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The Green-Tao Theorem and the Infinitude
of Primes in Domains

Haydar Göral, Hikmet Burak Özcan, and Doğa Can Sertbaş

Abstract. We first prove an elementary analogue of the Green-Tao Theorem. The celebrated
Green-Tao Theorem states that there are arbitrarily long arithmetic progressions in the set of
prime numbers. In fact, we show the Green-Tao Theorem for polynomial rings over integral
domains with several variables. Using the Generalized Polynomial van der Waerden Theorem,
we also prove that in an infinite unique factorization domain, if the cardinality of the set of
units is strictly less than that of the domain, then there are infinitely many prime elements.
Moreover, we deduce the infinitude of prime numbers in the positive integers using polynomial
progressions of length three. In addition, using unit equations, we provide two more proofs of
the infinitude of prime numbers. Finally, we give a new proof of the divergence of the sum of
reciprocals of all prime numbers.

1. INTRODUCTION. One may ask why mathematicians still give new proofs of
the same theorems over and over again, even though they have already been estab-
lished. For example, what was Euler’s intention in giving a new proof of the infinitude
of prime numbers about 2000 years after Euclid? This interesting question may be
answered with the words of Michael Bode [5], a mathematics professor at Queensland
University of Technology in Australia:

“The theorem was never about the theorem. It was always about the proof.”

It is generally advantageous to approach problems from different perspectives. This
allows one to gain various insights and points of view on theorems. For instance,
Euler’s proof of the infinitude of primes identified connections between analysis and
number theory. Similarly, Alpoge’s proof [1] of the infinitude of primes using additive
combinatorics reveals the deep connection between additive number theory and multi-
plicative number theory. Moreover, these associations show that many subdisciplines
of mathematics are closely related, and they take advantage of each other. To illustrate
this point, the Pythagorean Theorem has at least 371 proofs [27] and the infinitude
of primes has at least 183 proofs [24], and these proofs apply many different tech-
niques of mathematics. In this paper, we extend this idea by offering new proofs of
the infinitude of primes and the divergence of the sum of reciprocals of all primes.
For this purpose, we survey the fundamental results of additive combinatorics so that
the reader can see how the historical development led to contemporary topics in the
discipline.

The first proof of the infinitude of prime numbers dates back to 300 BC and is
attributed to Euclid. The proof of this famous result, which we know as Euclid’s
Theorem, is based on the fact that every positive integer greater than 1 has a prime
divisor. In 1737, Euler [13, Theorema 19] provided a new proof of Euclid’s Theorem
using the divergence of the harmonic series
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∞∑
k=1

1

k
= 1 + 1

2
+ 1

3
+ · · · .

In fact, Euler proved the following result.

Euler’s Theorem. Let p1 < p2 < · · · be the list of all prime numbers. Then, the series

∞∑
i=1

1

pi

(1)

is divergent.

One can immediately see that Euler’s Theorem implies Euclid’s Theorem. Unlike
Euclid’s proof, however, Euler’s proof is based on the following connection between
prime numbers and infinite series:

∞∑
n=1

1

ns
=

∏
p∈P

(
1 − 1

ps

)−1

. (2)

Here, s > 1 is any real number and P is the set of all prime numbers. His approach
inspired Dirichlet and formed the main idea of Dirichlet’s Theorem on arithmetic pro-
gressions (see [6, Chapter 1]). The aformentioned theorem of Dirichlet is considered
as the beginning of analytic number theory. Hence, this progress illustrates the under-
lying point of Bode’s assertion. On the other hand, the function

ζ(s) =
∞∑

n=1

1

ns
,

which was first introduced by Euler for real numbers s > 1, was also considered by
Riemann in [28] for complex numbers s with �(s) > 1. He proved that ζ(s) has a
meromorphic continuation to the whole complex plane except for a simple pole at s =
1 with residue 1. Then he established a link between the zeros of the function ζ(s) and
the distribution of prime numbers. In 1896, Hadamard [23] and de la Vallée Poussin
[7] proved independently the Prime Number Theorem using the ideas introduced by
Riemann in [28], particularly the analytic properties of the function ζ(s). Recall that
the Prime Number Theorem states that the prime counting function π(n) is asymptotic
to the function n

log n
, that is to say

lim
n→∞

π(n) log n

n
= 1.

