
REPRESENTING BOOLEAN FUNCTIONSAS POLYNOMIALS MODULOCOMPOSITE NUMBERSDavid A. Mix Barrington,Richard Beigel, and Steven RudichAbstract. De�ne the MODm-degree of a boolean function F to be thesmallest degree of any polynomial P , over the ring of integers modulom,such that for all 0-1 assignments ~x, F (~x) = 0 i� P (~x) = 0. We obtainthe unexpected result that the MODm-degree of the OR of N variablesis O( rpN), where r is the number of distinct prime factors of m. Thisis optimal in the case of representation by symmetric polynomials. TheMODn function is 0 if the number of input ones is a multiple of n and isone otherwise. We show that the MODm-degree of both the MODn and:MODn functions is N
(1) exactly when there is a prime dividing n butnot m. The MODm-degree of the MODm function is 1; we show thatthe MODm-degree of :MODm is N
(1) if m is not a power of a prime,O(1) otherwise. A corollary is that there exists an oracle relative towhich the MODmP classes (such as �P) have this structure: MODmPis closed under complementation and union i� m is a prime power, andMODnP is a subset of MODmP i� all primes dividing n also divide m.Key words. Complexity of �nite functions; circuit complexity; compu-tation by polynomials; relativized complexity.Subject classi�cations. 68Q15, 68Q40.1. IntroductionLower bounds in circuit complexity are currently hindered by what at �rstglance appears to be a small technical point. It is known that AC0 circuitswhich also allow MODp gates for some �xed prime p can't compute the MODqfunction for any q which is not a power of p (Razborov 1987, Smolensky 1987).In contrast, it is not known if AC0 circuits which also allow MOD6 gates cancompute every function in NP . It is conjectured that (as with the case ofMODp) AC0 with MODm gates for any integer m can't compute the MODnfunction when there is a prime dividing n but not m (Smolensky 1987). Indeed,



2 Barrington, Beigel & Rudichit might be that some slight extension of the Razborov-Smolensky techniqueswill prove the conjecture. But there is also the very interesting possibility thatMOD6 gates really are more powerful than MODp gates! If this were true, itwould pinpoint why MOD6 lower bounds are not forthcoming.How could MOD6 be computationally di�erent from MODp? In this paper,we study this question in the polynomial model of computation. We say thata polynomial P over Zm represents a boolean function F on N inputs if for all0-1 valued assignments ~x 2 f0; 1gN , F (~x) = 0 i� P (~x) = 0. In other words, weinterpret the output of P to be the boolean value 1 if P (~x) 6= 0 mod m, and0 otherwise. This is very similar to the standard de�nition of a MODm gatewhich outputs 1 i� the number of input 1s is non-zero modulo m (Razborov1987, Smolensky 1987, Barrington 1986). The MODm-degree of F , denoted�(F;m), is the degree of the lowest degree polynomial which represents it. Thismodel of boolean function complexity has been well explored in the case wherem is a prime power (Smolensky 1987, Barrington 1992a, Beigel and Tarui 1991,Beigel and Gill 1992). It is known that �(OR; p) = dN=(p � 1)e (Smolensky1987). It is also known that �(MODn; p) = 
(N) when n is not a power of p(Smolensky 1987).In the case of composite moduli, there have been very few results in thismodel (see, e.g., Krause and Waack 1991, Szegedy 1989, which we review be-low). The obvious reason for this technical gap is that the techniques in thecase of a prime modulus p have heavily relied on the fact that Zp is a �eld.We prove results, modulo a composite m, which shed light on the essentialsimilarities and di�erences between working MODp and working MODm.A natural conjecture is that �(OR;m) = dN=(m� 1)e, just as in the primecase (Barrington 1992a). In Section 2, we prove that �(OR;m) = O( rpN ),where r is the number of distinct prime factors of m. We �nd this surprising.It gives a natural computational setting where MOD6 really is more powerfulthan MODp. Furthermore, our construction uses only symmetric polynomials.Our upper bound is the best possible if only symmetric polynomials are allowed.We leave open the tantalizing possibility that for non-symmetric polynomialsthe MODm-degree of OR might be as low as O(logN), the lower bound provedafter our work by Tardos and Barrington (1994)|previously the best boundwas only !(1) (Barrington et al. 1990). We show that a low degree or sparsesub-linear degree polynomial for OR would have as a consequence the existenceof small, low-depth MODm circuits for the AND function.De�ne theN -variable boolean function MODn to be 0 only when the numberof input ones is a multiple of n, and 1 otherwise. In Section 3, we extend whatis known to a composite modulus: for any integer m, �(MODn;m) = N
