.2 Method and Procedure

1st floor 2nd floor

Figure 11: The 120m-long indoor path used for SafeAR test.

Table 11: The subjective evaluation questionnaire used in
the application test.

category question
immersion Q1. I was immersed in the game.

distraction-angle Q2. I was distracted from the game due to the
task of maintaining the desired orientation.

distraction-warning Q3. I was distracted by the surrounding
environment.

distraction-overall Q4. The system distracted me from the game
preference Q5. I prefer the system.

SafeAR was tested in the 120m-long indoor path shown in Fig-
ure 11. The path had six obstacles: two swivel chairs, a flowerpot,
two upward staircases, and a display board. First of all, subjects
were informed about SafeAR’s functionalities and the test proce-
dure. They were then asked to answer the intention-to-use question
of “I will use an obstacle alert system when I play an AR game” in
a 5-point Likert scale. For practice, the subjects were asked to walk
the path shown in Figure 11 without holding smartphones in order
to get familiar with the environment. The walking speed of 1m/s
was recommended. They also practiced the AR game (in LV2) for
ten minutes.

In the main test, the subjects walked the path while playing the
AR game at the walking speed of 1m/s , together with an experi-
menter performing the roles of both pacesetter and safety guard.
A subject performed a trial for a combination, resulting in four
trials in total. The order of combinations was counterbalanced be-
tween subjects. The test took about 20 minutes. After each trial,
subjects filled out the System Usability Scale (SUS) [Brooke et al.
1996] and a subjective evaluation questionnaire shown in Table 11.
After completing the entire test, the subjects were asked to rank the
combinations. Finally, they answered the intention-to-use question
again.

6.3 Result and Analysis
Figure 12 illustrates the SUS analysis results. A Friedman test found
that a significant difference of SUS scores exists between four
combinations (X 2(5) = 15.547,p < 0.05). Post hoc analysis us-
ing Wilcoxon signed-rank test was conducted with a Bonferroni
correction applied, resulting in a significance level set at p < 0.008.
There were significant differences between the SUS scores of T+SAG
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Figure 12: SUS analysis results.

and A+PG (Z = −2.817,p < 0.008) and between the SUS scores of
T+PG and A+PG (Z = −3.035,p < 0.008).

Figure 13: Application: Median, mean, interquartile ranges,
and max/min values of the questionnaire responses
(whiskers).

Figure 13 illustrates the statistics of the questionnaire responses.
A Friedman test found that there was a significant difference be-
tween four combinations in Q5 (X 2(5) = 9.081,p < 0.05) whereas
there were no significant differences between four combinations in
Q1, Q2, Q3 and Q4. Post hoc analysis with Wilcoxon signed-rank
test found that there was a significant difference between T+SAG
and A+PG (Z = −2.723,p < 0.008).

Figure 14: Preference (Q5) analysis results.
Figure 14 shows the users’ preferences among the four com-

binations. The preferences were in the order of T+SAG, T+PG,
A+SAG, and A+PG. We used Wilcoxon signed-rank test to inves-
tigate whether the users’ responses to intention-to-use changed
through the test. It was found that there was a significant difference
before and after the test (Z = −2.464,p < 0.05).

6.4 Discussion
The responses to the subjective evaluation questionnaire revealed
that four combinations had no significant differences in terms of
immersion and distraction. The preferences increased in the order of
A+PG, A+SAG, T+PG and T+SAG. Tactile(T ) was evidently favored.
However, four subjects commented “The tactile alarm was confused
with notifications from text messages. A unique vibrational pattern
should be developed.” The majority of the subjects, 23 users, pointed
out that Auditory(A) might not be an appropriate alert method for
practical use. Some users commented “It is unlikely that I will be
putting on headphones every time.” and “I doubt that this will be
useful in a noisy environment.”

A significant difference was found between the users’ responses
to intention-to-use before and after the test, indicating that users
became more willing to use the alert system once they experienced
it. Some users gave valuable comments for future improvements. For
example, twelve users pointed out that alerts should not be issued
while they were going up or down the stairs. A user recommended
to adopt a range of alert intensities which convey the different
levels of danger.

7 CONCLUSION
We developed an obstacle detector and validated its performances
using real-world obstacles. Through two experiments, we found
that auditory and tactile interfaces were the most effective for issu-
ing alerts whereas specific audio or arrow pointing was the most
preferred for guiding the users to hold the smartphone with de-
sired orientations. These interfaces were combined to SafeAR, with
which we conducted a user test to examine the usability and user
experiences. The users expressed their intentions to use SafeAR.

As argued in Section 6, the name, SafeAR, contains AR because
the interfaces were tested with an AR game. However, the func-
tionalities of SafeAR can be extended to non-AR applications such
as general mobile content or even mobile VR games if appropri-
ate user studies are designed and conducted in those applications.
These efforts will establish the general method of securing safe
walk while enjoying mobile content. We also envision that SafeAR
can be ported to non-entertainment areas. For example, it can be
adopted for a danger detection system for the visually impaired.
We are planning to extend SafeAR along the directions.

Our obstacle detector uses the monocular camera and conse-
quently reveals some limitations. For example, feature points are
not extracted well in a textureless environment, and abrupt change
in illumination may also cause an error in visual-inertial odom-
etry process. In order to tackle such problems without attaching
additional sensors to the smartphone, a deep learning-based ap-
proach [DeTone et al. 2018] will be worth investigating.
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