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Yfn2 2 is an integer, the sy m Pool <N ) will denote the ccunplete graph 
on M vertices. We sametimes US the symbol 01) even when rt is not an 
irrteger. lt is then to bc interpreted ;:s ([n]}. It k is a positive integer and 
if u 3 2, then 



ifs i 1 f rt w,s shcswn that 



2911 

Constructive argumenti, t1.e 

kfore 
lemma: 

proving the theorem we shall need It0 prove the following 

following rk3u it 

koof. Let (p> heave vertices c/, . . V2, ‘..* C<J, and color t’ile edges of tp) in 
A: C3:~lors C, , c’, , II ‘, I.‘, in such a way that there does not result a mono- 
~hr~::~matic t s). Similai:ly y ie t (4) have vertices U, ) U, I . . . . L’s and color the 
edges of (q ) in the colors Cr V C’, ,, . . . , C’, withers t getting a monochroma- 
tic (d). Let tpq> have wertices &Vii,, i = 1, 2, . . . . iuj, j = 1 3 2,, .._, Q. Color the 
edges of !py> as follows: Let e be the hedge joining Wyi ;lnd Wlm . Iff d = I, 

color P the -me as the edge joining “/I and &,, in (Q >. Bf i # P, color e * 
the ~me as the edge joining F/i and V/ in (p\. Let N = st .. s ---- t + f! and 
Let (1~ ) be any ctornpk te subgraph of (pq ). We need to show that (‘54 ) is < 

not rnontauhromatic. Sqqxxe that it is, and suppose af.1 of its edges are 
colored C, . say. We dfstinguish two cases: 

cjdscr 1. There are at least s distinct values of x’ such that WQ is a vertex 
#f (u ). ‘T!??T_ it 42 ~%eair that, acoording to our <:oIoring st:heme, (p) con- 
bins a monochromatic W, and this is a con;r;3dktion. 

G.a~a 2. There are at most s -- I distinct values of i such E:hat I+$ is n 
vertex of Ceo). Then there must be at least I dktinct values of i, say &, 

i2 , l ,& and a number i suc11 that Wvlq Wt2 9 . . . . WQf are vertices of(uL 
(otherwise we woukB hate that the number of vertices of 0.A is at most 
(S -- I ) (t -- 1) = st .- s t + B < w) This clear@, means, by our cobring 
scheme, that the points bii q l.$;, , . ., Uj, are this vertices of a monochr0- 
matic (t) in (q*b. I’hk is a contfactiction. Hence, our lemma is proved. 

oaf of the Theorem. St is well known and easy to verify (see, for ex- 
ampllc, [9f ) Ihat 4 



It It’csfiot~vs freon (8) and the Oemma, by an easy inxiiuction argument, that 
for all gllssi tivc integers b. 

5 be given #;lnd let I be the integer defined by 

We con4ude with the following remarks: 

Remark 1. The value a 2 llag 2/icsg 5 can be replaced by a smaGer vafue 
sin@? by taking as a starting point somethmg different from (8). For 

~JW~@e. the known result 17 b (4), gives the vahe a = hg 3/bg i 7. 

&M&C 2. The iemma can be used tab obtain results of the form 
o -+ fcn~)i, for values ofk 2 3. For example, the known result 16 fi (3): 
hzads to bli f, (C n Q 13 * For !arge vahles of k, the best result that w have 

en abile to obpairr is the f&lowing: Let (r be any constant satisfying 
Q > ‘sag 16,4og 89. Then there is a k, = k,(a) such th’at if K ;;b kO thinn 
n + dltglk Jk for ail sufficit -rrt!w h.rge n., This result is obtaitled from our ~ _ 

ma and the results in [ 31. 
I, 
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