(1) and



Polynomials modulo composite numbers 3�(:MODn;m) = N
(1) when n has a prime divisor that is not a divisor of m.In the case of a square free m, we have �(:MODn;m) = 
(N). For all m, it isobvious that �(MODm;m) = 1. If m is a prime power, then it is known that�(:MODm;m) = O(1). In contrast, if m is not a prime power, we show that�(:MODm;m) = N
(1) (
(N) if m is square free).The complexity class MODmP is de�ned to generalize the de�nition of �P.A language L belongs to MODmP if there exists a nondeterministic polynomial-time machine M such that x 2 L i� the number of accepting paths of M(x) isnon-zero modulo m (Babai and Fortnow 1990, Toda and Ogiwara 1992, Tarui1993). In Section 4, we use our lower bounds to construct an oracle such thatMODnP is closed under complementation and union i� n is a prime power, andMODnP � MODmP i� all prime divisors of n are divisors of m. This oracle isconsistent with the known structure of these classes.A MODm polynomial of degree d has an associated MODm circuit consistingof an unbounded fan-in MODm gate at the root where each wire leading intoit is a function of no more than d of the input variables. Such circuits can bethought of as the MODm versions of perceptrons (Minsky and Papert 1968).Our upper bound for the OR function shows that such circuits can be morepowerful than expected. Our lower bound proves that, when m is not a primepower, natural complexity classes based on these circuits are not closed undercomplementation. Thus, de�nitions which were robust for prime powers failto be for other numbers. We suggest a more robust de�nition: �(F;m) is thelowest degree of any polynomial P over Zm such that F (~x) = 0 and F (~y) = 1implies P (~x) 6= P (~y). In Section 5, on open problems, we propose the �measure as the correct next step.2. Computing OR modulo a composite m2.1. Background. It is natural to expect that it is di�cult to compute theAND or OR function with components which can only sum their inputs moduloa constant. In the setting of constant-depth unbounded fan-in circuits, thisintuition leads to the conjecture that exponential size is needed (McKenzie etal. 1991), in particular that AND is not in the polynomial size class calledvariously \CC0" (McKenzie et al. 1991) or \pure ACC" (Yao 1990, Beigel andTarui 1991). Progress towards proving this conjecture has been very limited,as we shall see.The same intuition also says that the MODm-degree of the OR functionshould be large, because simply summing modulo m should not be able to



4 Barrington, Beigel & Rudichconvert any number of small AND or OR operations into a large one. It isnot hard to construct a polynomial of degree d(N=(m�1)e representing the N -variable OR function, or to prove that this degree is optimal in the case wheremis a prime or prime power. But for general non-prime-power m, the best lowerbound known until recently on the MODm-degree of OR was a nonconstantbut very slowly-growing function arising from a Ramsey argument (Barringtonet al. 1990). There is now a (logN)
(1) lower bound, which is O(logN) if mis divided by only two distinct primes, due to Tardos and Barrington (1994).This and related questions came up in the study of permutation branchingprograms, or non-uniform automata over groups ( Barrington 1989, Barring-ton and Th�erien 1988, Barrington et al. 1990). This model of computation isclosely related both to polynomials over �nite rings and to circuits of MODmgates (Barrington 1990, 1992a). It was here, in the study of width three per-mutation branching programs (Barrington 1985), that an important distinctionwas noticed. With MODm calculations, it is di�cult or impossible to force acomputation to always give one of two output values (e.g., to compute thecharacteristic function of a set) rather than any of m values (e.g., to \repre-sent" a set in our current terminology). Later, the nonconstant bound on theMODm-degree of OR showed that OR cannot be computed in any size by non-uniform automata over nilpotent groups, which correspond to a restricted caseof MODm circuits (Barrington et al. 1990).Th�erien posed the question of the MODm-degree of OR, and the relatedquestion of how large a collection of linear polynomials modulo m is neededfor the collection to represent OR, in the sense that the N inputs are all zeroi� all the polynomials are zero. Any lower bound in the latter case gives acorresponding lower bound on the size of MODm circuits for AND or OR, ofany depth. Smolensky (1990) had previously shown an 
