DIMACS Technical Report 2001-03
January 2001

Constructing Set-Systems with Prescribed
Intersection Sizes

by

Vince Grolmusz!

Department of Computer Science
Eo6tvos University, H-1053 Budapest
HUNGARY

E-mail: grolmusz@cs.elte.hu

1Special Year Visitor at DIMACS Center, Piscataway, NJ.

DIMACS is a partnership of Rutgers University, Princeton University, AT&T Labs-
Research, Bell Labs, NEC Research Institute and Telcordia Technologies (formerly
Bellcore).

DIMACS was founded as an NSF Science and Technology Center, and also receives
support from the New Jersey Commission on Science and Technology.



ABSTRACT

Let f be an n variable polynomial with positive integer coefficients, and let H =
{Hy,H;y,...,H,} be a set-system on the n-element universe. We define set-system
f(H) ={G1,Gs,...,Gy}, and prove that f(HaNHpN. . .NH) = |[GaNGieN. . .NGul,
for any 1 < k < m, where f(H;; N Hiz N ... N Hy) denotes the value of f on the
characteristic vector of Hjy N Hyx N ... N Hyy.

The construction of f(H) is a straightforward polynomial-time algorithm from H
and polynomial f. In this paper we use this algorithm for constructing set-systems
with prescribed intersection sizes modulo an integer.

As a by-product of our method, some Ray-Chaudhuri-Wilson-like theorems are
proved.

Keywords: set-systems, algorithmic constructions, multi-variate polynomials, diadic
decomposition, matrix-rank



1 Introduction

Let V = {v1,v2,...,v,} be aset of n elements (the “universe”). A set-system Hon V is
simply some subset chosen from all of the subsets of V', i.e., H C P(V). Several fields of
combinatorics deal with set-systems (theory of symmetric structures (finite geometries,
block designs, Steiner-systems, etc.), hypergraph-theory, extremal set systems theory)
see [HBc95]. We are particularly interested in set-systems with restricted intersections,
mainly with restricted intersection sizes. A beautiful (but still unpublished) book of
Babai and Frankl [BF92] covers plenty results related to this topic. Just to mention
a few, bounds to the size of set-systems with restricted intersections play a main role
in the refutation of Borsuk’s conjecture [KK93], in results in combinatorial geometry,
related to the Hadwiger problem [FW81], and yields the best known explicit Ramsey-
graphs [FW81], [Gro00b].

Here we present a method for constructing set systems with prescribed intersections.
Most of our results are for constructing set-systems with restricted intersections modulo
an integer (mostly primes). In Section 4 a by-product of this method gives new upper
bounds for the size of set-systems with restricted intersections. Surprisingly, this upper
bound - together with the construction of [Gro00b] - can be used for giving lower bounds
for the degree (or weight) of some mod 6 polynomials (see Corollary 29 (cf. [BBR94],
[TBY98], [Gro95]).

1.1 Set-systems with prescribed intersections

We are interested in the following

Problem 1 There are given non-negative integers a;;,1 <1 < j < m. Does there exist

a set-system H = {Hy, Hy, Hs, ..., H,,} such that

The answer is yes, if we allow the universe (or the vertex-set) to be much larger

a; > Z aj; + Zaija

J<1 1<J

than m, and

is also satisfied: For ¢ < j, we put a;; elements into the pairwise disjoint sets called G;
(these sets will play the role of H; N H;), then we define

HZ'ZUG]'Z'UUG{]’UGZ';

J<1 1<J

where (G; contains those elements what are still needed to have |H;| = a;;.

The answer is always yes, without any further assumption, if we consider the mod-
ular version: (1) holds only modulo r for some positive integer r. Then every Gi; and
(#;; contains at most r — 1 elements, and the number of elements is O(rm?).

Consequently, we should ask the following
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Question: Does there exist a set-system, satisfying (1) on a “small” vertex set? And,
if there exists such a set-system, can we construct it?