Today, many mathematicians from various branches of the discipline still continue
to provide new proofs of both Euclid’s and Euler’s Theorems. To give some examples,
one of the most interesting proofs of Euclid’s Theorem is Furstenberg’s proof [14]
that uses the basic instruments of topology. Another remarkable proof of Euclid’s
Theorem is that of Alpoge [1] who gave a proof using van der Waerden’s Theorem.
Using the same theorem of van der Waerden, Granville [20] also demonstrated the
infinitude of prime numbers based on Alpoge’s proof. Elsholtz [9] also gave some
proofs of Euclid’s Theorem in his recent paper, using results from number theory,
additive combinatorics, and infinite Ramsey theory. If we look at the alternative proofs
of Euler’s Theorem in the literature, Erdős [10] has offered a combinatorial proof.
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There are several proofs of both Euclid’s Theorem and Euler’s Theorem that use ele-
mentary number theory [30], geometry [18], valuation theory [31], and ring theory
[25]. We refer the reader to the surveys of Meštrović [24] and Granville [19] to find
more proofs of the infinitude of prime numbers.

Szemerédi’s Theorem is another example of a theorem with several different proofs.
Before mentioning it, we introduce some of the basics related to additive combina-
torics. A finite sequence

a1 < a2 < · · · < ak

of k > 1 numbers is called a k-term arithmetic progression if there exists a constant
d > 0 such that

ai+1 − ai = d,

for all i = 1, . . . , k − 1. In 1927, van der Waerden [36] showed that if positive inte-
gers are colored with finitely many colors, then there exists a monochromatic k-term
arithmetic progression for any positive integer k > 1. This is a very first example in
additive combinatorics. Nine years later, Erdős and Turán [12] proposed a conjecture
which establishes van der Waerden’s Theorem for k = 3. In order to explain this result,
we first recall the upper density of a subset A of positive integers, which is denoted by
d̄(A) and defined as

d̄(A) = lim sup
M→∞

|A ∩ {1, . . . , M}|
M

.

Erdős and Turán’s conjecture states that there exists a 3-term arithmetic progression
in every subset of positive integers with positive upper density. If we consider this
question for an arbitrary positive integer k > 1, it can be observed that the extended
Erdős-Turán conjecture implies van der Waerden’s Theorem. To see this, note that if
we divide the positive integers into finitely many disjoint subsets, namely

Z+ =
k⊔

i=1

Pi,

where Pi ∩ Pj = ∅ for any i 	= j , then we can find a subset Pi ⊂ Z+ such that the
upper density of Pi is positive. The Erdős-Turán conjecture was shown by Roth [29]
in 1953. After that, Szemerédi [32,33] proved its extended version for k ≥ 4, where the
proof included many new ideas and techniques. Thereafter, the extended Erdős-Turán
conjecture was referred as Szemerédi’s Theorem. Using ergodic theory, Furstenberg
[15] provided a different proof of Szemerédi’s Theorem, whereas Gowers [17] applied
Fourier analytic techniques to obtain the same result. Moreover, Furstenberg’s ergodic
theoretical proof led to many generalizations of Szemerédi’s Theorem. For instance,
Furstenberg and Katznelson [16] proved the multidimensional Szemerédi Theorem,
while Bergelson and Leibman [2] showed the polynomial version of it. Hence, Sze-
merédi’s Theorem, like Euclid’s Theorem, can also be regarded as an example that
supports Bode’s idea. Another open problem in additive combinatorics is Erdős’ con-
jecture mentioned in [11]. It states that for a subset A of positive integers, if the
series ∑

a∈A

1

a
(3)
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is divergent, then A contains a k-term arithmetic progression for any positive integer
k ≥ 3. This conjecture was shown by Bloom and Sisask [4] for the case k = 3 in their
very recent work. Even though the general case remains an open question, some spe-
cial cases support the truth of this conjecture. For example, Green and Tao [21] proved
the existence of a k-term arithmetic progression in the set of all prime numbers for
each positive integer k ≥ 3. Later, Tao and Ziegler [34] demonstrated the polynomial
version of the Green-Tao Theorem. Considering the question from a different point
of view, an analogue of the Green-Tao Theorem in Z[x] was shown by Pambuccian
[26].