(logN) lower boundon this size by a di�erent argument. Then, Barrington (1992a) showed an
(N= logN) lower bound in the course of a general investigation of both thesequestions, and �nally Th�erien (1992) gave an 
(N) lower bound by the methodsof Barrington et al. (1990). This result would be implied by a linear lowerbound on the MODm-degree of OR, but not vice versa.Independently of this e�ort, other researchers have also derived degree lowerbounds for MODm polynomials. Krause and Waack (1991) use a form of com-munication complexity to investigate the complexity of the boolean functionEQN(x; y), which is one i� the N -bit strings x and y are identical. Theyshow that any polynomial computing this function in our sense has exponen-tially many terms, and this implies that this function has linear MODm-degree(Krause, personal communication). In his Ph.D. thesis, Szegedy (1989) ex-



Polynomials modulo composite numbers 5tends the methods of Smolensky (1987) to give an 
(pN) lower bound on theMODm-degree of the N -variable majority function. His bound also holds forfunctions which agree with the majority function on all but a constant fractionof the possible input assignments. Subsequent to our own work, Tsai (1993)has shown a lower bound of N=2 for the MODm-degree of the majority func-tion and Grolmusz (1994) has shown an O(logN) lower bound on the degreeof the generalized inner product function (even with the more robust de�nitionof Section 5).2.2. A Surprising Upper Bound. In fact, the MODm-degree of OR for anon-prime-power m is less than linear, and there is even a symmetric functionwhich witnesses that fact. To see this, we need some notation dealing withsymmetric functions. For simplicity, let m = p1 : : : pr, with r > 1, be a square-free composite number. De�ne the nth elementary symmetric function sn(~x)to be the sum of all monomials of degree n in the N input variables. If j ofthe input variables are on, the value of sn(~x) is �jn�, independently of N|wewill write this as sn(j). We may think of the sn as being single polynomialsover in�nitely many variables, noting that their value is well-de�ned wheneveronly �nitely many of the inputs are 1. A symmetric polynomial of degree d issimply a linear combination of s0; s1; : : : ; sd.It is not hard to show that for prime p, the function sn(j) mod p, which isequal to �jn� mod p, is periodic. The period is pe, the least power of p such thatn < pe. Furthermore, the polynomials s0; : : : ; spe�1 are linearly independentmodulo p so that they are a basis of the vector space of symmetric functionswith period pe. If N < pe, the OR of N variables is represented modulo p bythe function f(j) with f(j) = 0 for j � 0 (mod pe) and f(j) = 1 otherwise.This function has degree at most pe � 1.But now, consider an arbitrary degree d and let qi be the greatest power of pisuch that qi�1 � d. By the above, there is a degree-d symmetric polynomial fisuch that fi(j) � 0 (mod pi) i� j � 0 (mod qi). Using the Chinese RemainderTheorem, let f be the unique polynomial modulo m such that f � fi (mod pi)for all i. Clearly, f(j) � 0 (mod m) i� fi(j) � 0 (mod pi) for all i i� j � 0(mod q), where q is the product of the qi. This f thus represents the OR ofup to q � 1 variables. Since each qi is �(d), q = �(dr) and so we have thatfor square-free composite m, the MODm-degree of the OR of N variables isO(N1=r).In the case where m is not square-free but still not a prime power, the sameresult can be proved similarly. First, consider the periodicity of the functionsi(j) mod pe for a single prime p. One can show by induction that if i < pz ,