We are also interested in restrictions in multiple intersection-sizes. For any a =
(o1, z,...,a,) € {0,1}™, and for H, let

aa:| ﬂ H2|

;=1
Now we can formulate the following problem:

Problem 2 There are given non-negative integers a, for a € {0,1}™. Does there
exists a set-system H = {Hy, Hy, Hs, ..., H,} such that

o = | ﬂ H;| (2)

;=1

The modular case is easier again: It is easy to see, that one can always find such a
set-system H, if (2) is satisfied modulo r. Indeed, starting with the longest intersections
(i.e., with the intersections of the maximum number of H,’s), one can add at most r — 1
new vertices into each intersections to fullfill requirements (2); this results an H on
at most (r — 1)2™ elements. For the non-modular version, the same method works if

ay > Zag,

pa

numbers a, satisfy for all a:

where # < « is a coordinate-wise inequality.
Consquently, the interesting question is again whether does there exists a set-
system, satisfying the multiple-intersection properties (2) on a small vertex set?

In this paper, we give some partial answers to these questions, see Theorems 20,
21, 22, 23.

Extremal set theory also addresses these questions, and there are deep and nice
results in this field. One of these questions is giving upper bounds for the size of
the set-systems with certain pairwaise intersection sizes. There are non-modular and
modular results; see the famous papers of Ray-Chaudhuri and Wilson [RCWT75], Frankl-
Wilson [FW81], and Deza, Frankl, and Singhi [DFS83], or the book of Babai and
Frankl [BF92]. Another question is the existence and constructions of set-systems with
given intersections sizes, which meets the above mentioned upper bounds (extremal
set-systems). We should mention here the results of Frankl and Fiiredi [FF86] and the
survey paper of Fiiredi [Fir91]. The extremal set-systems have remarkable structure,
sometimes they are finite geometries. Our point of interest in the present work is the
constructions of set-systems with given intersection properties, preferably on a small
vertex-set, but we do not want to find the extremal structures.

In theoretical computer science, there are applications of existence arguments or
constructions of set-systems with restricted intersections sizes. Let us mention the

papers [BMRV00] and [NW94].
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By the author’s best knowledge, until the present results, there were no general
algorithms known for constructing set systems with prescribed intersection sizes.

The main goal of the present paper is to show that one can define arithmetical
operations on set-systems which have interesting properties for the intersecting prop-
erties of set-systems. With these operations we can construct other set-systems with
prescribed intersection-sizes, and the construction can be done in polynomial time in
the size of the initial set system, of the size of the universe and in the size of the
polynomial, used in the construction. We remark, that if the polynomial has only few
non-zero coefficients, then the size of the universe will be small, it can be even smaller
than the size of the original universe.

2 Preliminaries

2.1 Set-systems and Polynomials

We define the dream-product of matrices of same dimensions. The reason for calling
it dream is that the typical undergraduate student would dream of such a matrix-
product, where the product of two matrices is a matrix with each entry is a product
of two corresponding entries of the matrices. More exactly:

Definition 3 Let A = {a;;} and B = {b;;} two u X v matrices over a ring R. Their
dream-product is an u X v matrizc C = {¢;;}, denoted by A © B, and is defined as
cij = aijby, for1 <i<wu, 1 <5 <w.

As usual, we make difference between hypergraphs and set systems over a universe
V. A hypergraph is a collection of several subsets of V', where some subsets may be
present with a multiplicity, greater than 1 (called multi-edges). A set system may,
however, contain each subset of V' at most once.

Definition 4 Let H = {H1, Hs,...,H,} be a hypergraph of m edges (sets) over an n
element universe V = {vy,va,...,v,}, and let U = {u;;} be the n x m 0-1 incidence-
matrix of hypergraph H, that is, the columns of U correspond to the sets (edges) of H,
the rows of U correspond to the elements of V', and u;; = 1 if and only tf v; € H;. The
n X 1 incidence-matriz of a single subset A C V is called the characteristic vector of

A.

2.2 Arithmetic operations on set systems

Note, that every member of a set system is different; so there are no identical
columns in an incidence matrix of a set system, but there may be identical columns in
an incidence matrix of a hypergraph in case of multi-edges. If U is a 0-1 matrix with
no identical columns, then U is an incidence matrix of a set system.