In this paper, we first show an elementary analogue of the Green-Tao Theorem
in polynomial rings over integral domains with several variables. Following this, we
prove the infinitude of prime elements in infinite unique factorization domains with
few units using a generalization of Polynomial van der Waerden’s Theorem [3]. Thanks
to this technique, we obtain a new proof of Euclid’s Theorem in Section 3 which allows
us to improve Alpoge’s and Granville’s proofs simultaneously in terms of the number
of elements in the corresponding progression. Furthermore, we give two more proofs
of the infinitude of prime numbers in Section 4 by focusing on the number of solutions
of a unit equation. Finally, we provide a proof of Euler’s Theorem using the notion of
upper density.

2. THE GREEN-TAO THEOREM IN DOMAINS. The main goal of this sec-
tion is to prove an elementary analogue of the celebrated Green-Tao Theorem. In
fact, we show that the Green-Tao Theorem is valid in polynomial rings over inte-
gral domains with several variables using Eisenstein’s Criterion (see [8, Section 9.4,
Proposition 13]).

Eisenstein’s Criterion. Let D be an integral domain and

p(x) = xn + · · · + a1x + a0

a polynomial in D[x] with n ≥ 1. Suppose that there exists a prime ideal p of D such
that

• ai ∈ p for all i = 0, . . . , n − 1,
• a0 /∈ p2.

Then, p(x) is an irreducible polynomial in D[x].

Now, we are ready to prove our first result.

Theorem 1. Let D be an integral domain and n ≥ 2. Assume that Ak is the set of all
polynomials in D[x1, . . . , xn], which have total degree at most k ≥ 1. Then there exist
two polynomials f, g ∈ D[x1, . . . , xn] with g 	= 0 such that for all h ∈ Ak , f + gh is
an irreducible polynomial that includes all the indeterminates x1, . . . , xn.

Proof. Let R = D[x1, . . . , xn−1]. Choose the polynomials f, g ∈ R[xn] as

f (xn) = xk+3
n + x1 · · · xn−1 and g(xn) = x2

1 .

The polynomials f + gh are of the form

(f + gh)(xn) = xk+3
n + h · x2

1 + x1 · · · xn−1,

4 c© THE MATHEMATICAL ASSOCIATION OF AMERICA



where h = h(x1, . . . , xn) ∈ Ak . Observe that f + gh includes all the indeterminates
x1, . . . , xn, for all h ∈ Ak . As the polynomials h ∈ Ak have total degrees at most k, the
polynomials f + gh are of degree k + 3 in terms of xn. Hence, the leading coefficients
of these polynomials are 1 with respect to the variable xn and all the other coefficients
contain the variable x1. If h does not contain the variable xn, then the constant term
of the polynomial f + gh is h · x2

1 + x1 · · · xn−1. Otherwise, it is x1 · · · xn−1. Since D

is an integral domain, the rings R = D[x1, . . . , xn−1] and D[x2, . . . , xn−1] are integral
domains as well. Also, observe that the principal ideal (x1) ⊆ R is a prime ideal of
R, as the quotient ring R/(x1) 
 D[x2, . . . , xn−1] is an integral domain. Note that
for any h ∈ Ak , all the coefficients of f + gh except the leading one are contained
in (x1). Furthermore, the constant term of f + gh is not contained in (x1)

2 in either
case. Thus, by Eisenstein’s Criterion, we deduce that f + gh is irreducible in R[xn] =
D[x1, . . . , xn] for each h ∈ Ak .

3. THE INFINITUDE OF PRIMES AND THE GENERALIZED POLYNO-
MIAL VAN DER WAERDEN THEOREM. This section begins with the proof of
the infinitude of prime elements in infinite unique factorization domains which have
few units. To show this, we use an extension of the Polynomial van der Waerden
Theorem to infinite integral domains, which can be obtained by [3, Corollary 7.11].

Generalized Polynomial van der Waerden Theorem. Assume that D is an infinite
integral domain and r is a positive integer. If f1(x), . . . , fk(x) are polynomials in
D[x] with f1(0) = · · · = fk(0) = 0, then for any r-coloring of D there exist a ∈ D

and d ∈ D \ {0} such that a, a + f1(d), . . . , a + fk(d) are of the same color.