6 Barrington, Beigel & Rudichthen si(j + pe+z�1) � si(j) (mod pe). Furthermore, although the functions sifor i < pz do not generate all functions of this period, they do generate afunction g which correctly computes the OR of up to pz � 1 variables, namely:g = pz�1Xi=1 (�1)i+1si:(This is because for any j such that 1 � j � pz � 1, g(j) = 1 over the integersand hence also in Zpe.) This means that the MODpe-degree of the OR ofN variables is O(N), making the MODm-degree O(N1=r) if m = pe11 : : : perr .Summarizing, then, we have the following theorem.Theorem 2.1. TheMODm-degree of the OR of N variables is O(N1=r), wherer is the number of distinct primes dividing m.22.3. A Matching Lower Bound for Symmetric Polynomials. Whilewe cannot rule out the possibility that some other polynomials of very slowlygrowing degree represent OR, we can say that any symmetric polynomial doesessentially no better than our upper bound above:Theorem 2.2. If a symmetric polynomial modulo m represents the OR of Nvariables, then it has degree 
(N1=r), where r is the number of distinct primesdividing m.Proof. We observed above that for any prime power pe, any symmetricpolynomial of degree d satis�es f(j) � f(j + pe+z�1) (mod pe), where z is suchthat pz = �(d). This means that any symmetric polynomial modulo m is alsoperiodic, with period �(dr). Thus, unless N = O(dr) (i.e., d = 
(N1=r)), thesymmetric function has f(j) � f(0) (mod m) for some 0 < j � N and cannotrepresent the OR function. 22.4. Consequences. It is natural to ask whether this surprising upper boundmight help us build MODm circuits for AND or OR. Suppose the MODm-degreeof OR is d(N). Using DeMorgan's Law, with a single MODm gate we can reducetheN -way AND to at most (m�1)�Nd� d-way ANDs. We then have two choices:implement the d-way ANDs by brute force, using depth-2 MODm circuits eachof size O(2d), or apply the construction recursively to the d-way ANDs. If weuse our d = �(N1=r) construction without recursion, we get a depth-3 MODmcircuit of size 2O(N1=r logN). Additional recursion increases the depth withoutmuch reduction in the size. (It is straighforward, extending the k = 2 version



Polynomials modulo composite numbers 7of Barrington (1985), to construct depth-k, size 2O(N1=(k�1)) MODm circuits forAND whenever m is not a prime power. Therefore these circuits are not toosurprising.)If it were possible to reduce the MODm-degree of OR further, however, therewould be important consequences. Getting the MODm-degree below polyno-mial (d = No(1)), would yield subexponential circuits of depth 3, and gettingit poly-log would yield quasi-polynomial size circuits. The latter result wouldcollapse the quasi-polynomial size circuit complexity classes qCC0 and qACC0,as de�ned in Barrington (1992b). This may be interpreted either to say thatsuch small MODm circuits for AND and OR are conceivable or that improvingthe MODm-degree bound is unlikely.Even with a MODm-degree of N
(1), there would be interesting MODmcircuits if we could get a polynomial with many fewer than �Nd� nonzero terms.By the recursive construction, a representation of OR with degree d = N�(� < 1) and s terms would give a MODm circuit of depth O(log logN) and sizeslog logN . Unfortunately, symmetric polynomials have every possible nonzeroterm of their degree.3. Lower bounds for MODp and the negation of MODm. In this section, we present an N
(1) lower bound on the MODm-degree ofthe MODn function whenever there is a prime divisor of n that is not a divisorofm. For composite m, this is the �rst progress on Smolensky's question (1987)whether polynomial size circuits of AND, OR, and MODm gates can computethe MODp function for some prime p that is not a divisor of m.We also present an N
(1) lower bound on the MODm-degree of the :MODmfunction whenm is not a prime power. This lower bound contrasts sharply withthe corresponding lower bounds when m is a prime power (Hertrampf 1990,Beigel and Gill 1992, Beigel and Tarui 1991, Barrington 1992a, Smolensky1987). If the set of prime divisors of n is contained in the set of prime divisorsof m, then the MODm-degrees of :MODn and of MODn are also O(1). If m isa prime power then the MODm-degree of the function :MODm is O(1).Our N
(1) lower bounds become 
(N) lower bounds in the special casewhere the modulus m is square-free. Subsequent to our work, Tsai (1993) hasbeen able to remove this restriction and demonstrate that if m is not a primepower and n has a prime divisor that does not divide m, each of the functions:MODm, MODn, and :MODn requires linear degree.