Definition 5 Let F = {F|, F,,..., F,.} be a set system with an n X m incidence-matriz
U and G = {G1,Gs,...,Gy} be a set-system with n' X m incidence-matric W. Then
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we define Fy + Gw as a set-system on the n + n' element universe, and its incidence
matriz is the (n +n') x m matriz T, where T' contains the union of the rows of U and
W. We define FuGw as a hypergraph on the nn'-element universe, and its nn' X m
incidence matriz Y is defined as the union of all the nn' pairwise dream-products of

the rows of U and W'.

In other words, Fyy + Gw consists of sets F; UG, @ =1,2,...,m if the universes of
F and G are disjoint, and if the universes are not disjoint, first we make them disjoint,
and then make the pairwise unions.

The universe of FyGw = {Ki, Ka,..., K, } consists of all (u,v) pairs of vertices,
where u is a vertex of F and v is a vertex of G. Moreover, (u,v) € K; if and only if
u € FZ', v E GZ

Consequently, the product and sum of two hypergraphs depend on the particular
choice of the incidence-matrices, and it is easy to construct such set-systems whose
product contains multiple edges. Note also, that both F 4+ G and FG contains m sets,
exactly as F or G.

Definition 6 Let f(x1,29,...,2.) = Xicqi2,.0) @121 be a multi-linear polynomial,

where x1 = [,y xi- Let w(f) = [{ar: a;r # 0}] and let Lo(f) = Xicqi2,..n) larl.

Definition 7 Let H be a set-system on the n element universe V. = {vy,v9,...,0,}
and with n x m incidence-matriz U, and let f(x1,22,...,20) = Xic12,.ny @121 be a
multi-linear polynomial with non-negative integer coefficients or from coefficients from
Z,.. Then f(Hy) is a hypergraph on the Li(f)-element vertex-set, and its incidence-
matriz s the Li(f) X m matric W. The rows of W correspond to x1’s of f; there are
ay tdentical rows of W, corresponding to the same xy. The row, corresponding to xy is
defined as the dream-product of those rows of U, which correspond to v;, v € 1.

Example 8 Let f(x1, 22,23, 24) = x1 + 22 + 22324, and let the incidence-matriz U of

H be

H, H, H;
vy /0 1 1
v | 1 1 1
U= vl 1 0 1
V4 0 0 1
Then the incidence-matriz of f(H) is
i, H, H,
T 0 1 1
Tg 1 1 1
T3Tg 0 0 1
X34 0 0 1
Lemma 9 Suppose, that in Definition 7 the coefficients of x1,x9,...,x, are non-0’s

in f. Then the resulting hypergraph f(G) is a set system.
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Proof:  If the coefficients of x1,x9,...,z, are non-0’s in f, then the corresponding
rows of the incidence-matrix of f(G) are the same as the rows of G. Since G was a
set-system, its incidence-matrix does not contain identical columns, so the same holds
for the incidence-matrix of f(G). O

Remark 10 Let f = (z1 + w2 + -+ + x,). Then, for any Hy, f(Hy) = Hy. Let
f=(x1+x2+4 -+, Then, for any Hy, f(Hu) = HuHy. If Hy is a set-system,
then f(Hy) is also a set-system.

The most remarkable property of f(Hy) is given by the following theorem.

Theorem 11 Let H = {H, Hy,...,H,,} be a set-system, and let U be their n X m
incidence-matriz. Let [ be a multi-linear polynomial with non-negative integer coef-
ficients, or from coefficients from Z,. Let f(H) = {ﬁl,ﬁg,...,gm}. Then, for any
1 <k<mand foranyl <1y <iy<...<1t <m:

f(Hy, VHyN...0H,)=|H, N H,N...0 H,|. (3)
Proof:  Consider a monomial x7 = [];¢; x; of polynomial f. This monomial adds 1

to the left hand side of (3) exactly when Vj € I :v; € H;, N H;, N...N H;,, but, this
happens exactly when vertex x; is an element of H;, N H;,, N...N H;,. O

The next theorem gives relations between arithmetic operations on polynomials and
set systems.