Let D be a unique factorization domain and a ∈ D \ {0}. Given any prime element
p ∈ D, the p-adic valuation of a is the largest power of p dividing a and it is denoted
by νp(a). By convention, νp(0) = ∞ which is a symbol that is greater than every
natural number. For any two elements a, b ∈ D, we have that

νp(ab) = νp(a) + νp(b), (4)

νp(a + b) ≥ min{νp(a), νp(b)}. (5)

Provided that νp(a) 	= νp(b), we also have

νp(a + b) = min{νp(a), νp(b)}. (6)

Using the properties of the p-adic valuation, we can prove our second result.

Theorem 2. Let D be an infinite unique factorization domain and D× denote the set
of units in D. Assume that |D×| < |D|. Then, there are infinitely many prime elements
in D which are not associated to each other.

Proof. Assume that p1, . . . , pm are the only (non-associated) prime elements in D. We
first show that if |D×| < |D|, then D× is a finite set. Suppose not, that is D× contains
at least countably many elements. Since D is a unique factorization domain, we see
that every nonzero element n ∈ D can be uniquely expressed as

n = u

m∏
i=1

p
νi(n)

i ,
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where u ∈ D× and νi(n) is the pi-adic valuation of n. This indicates that there are also
countably many elements in D, which contradicts the assumption |D×| < |D|. Thus,
we derive that D× has only finitely many elements. Assume that u1, . . . , us are all
elements in D×. Define

C : D −→
(

{0, 1} × {0, 1}
)m

∪ {♣} (7)

as

C(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

({
1 pi | n

0 pi � n

}
, νi(n) (mod 2)

)
i

, if n 	= 0

♣ , if n = 0.

Then, C is a coloring of D with finitely many colors. Choose the following 2s polyno-
mials from D[x]:

f1(x) = u1x, f2(x) = u2x, . . . , fs(x) = usx,

fs+1(x) = u1πx, fs+2(x) = u2πx, . . . , f2s(x) = usπx,

where π = p1 · · ·pm. Note that fi(0) = 0 and fs+i (0) = 0, for all i = 1, . . . , s. By
the Generalized Polynomial van der Waerden Theorem, there are a and d 	= 0 in D

such that

C(
a
) = C(

a + f1(d)
) = · · · = C(

a + fs(d)
) = C(

a + fs+1(d)
) = · · · = C(

a + f2s(d)
)
.

In other words,

a, a + u1d, . . . , a + usd, a + u1πd, . . . , a + usπd

have the same color. Notice that if a were zero, then the elements in the progres-
sion would have ♣ color, which means that they are all zero. But this contradicts the
fact that d is nonzero. Thus, a must be nonzero. Now, let us choose a prime element
p dividing a. As 1 ∈ {u1, . . . , us}, a and a + d have the same color. Hence, p also
divides a + d which implies that p divides d. Suppose that νp(d) < νp(a). As a and
a + d have the same color,

νp(a) ≡ νp(a + d) (mod 2). (8)

Since νp(d) < νp(a), we obtain using (6) that

νp(a + d) = νp(d). (9)

By (8) and (9), we see that

νp(a) ≡ νp(d) (mod 2).

As νp(d) < νp(a), we have that νp(d) ≤ νp(a) − 2. On the other hand, a + d and
a + πd have the same color. This implies that

νp(a + d) ≡ νp(a + πd) (mod 2).

By (9), we infer that

νp(d) ≡ νp(a + πd) (mod 2). (10)

6 c© THE MATHEMATICAL ASSOCIATION OF AMERICA



As νp(d) ≤ νp(a) − 2 and p ∈ {p1, . . . , pm}, we deduce from (4) and (6) that

νp(a + πd) = νp(d) + 1. (11)

Therefore, we obtain from (10) and (11) that

νp(d) ≡ νp(d) + 1 (mod 2), (12)

which is a contradiction. Hence, we must have νp(a) ≤ νp(d). Then, we see that

νp(a) < νp(uiπd) (13)

for all i = 1, . . . , s. By (6), we obtain that

νp(a) = νp(a + u1πd) = · · · = νp(a + usπd). (14)

Moreover, a, a + u1πd, . . . , a + usπd are all divisible by p, since these s + 1 ele-
ments have the same color. Therefore, we also have the equalities in (14) for the
primes that do not divide a. Hence, we see that (14) holds for all prime numbers
p ∈ {p1, . . . , pm}. This indicates that a and a + uiπd are a unit multiple of each other
for each i = 1, . . . , s, as D is a unique factorization domain. But there are s units in
D and 1 ∈ D×. Thus, we get that

a = a + uiπd

for some i = 1, . . . , s. This shows that uiπd = 0. Since D is a domain, d = 0 which
contradicts the fact that d is nonzero. Consequently, there are infinitely many prime
elements in D.