8 Barrington, Beigel & RudichLemma 3.1. Let q be a polynomial in binary variables x1; : : : ; xN . Let m be asquare-free number whose largest prime divisor is pmax. Suppose that q satis�es:� q(x1; : : : ; xN) 6� 0 (mod m) if the sum of the inputs is zero, and� q(x1; : : : ; xN) � 0 (mod m) if this sum is a power of a prime divisor of m(an \m-power").Then the degree of q is at least N=(2pmax).Proof. The proof is by contradiction. Suppose that q satis�es our hypothesisand that the degree of q is less than N=(2pmax). Then, the degree of q is lessthan N=(2p) for every prime p that divides m.Let p be any prime that divides m. Find the largest k such that 2pk�1 � N .Let n = 2pk � 1. Letr(x1; : : : ; xn) = q(x1; : : : ; xn; 0; : : : ; 0)be obtained by setting xN�n+1; : : : ; xN to 0 in q. Note that the degree of ris less than or equal to the degree of q and that r(0; : : : ; 0) = q(0; � � � ; 0).Furthermore, r satis�es the following conditions:� r(x1; : : : ; xn) 6� 0 (mod m) if x1 = � � � = xn = 0, and� r(x1; : : : ; xn) � 0 (mod m) if P1�i�n xi is an m-power.Let S denote a subset of fx1; : : : ; xng. Let�S = Yx2S x � Yx=2S (1� x);�0S = Yx2S x:We can write r in two ways:r(x1; : : : ; xn) = XS cS�S; (3.1)r(x1; : : : ; xn) = XS c0S�0S; (3.2)where cS and c0S satisfy the following equalities:c; 6� 0 (mod m);cS � 0 (mod m) if jSj is an m-power;c0S = 0 if jSj � N=(2p):



Polynomials modulo composite numbers 9Let �i = XjSj=i cS;�0i = XjSj=i c0S:Then we have the following equalities:�0 = c;;�i � 0 (mod m) if i is an m-power;�0i = 0 if i � N=(2p):We note that c0S = XT�S (�1)jSj�jT jcT :Therefore, �0i = XjSj=i XT�S (�1)jSj�jT jcT= XT XjSj=i;S�T (�1)jSj�jT jcT= Xj XjT j=j XjSj=i;S�T (�1)jSj�jT jcT= Xj XjT j=j  n� ji� j!(�1)i�jcT= (�1)iXj  n� ji� j !(�1)j XjT j=j cT= (�1)iXj  n� ji� j !(�1)j�j= (�1)iXj  n� jn� i!(�1)j�j:Recall that n = 2pk � 1. Let i = pk, so that n � i = pk � 1. By Kummer'stheorem,  nn� i! 6� 0 (mod p); n� jn� i! � 0 (mod p) if 0 < j < i:



10 Barrington, Beigel & RudichTherefore,�0i � (�1)i   n� in� i!(�1)i�i +  n � 0n � i!(�1)0�0 ! (mod p)� (�1)i  (�1)i�i +  nn� i!c;! (mod p)(because �0 = c;). But, �i � 0 (mod m) because i = pk. Therefore,�0i � (�1)i nn� i!c; (mod p):Because k was chosen so that 2pk+1 � 1 > N , it follows that i = pk � N=(2p),so �0i = 0. Since � nn�i� 6� 0 (mod p), it is necessary that c; � 0 (mod p).Therefore, q(0; : : : ; 0) = r(0; : : : ; 0) = c; � 0 (mod p):Since q(0; : : : ; 0) is divisible by every prime p that divides m, and m is square-free, q(0; : : : ; 0) � 0 (mod m), a contradiction. 2It follows that the MODm-degree of the negation of the MODm predicateis 