Theorem 12 Let f and g be two multi-linear polynomials of n variables and with
non-negative integer coefficients, and let H be a set-system on the n-element universe.

Then

(i) (f +9)(H) = f(H)+ g(H).

(i) Let h denote the unique multi-linear polynomial equals to fg over set {0,1}".
Then h(H) = f(H)g(H).

Proof:  (i): The proof is obvious.
(ii): Let us remark, that the rows of the incidence matrix of h(H) correspond to
the monomials of A which, in turn, correspond to the products of the monomials of f

I =

telud

and g¢; the row, corresponding to

is the dream-product of rows, corresponding to

H z; and H z;.

el 1€J
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2.3 Corollaries for Intersection Matrices

After giving some natural definitions, we will get some corollaries for the intersection-
matrices of of set-system f(H).

Definition 13 The self-intersection matrix (or simply, the intersection-matrix) of H,
denoted by I(H) is an m X m matriz, such that each entry of this matriz is a length-
n 0-1 vector: the entry in row ¢ and column j is the characteristic vector w;; of sel
H; N Hj, or, in other words, the dream-product of column 1 and column j of U. The
intersection-size matrix IS(H) is simply UTU, that is, it contains |H; N H;| in column
7 of row .

In other words, if we write H; N H; for characteristic vector w;;:

H  H,NHy, - HNH,
gy = | M e
H,NH H,OH, - H,
and
\Hy|  |HinHy| - |Hy( Hy
1S(H) = |H2OH1| |f1"2| |H2QHm| )
H, O\ Hy| |HoOH)| - |Hyl

Definition 14 Let H be a set-system. Then let
L(H) = {|HZ N Hj|7Hi # vaHiij € H}

Definition 15 Let A and B be two sets, { : A — B a function and n and k two
positive integers. Let A™** denote the set of n X k matrices with entries from A. Let

M e Ak M = {m}. Then

fiM] = : U € Bk,
Flmy flmaz) oo f(mn)

Example 16 Let f = (z1+x2+---+x,). Then, for any H on the n-element universe:
FI(H)] = IS(H).

Corollary 17 Let F and 'H be two set-systems, and let U and W be their n X m
incidence-matrices. Let f be a multi-linear polynomial with non-negative integer coef-
ficients, or from coefficients from Z.,.

Then
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(Z) IS(.FU + Hw) = IS(.;CU) + IS(Hw).
(ZZ) IS(]:UHw) = IS(.FU) ® IS(Hw).
(ii1) 1S(f(Hw)) = f[I(H)].

(iv) Suppose, that f is symmetric, that is, f(x1,x2,...,2,) depends only on Y x; = j,
and, consequently, it can be written as f(j). Then:

IS(f(Hw)) = fIIS(H)].
Proof:
(i) IS(Fy) = UTU, IS(Hw) = WTW and

U

IS(Fy + Hw) = (U7 WT) (W

) =U"U +WTW,

implying statement (i).

(ii) Let now Gx = FyHw.. G; N G; contains exactly those vertices (u,v) such that
u € F;NF;,ve H;NH;, and there are exactly |F; N F;||H; N H;| such (u,v) pairs.

(iii) The statement is an easy consequence of Theorem 11, with k = 2.
(iv) This follows trivially from (iii).

O

3 Polynomials and algorithmic constructions of set-
systems

Lemma 18 With the notations of Definition 7, the incidence matriz of set-system
f(Hu) can be computed from the incidence matriz U of set-system H and polynomial
fin

O(L1(f)nm)

time.

a
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3.1 Constructions with Interpolating Polynomaials

Theorem 19 Let [ be an n-variable symmetric polynomial with non-negative integer
coefficients, and let F be a set-system of size m on the n element universe. Suppose
that

L(f) = {|HZ N Hj|,HZ’ 7& H]‘,HZ’,H]' € f} = {11712, .. .,Zs}.