As a consequence of Theorem 3, one can also show the infinitude of prime elements
in the integers by choosing only four polynomials, since ±1 are the only units in the
integers. In fact, the number of polynomials can be reduced to two in order to prove
the existence of infinitely many prime numbers. This may be seen as an improvement
of [1, 20] in the sense of the length of the corresponding progression.

Proposition 1. There are infinitely many prime elements in the positive integers.

Proof. Suppose that {p1, p2, . . . , pm} is the complete list of all prime elements in the
positive integers, where p1 = 2 and m ≥ 2. Replacing D with Z in (7), we obtain a
coloring C of Z. Choose the following two polynomials in Z[x]

f1(x) = x and f2(x) = πx,

where π = p1 · · ·pm. By the Generalized Polynomial van der Waerden Theorem, we
find two integers a and d 	= 0 such that

a, a + d, a + πd

have the same color. Using the same argument given in the proof of Theorem 3, we
have that a is nonzero and each prime divisor p of a also divides d. If νp(d) < νp(a),
then we have the same contradiction given in (12). Therefore, we must have νp(a) ≤
νp(d). Similar to (13), we obtain that

νp(a) < νp(πd).

THE GREEN-TAO THEOREM AND THE INFINITUDE OF PRIMES 7



By (6), we have that

νp(a) = νp(a + πd).

Moreover, p divides both a and a + πd. As ±1 are only units in Z and p is an arbitrary
prime divisor of a, we have two possible cases: either a = a + πd or −a = a + πd.
In the former case, we can easily get that d = 0, which is a contradiction. The latter
case also yields that

−2a = πd. (15)

As p1 = 2, we get that

−a = p2 · · ·pmd. (16)

This shows that p divides a for every p ∈ {p2, . . . , pm}. By (4) and (16), we obtain
that

νp(a) = νp(−a) = νp(d) + 1

for every p ∈ {p2, . . . , pm}. This leads to a contradiction, because we have that
νp(a) ≤ νp(d) for each prime divisor p of a. In conclusion, there are infinitely many
prime elements in the positive integers.

4. THE INFINITUDE OF PRIMES AND UNIT EQUATIONS. The main objec-
tive in this section is to present two more proofs of Euclid’s Theorem based on a result
of Győry [22]. Using the same fact, we also give a proof of Euler’s Theorem.

Fact 1 ([22]). Let S = {p1, . . . , pm} be a finite set of prime numbers. Then, the equa-
tion

x + y = 1

has only finitely many solutions in {±p
α1
1 · · ·pαm

m | α1, . . . , αm ∈ Z}.
Theorem 3. There are infinitely many prime numbers.

First Proof of Theorem 3. Suppose that there are finitely many prime numbers. Let us
list them as p1, . . . , pm. By the fundamental theorem of arithmetic, prime factoriza-
tions of the numerators and denominators of all nonzero rational numbers are of the
form ±p

α1
1 · · · pαm

m for some α1, . . . , αm ∈ Z≥0. This means that

{±p
α1
1 · · ·pαm

m | α1, . . . , αm ∈ Z} = Q×.

By Fact 1, we know that the equation

x + y = 1, (17)

has only finitely many solutions in {±p
α1
1 · · ·pαm

m | α1, . . . , αm ∈ Z}. However, for
each x ∈ Q× with x 	= 1, we know that (x, 1 − x) is a solution of equation (17),
where 1 − x ∈ Q×. This shows that we can find infinitely many solutions of equation
(17) in {±p

α1
1 · · ·pαm

m | α1, . . . , αm ∈ Z}, which contradicts Fact 1. Therefore, there are
infinitely many prime numbers.

8 c© THE MATHEMATICAL ASSOCIATION OF AMERICA



One can observe that if there are finitely many prime numbers, then Fact 1 implies
that the length of arithmetic progressions in the natural numbers must be bounded.
This leads to another proof of the infinitude of prime numbers.