(N) if m is a square-free composite number.Theorem 3.2. Let q be a polynomial in binary variables x1; : : : ; xN . Let m bea square-free composite number whose largest prime divisor is pmax. Supposethat q(x1; : : : ; xN) � 0 (mod m) i� the sum of the inputs is nonzero modulo m.Then the degree of q is at least N=(2pmax).Proof. q satis�es the hypotheses of Lemma 3.1. 2Assume that m is a square-free number and p is not a divisor of m. We canshow that the MODm-degree of the negation of the MODp predicate is 
(N),and the MODm-degree of the MODp predicate is 
(N1=(p�1)).Theorem 3.3. Let q be a polynomial in binary variables x1; : : : ; xN . Let m bea square-free number whose largest prime divisor is pmax. Let p be any primethat is not a divisor of m.1. Suppose that q(x1; : : : ; xN) � 0 (mod m) i� the sum of the inputs isnonzero modulo p. Then the degree of q is at least N=(2pmax).2. Suppose that q(x1; : : : ; xN ) � 0 (mod m) i� the sum of the inputs is zeromodulo p. Then the degree of q is at leastb((N � 1)=(p � 1))1=(p�1)c=(2pmax(p� 1)):



Polynomials modulo composite numbers 11Proof.1. q satis�es the hypotheses of Lemma 3.1.2. Let n = b((N � 1)=(p � 1))1=(p�1)c. Let ` = (p � 1)np�1. We may write(p�1)(x1+� � �+xn)p�1 as the sum of ` monomials, y1+� � �+y`, each withcoe�cient 1. Let r(x1; : : : ; xn) = q(y1; : : : ; y`; 1; 0; : : : ; 0). Then, lettings = P1�i�n xi, we have thatr(x1; : : : ; xn) � 0 (mod m) ()(p � 1)sp�1 + 1 � 0 (mod p) ()sp�1 � 1 (mod p) ()s 6� 0 (mod p);by Fermat's little theorem. By Theorem 4 above, the degree of r is atleast b((N � 1)=(p � 1))1=(p�1)c=(2pmax):Therefore, the degree of q is at least equal tob((N � 1)=(p � 1))1=(p�1)c=(2pmax(p� 1));as required. 2These results can be extended to general m via standard techniques (Her-trampf 1990, Beigel and Gill 1992, Beigel and Tarui 1991).Theorem 3.4. Let m be any number and let p be a prime that is not a divisorof m. Then the MODm-degrees of the functions MODp, :MODp, and :MODmare all N
(1). 2This is very di�erent from the behavior for prime moduli. If m is primethen the MODm-degree of the :MODm function is a constant, m � 1, by afolklore theorem (Beigel and Gill 1992, Hertrampf 1990, Beigel and Tarui 1991,Barrington 1992a, Smolensky 1987).Corollary 3.5. Let m and n be any two numbers such that the set of primedivisors of n is not contained in the set of prime divisors of m. Then theMODm-degree of the functions MODn and :MODn are both N
(1).



