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Abstract. The symbol n - (), means that if the edges of a complete graph on n vertices are
colored arbitrarily in & colors then there results a complete subgraph on ¢ vertices, all 0. whos:
edges have the same color. n # (u)y 1s the negationof n —~ (u)& Various results of the form
n (u)g are proved by constructive arguments. The main one is that n /> (‘7). for some a <! 3

If n 2+ 2 is an integer. the symbol {#) will denote the complete graph
on n vertices. We sometimes use the symbol (1) even when » is not an
integer. 1t is then to be interpreted s ([n]). It & is a positive intzger and
ifu> 2, then

(H no )y,

means that if the edges of an (n) are colored arbitrarily in &k colors these
results a (u) all of whose edges have the same color. It follows from
Ramsey's Theorem [10] that if 1 and & are given, (1)pholds for all sut-

ficiently large #. n f (1), will mean the nezation of (1).
1t is known [4, &] that

logn
" (" lo§ -) ’

and tizat

* Original version received 2 J.ne 1971.
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- Jloun
(2 "o ( log.?:)z'
it is also known that (see, for exampie [6] or [9])
| L frlogn
(3 7 (L lng)!‘,

where ¢ is « positive absolute constant® and in [7] it is remarkead that
the arguments used in [4], to prove (2) can be used t rrove

R (4 l,og-_fz_)
(4) " (log £ x

In[1] it w.s shown that
(5) p# Gy oand g # (u), implies py £ (), ,

and it was Jdeduced from (2) and (5) that

c logn

whicli is superior to (4).

The proof of (2) makes use of probabilisti: arguments. In [5], Eros
remarks that it would be very desirable to have a constructive proof of
(2) but points out that he is not able to give a constructive proof of the
much weaker result

]
(6) N LENt),,

L

for every € .~ G r. = i1 (). We remark wat n £ (c n? },, and more
generally n 4 (¢ nl/k),  have been established (see for example, (2] or
£81).

* We va the lztier ¢ to denote positive absolut: constants. The numerical value of ¢ will not
necessardy be the came at each occurrence. For example, .n (3) one can take ¢ = 1 aud in (4)
one can take ¢ = 2,
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In this note we prove, by constructive arguments, tl-e following result
which is stronger than (6).

Theorem. Let o = log 2/log 5. Then
(7) np(cny,.

Before proving the theorzm we shall need to prove the following
lenima:

Lemma. If p / (s), «nd g P (1), then pq # (st — 5 -t +2j;.

Proof. Let (p) have vertices V. V,, .., V, . and color the edges of (p) in
k colors Cy, €y, . ., (' insuch a way that there does not result a mono-
chromatic <s). Similarly, et (@) have vertices U/}, U,, ..., U, and color the
edges of (g7 in the colers Oy, (., ..., C; without getting a monochroma-
tic (). Let {pq) have vertices w,.,.,i =1L2,..p,0=12, ..,4q.Color the
edges of (pg) as follows: Let e be the edge joining W; and W, . i(i =1,
color ¢ the same as the edge joining U and U,, in(g> If i # /, colore '
the same as the edge joining ¥V; and V, in(p>. Letu =5t s - t+2 and
let <u) be any complete subgraph of (pq). We need to show that (u) is
not monochromatic. Suppose that it is, and suppose all of its edges are
colored €. say. We distinguish two cases:

Cuse 1. There are at least s distinct values of / such that W is a vertex
of {u}. Then it is Cleasr that, according to our coloring scheme, (p) con-
tains a monochromatic {s), and this is a coniradiction.

Case 2. There are at most s — 1 distinct values of i such that W isa
vertex of («). Then there must be at least ¢ distinct values of j, say j;,

/3, .., J, and a number i such that W,-,-‘, W,-,-2 s oo W,‘,f! are vertices of (u).
{Otherwise we would have that the number of vertices of (u) is at most
s~ (@ ~-1)=st -5 t+1 <u.) This clearly means, by our coloring
scheme, that the points U}, , sz ' e U,-‘ are the vertices of a monochro-
matic {£) in {¢>. Thi: is a contradiction. Hence our lemma is proved.

Proof of the Theorem. it is well known and easy 1o verify (see, for ex-
ample, {9]) that
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it follows from (8) and the lemma, by an easy induction argument, that
for all positive integers /,

(9} 5Ly (2 ¢ 1),
Lets > S be givcn and let { be the integer defined by
(10) S5l <ng 8
Then (9) and (10} impiy
(1) i (204 1),

It now follows easily from (10) and (1 1) that (7} holds. Hence our
theorem is proved.

We conclude with the following remarks:

Remark i. The value « = log 2/log S can be replaced by a smaller value
simnly by taking as a starting point something different from (8). For
example, the known result 17 4 (4), gives the value a = Jog 3/log 17.

Remark 2. The lemma can be used to obtain results of the form

n -+ {cn%), for \a!uec of k > 3. For example, the known result 16 » (3):
leads to n % (¢ n1) )3. For large values of k, the best result that we have
been able to obtain is the following: Let a be any constant satisfying

a > tog 16/log 89. Then there is a ky = ky(a) such that if X > ky then

n # {na/k), for all sufficicntly large n. This result is obtained from our
lemma and the results in [3].
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