Second Proof of Theorem 3. Suppose that p1, . . . , pm are all the prime numbers. Let
a0, a1, . . . ak be an arithmetic progression of length k + 1 in the positive integers. Then,
there exists a nonzero positive integer d such that

ai+1 − ai = d

for all i = 0, . . . , k − 1. For that reason, there are k solutions(
ai+1

d
,
−ai

d

)

of the unit equation

x + y = 1, (18)

where x, y ∈ {±p
α1
1 · · ·pαm

m | α1, . . . , αm ∈ Z}. By Fact 1, we know that equation (18)
has only finitely many solutions in {±p

α1
1 · · ·pαm

m | α1, . . . , αm ∈ Z}. Let r denote the
number of solutions of equation (18). Then, we must have k ≤ r . This shows that the
length of arithmetic progressions in the positive integers can be at most r + 1. This is
a contradiction, since we have arbitrarily long arithmetic progressions in the positive
integers. Therefore, there are infinitely many prime numbers.

Finally, we can introduce a new proof of Euler’s Theorem. To achieve this, we need
the following lemma.

Lemma 1. Let A = {an | n ≥ 1}, where {an} is a sequence of strictly increasing posi-
tive integers. If the difference between consecutive terms of A tends to infinity, then the
upper density of A equals zero, namely

d̄(A) = lim sup
M→∞

|A ∩ {1, . . . , M}|
M

= 0.

Proof. Let k be an arbitrary positive integer. By the assumption, there exists a positive
integer N = N(k) such that

an+1 − an ≥ k (19)

for all n ≥ N . As {an} is a sequence of strictly increasing positive integers, we have
that

an+1 − an ≥ 1 (20)

for each n = 0, 1, . . . , N − 1. This yields that aN ≥ N . Choose any integer X ≥ kaN .
As aN ≥ N , we have X ≥ kN . By (19), there exist at most

⌊
X−aN

k

⌋
terms of {an}

between aN and X. Combining aN ≥ N with (20), we derive that the cardinality of
A ∩ {1, . . . , X} can be at most N + X−N

k
. Therefore, we have that

|A ∩ {1, . . . , X}|
X

≤ N + X−N

k

X
≤ 1

k
+ 1

k
= 2

k
. (21)

Since k is arbitrary, we obtain from inequality (21) that d̄(A) = 0.

THE GREEN-TAO THEOREM AND THE INFINITUDE OF PRIMES 9



Now, we can give our proof of Euler’s Theorem:

Proof of Euler’s Theorem. Suppose that the series given in (1) is convergent. Then,
there exists a positive integer m such that

∑
i>m

1

pi

≤ 1

2
.

Let A denote the set of positive integers whose prime divisors are only p1, . . . , pm and
a1 < a2 < · · · be consecutive terms of A. Let us first see that

lim
n→∞(an+1 − an) = ∞, (22)

which can also be deduced by [35, Satz 12]. Assume to the contrary that the limit of the
sequence (an+1 − an) does not diverge. This means that there is a number M > 0 such
that we have a subsequence of (an+1 − an) which is bounded by M . By the pigeonhole
principle, there exists a positive integer k ≤ M such that

an+1 − an = k

for infinitely many n. Therefore, we have

an+1

k
− an

k
= 1

for infinitely many n. Let k = q
β1
1 · · · qβr

r , where qi is a prime number and βi ∈ N for
each i = 1, . . . , r . Then we obtain that

x + y = 1

has infinitely many solutions in

{pα1
1 · · · pαm

m q
β1
1 · · · qβr

r | α1, . . . , αm, β1, . . . , βr ∈ Z},
which contradicts Fact 1. Thus, we must have

lim
n→∞(an+1 − an) = ∞.

Combining Lemma 1 and equation (22), we get that d̄(A) = 0. But if we count the
elements in {1, . . . , N} that do not belong to A, we see that

N − |A ∩ {1, . . . , N}| ≤
∑
i>m

⌊
N

pi

⌋
≤

∑
i>m

N

pi

≤ N

2

for each positive N . This gives that d̄(A) ≥ 1
2 , which is a contradiction as d̄(A) = 0.

Hence,

∞∑
i=1

1

pi

is a divergent series.
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