12 Barrington, Beigel & RudichProof. Let p be a prime divisor of n, but not of m. Observe thatP1�i�bN=pc xi � 0 (mod p) ()P1�j�pP1�i�bN=pc xi � 0 (mod n);so the MODm-degree of the MODn function of N variables is at least theMODm-degree of the MODp function of N 0 variables, where N 0 = bN=pc. 2On the other hand, if n and m have the same set of prime divisors, then theMODm-degree of the function MODn is O(1) by a folklore theorem (Beigel andGill 1992, Hertrampf 1990, Beigel and Tarui 1991, Barrington 1992a, Smolensky1987).4. An oracle for the conjectured relations amongMODmP classesThe class MODmP is a generalization of the counting class �P (Papadimitriouand Zachos 1983, Goldschlager and Parberry 1986). First developed by Caiand Hemachandra (1990), these classes have since been studied by many others(Beigel 1991, Beigel and Gill 1992, Hertrampf 1990, Babai and Fortnow 1990,Toda and Ogiwara 1992, Tarui 1993). It is known that MODmP = MODm0Pwhere m0 is the product of all distinct prime divisors of m (Hertrampf, 1990);that MODnP � MODmP if every prime divisor of n is a divisor of m (Her-trampf, 1990); that MODmP is closed under polynomial-time Turing reduc-tions if m is a power of a prime (Beigel and Gill, 1992); that MODmP is closedunder intersection for all m (Hertrampf, 1990); and that MODmP is closed un-der union if and only if MODmP is closed under complementation (Hertrampf,1990).By standard techniques (Furst et al. 1984) it is possible to take circuit lowerbounds and construct oracles that separate complexity classes. From our circuitlower bounds, we can construct an oracle relative to which no containmentrelations hold among MODmP classes, except for the relations listed in thepreceding paragraph.Theorem 4.1. There exists an oracle relative to which the following propertieshold:� MODnP � MODmP if and only if every prime divisor of n is a primedivisor of m.� MODmP is closed under complementation if and only if m is a primepower.� MODmP is closed under union if and only if m is a prime power. 2



Polynomials modulo composite numbers 135. Open problems, recent progress, and conclusionsRelative to the � measure, AND has a di�erent complexity from OR, andMODm has a di�erent complexity from :MODm. This says that � does notprovide a robust, well-behaved measure for the purposes of boolean functioncomplexity. This de�ciency is alleviated by proposing a measure which is robustin both these senses.Definition 5.1. �(F;m) is de�ned to be the lowest degree of any polynomialP over Zm such that F (~x) = 0 and F (~y) = 1 implies P (~x) 6= P (~y).Because the OR function is zero on only one input setting, it is easy to seethat �(OR;m) = �(OR;m) for all m. Therefore, our results concerning ORare robust. In contrast, as far as we know, �(MODn;m) could be much smallerthan �(MODn;m). On the other hand, it is also possible that �(MODn;m)could be 
(�(MODn;m)). We consider our lower bounds for � to be a �rst stepin getting good bounds for the � measure.Subsequent to our work, there have been two separate 
(logN) degree lowerbounds proven for the � measure, which are now the best known for naturalfunctions. Tardos and Barrington (1994) have proven such a bound for theOR function in the case when m has only two distinct prime divisors (if it hasr prime divisors, the bound degrades to 
((logN)1=(r�1))). Grolmusz (1994)has observed that an 
(logN) degree lower bound for the generalized innerproduct function follows from the lower bound on the k-party communicationcomplexity of that function due to Babai, Nisan, and Szegedy (1989).We have mentioned Tsai's extensions of our work (Tsai, 1993) as appro-priate in the main text. He proves linear lower bounds on the degree of themajority function, as in earlier work by Szegedy (1989), and on the degree ofthe functions :MODm, MODn, and :MODn, where m is not a prime powerand n has a prime divisor which does not divide m. The latter results improveours in the case when m is not square-free.Another important question is whether or not there is a degree N � polyno-mial over Zm that computes OR and has only a quasi-polynomial number ofnon-zero terms. If so, there exist small depth-3 circuits, consisting entirely ofMODm gates, that compute the AND function.Some of our results were inspired by computer examination of small cases ofthe general problem. For example, what is the largest N such that �(OR; 6) = 2on N variables? For symmetric polynomials the answer is N = 8, but it is easyto construct non-symmetric polynomials showing N � 10. Our conjecture isthat N = 10, but we have been unable to con�rm this. Recent work by one of
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