Then we can construct in O(Ly(f)nm) time a hypergraph f(F) of size m on the Ly (f)-
vertex universe, such that the sizes of the pairwise intersections of the sets of f(F)
is

f(ll)af(ZQ)v s 7f(ls)

Proof:  The proof is immediate from Lemma 18 and Theorem 11. O
We note, that if f contains z}s with a positive coefficient, then f(F) is a set-system
(see Lemma 9.)

The assumption on the non-negativity of the coefficients of f in Theorem 19 are very
restrictive, it prohibits almost all interpolation polyniomials. The positivity assumption
can be left out if the intersection-sizes are specified modulo r only. Moreover, we prove
the following:

Theorem 20 Let p be a prime, and let H = {Hy, Hs, ..., H,,} be a set-system on the
n element universe. Suppose that

L(H)={lL,l,..., s} (mod p),

where 11,15, ..., 1l are pairwise distinct residue classes modulo p, and let hy, hq, ..., hy,
(not necessarily distinct) residue-classes modulo p. Then there exists a set-system with
m sets G = {G1,Gy, ..., G} on the (p— 1), (?) element universe, which can be
constructed in O((p — 1)nP*tm) time, such that

L(G) ={h1,ha,...,hs} (mod p),

and, if
|H; N H;| =1, (mod p),then |G, NG| =h; (mod p).

Moreover, if H was a uniform set-system, then G is also a uniform set-system.

Proof: Let ¢ be the single-variable polinomial over the p element field, such
that ¢(l;) = h;,0 = 1,2,...,s. Let f be a multi-linear polynomial such that
flz1,22,...,2,) = glx1 + 2+ -+ + &), then the degree of f is at most s — 1, and
Li(fy <(p—-1)X2, (?) < (p — 1)n?. Since f is symmetric, Theorem 11 applies for
G = f(H), and Lemma 18 gives the time-bound. If f(H) were not be a set system,
then adding p(x1 4+ 22+ -+ + x,,) to f will produce one. O

The following theorem shows that we can even drop the requirement of a primality
of the modulus, and we can use non-symmetric polynomials for the construction, but
then, the cardinality of the universe can be large:
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Theorem 21 Let r > 2 be an integer, and let H = {Hy, Hy, ..., H,,} be a set-system
on the n element universe. Suppose that I(H) = C = {¢;;}. Let D = {d;;} be an
m X m maltriz, with enlries from Z,, satisfying the following property: If ¢;; = ci, then
dij = dg. Then there exists a set-system G of size m on the O(2")-element universe,
such that

IS(G)=D (mod r),

and G is constructible in O(2"m) time.

Proof:  Suppose that for all ¢;; € {0,1}", I;; C {1,2,...,n} gives the indices of the
I’s (all of the other indices correspond to 0 coordinates). Let

fler,za,. . x,) = Zn: d;; H Tk H (1 — ).

7,7=1 kel kgl

By Theorem 11, f(H) suffices. Set-systemity can be ensured by a possible addition of
r(zy + a9+ -+ a,) to f. O

3.2 Multiple intersections
Here we prove the multiple-intersection analogues of Theorems 20 and 21.

Theorem 22 Let p be a prime, and let H = {Hy, Hy, ..., H,,} be a set-system on the
n element universe. Suppose that for some I, I, ... I, C {1,2,...,m}:

l; = ﬂ H;| mod p.
J€L
Let hy,hy, ... ks, (not necessarily distinct) residue-classes modulo p. Then there ex-
ists a set-system with m sets G = {G1,Gy,..., G} on the (p — 1) 5, (7;) element
universe, which can be constructed in O((p — 1)n** m) time, such that
hi=|() G| (mod p).
J€L
Moreover, if H was a uniform set-system, then G is also a uniform set-system.

Proof:  The proof is the same as the proof of Theorem 20. O

Theorem 23 Let r > 2 be an integer, and let H = {Hy, Hy, ..., H,,} be a set-system
on the n element universe. For I C {1,2,... ,m}, let us define

Cr = () Hi.
el
For I C {1,2,...,m}, let numbers d; € Z, be given, satisfying the following property:
If Cr = Cy, then dy = dy. Then there exists a set-system G = {G1,Ga, ..., G} on the
O(2")-element universe, such that for all I C {1,2,...,m},

| ﬂ Gi| =d; (mod r),

el

and G is constructible in O(2"m) time.
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Proof:  Forset Cp, let ¢; C {1,2,...,n} give the indices of the 1’s (all of the other
indices correspond to 0 coordinates). Let

fler, e, . 2,) = ZI:dI H Tk H(l — ).

k€cy kdcr

By Theorem 11, f(H) suffices. Set-systemity can be ensured by a possible addition of
r(zy + a2+ -+ x,) to f. O

3.3 An application: restricted intersections modulo 6

It was conjectured, that if H is a set-system over an n element universe, satisfying
that VH € H: |H| =0 (mod6), but VG,H e H, G# H: |GNH|#0 (mod 6)
has size polynomial in n. The conjecture was motivated by theorems of Frankl and
Wilson, showing polynomial upper bounds for prime or prime-power moduli [FW81].
We have shown in [Gro00b] that there exists an H with these properties and with
super-polynomial size in n. (see the details in [Gro00b].)

Our machinery now permits us to describe this construction easily.

Let k be a positive integer, and let o be the smallest number such that vk < 2%,
and let 3 be the smallest number such that V& < 3°. By a result of Barrington, Beigel
and Rudich [BBR94], there exists an explicitly constructible (-variable, degree-O(v/k)
polinomial f, satisfying over @ = (1, 9, ...,24) € {0, 1}

¢
flz)=0 (mod 6) — sz =0 (mod 2°3°).

Let G denote the set-system of all 2*3°-element subsets of the ¢ = 2(2*3°) — 1-element
universe.
Then consider H = f(G). By Corollary 17, part (iii), IS(f(G)) contains 0’s in the

diagonal mod 6, and non-zeroes modulo 6 off-diagonal, as required. The size of f(G)

¢ 2% 1
22k
(2&35) ~ (k) T okl

and the size of the universe of H = f(G) is n = Li(f) = kOWE) | 5o

c(logn)?
(log log n)2) '

is the same as the size of G:

] = exp (

3.4 How to find initial set systems?

For the constructions of set-systems with restricted intersections, we need initial set-
systems. The “quality” of our initial set-system is important for a good construction,
however, words “quality” and “good” are not defined here, they always depend on our
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goals with the actual construction. Here we just give some examples which may lead
to nice constructions.

Let p be a prime and « and ¢ be positive integers. Barrington, Beigel and Rudich
[BBR94] showed, that there exists a degree-p® polynomial f on ¢ variables, which is
0 modulo p if 32f_; z; is a multiple of p®. If H denotes the power-set of the (-element
universe, then f(H) is a set-system with 2¢ elements over a O((*")-element universe,
fIL(H] satisfying, that f(ANB) =0 (modp) < |ANB| =0 (modp*). We
note, that our construction in Subsection 3.3 can be got as a sum of two similar set
systems, one for p = 2 and the other for p = 3.

Numerous constructions for block-designs and finite geometries may also give a
good starting points for algorithmic constructions of new set systems.

One can also easily construct new set-systems using our addition and product op-
erations (see Definition 5).

4 Constructive bounds on set systems

As an important by-product of our construction method, we can generalize some of the
upper bounds to set systems with restricted intersections.

Theorem 24 Let F be a set system of m sels over an n element universe. Let
flz1,22,...,2,) be a polynomial with integer coefficients. Suppose, that

JIHF)]
has full rank (that is, m), over a field. Then

Proof: By Corollary 17 (iii) f[I(F)] = IS(f(F)), so its rank is at most w(f). On
the other hand, the m x m matrix f[I(F)] is of full rank, so m =r. O

This theorem is a generalization of a theorem of Frankl and Wilson [FW81], who
proved the theorem for symmetric f’s modulo p.

Several theorems for bounding the size of set-systems is a consequence of this the-
orem. For example, the following theorem which is a non-uniform modular version of
the Ray-Chaudhuri-Wilson Theorem [RCWT75]) was proven by Deza, Frankl and Singhi
[DFS83]. We give here a proof based on interpolating polynomials.

Theorem 25 (Deza, Frankl, Singhi 1983) Let p be a prime, L C {0,1,2,...,p—

1}, |L]| = s, and let F be a set-system over the n-element universe, such that all F' €

|F|mod p & L, but for all F,G € F, |FNG| modpe L. Then

< ()
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Proof:  Let L = {l1,l5,...,1s}, and let g(y) = [T:_,(y — &). g(y) modulo p is 0, if
y € L and non-zero otherwise. Let us define multi-linear polynomial

fler,za,.. ., 2,) = g(z x;) mod p,

J=1

where the congruency holds for z; € {0,1},72 =1,2,...,n. Then by Theorem 24,

| F| <w(f) S;@

and this proves the theorem.

Moreover, from Corollary 17, there exists a set-system G on the Li(f) element
universe, such that |G| = |F|, and the intersection matrix of G is a diagonal-matrix,
with non-zero elements in the diagonal. O

The following theorem is also an easy corollary of Theorem 24, but for its proof we
must use non-symmetric polynomials.

Theorem 26 Let p be a prime, and let 'H be a set-system on the n-element universe

S. Let AC S, B C S. Suppose, that the sets of H satisfy:
(i) VHEH: |ANH|# |BN H| (mod p),
(it) VELHe H: |[ANFNH|=|BNFNH| (modp).
Then [H| < |(AU B) — (AN B)|.

Proof: Let A ={v, € S:i € I},B={v, € S:1¢ € J}. Then let f(z) =
YierTi — 2jestj. Now, f[I(H)] is a diagonal matrix of rank m, so Theorem 24
applies.

O

5 A structure theorem for polynomials on set-
systems

We need the following definition from [Gro00al:

Definition 27 ([Gro00a]) Let R be a ring and let n be a positive integer. We say,
that n x n matrix A over R has rank 0 if all of the elements of A are 0. Otherwise,
the rank over the ring R of matriz A is the smallest v, such that A can be written as

A= BC

over R, where B is an n xr and C is an r X n matriz. The rank of A over R is denoted

by rankp(A).
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It is usually a very hard problem to give lower bounds for the degree (or weight or
Li-norm) for specific polynomials, mapping {0, 1}" to R, for some ring R; (see [TB98],
[BBR94], [Gro95]). Note, that all of the functions f : {0,1}" — R can be given by
such polynomials. The following theorem states, that “small” polynomials cannot make
rankg(f[I(H)] large for a big enough set-system H.

Especially, let R = Zg, and if for an 0 # u € Zg and for any G, H € H, f(H) = u,
but f(GN H) =0, then w(f) > |H]|.

Moreover, we specify the “best” polynomial for this réle.

We say, that a set-system H is a Sperner-system, if U,V € H,U # V implies
U ¢ V. Note, that all uniform set-system is a Sperner-system.

Theorem 28 Let R be a ring with a unit element, and let H be a Sperner-system with
m members on the n element universe.

(1) If f is an n-variable polynomial over R, and rankg(f[l(H)] > m, then w(f) > m.

(it) There exists an explicitly constructible polynomial f over R, such that
rankg(f[I(H)] = m, and w(f) = L1(f) = m.

Proof: (i) is a corollary of Theorem 24. For proving (ii), let

flzr, @, @) = Z H Z;.

HeH vv;€H

Clearly, f[I(H)] is the m x m identity matrix. O

Let G denote the uniform set-system, of size m = exp (cliﬁ%), constructed on the
n element universe in [Gro0OOb], with the following properties: IS(G) has 0 elements

mod 6 in its diagonal and non-zero element mod 6 elsewhere.

Corollary 29 For any n variable polynomial over ring Zg, which is non-zero modulo
6 on the characteristic vectors of the sets of G and 00 modulo 6 on the characteristic
vectors of the intersections of any two elements of G, satisfies

w(f) > exp ( 10%7”) :

Clog logn

for a positive ¢ > 0.
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