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Abstract. Define the MOD,,-degree of a boolean function F to be the
smallest degree of any polynomial P, over the ring of integers modulo m,
such that for all 0-1 assignments Z, F(Z) = 0 iff P(£) = 0. We obtain
the unexpected result that the MOD,,-degree of the OR of N variables
is O(¥/N), where r is the number of distinct prime factors of m. This
is optimal in the case of representation by symmetric polynomials. The
MOD,, function is 0 if the number of input ones is a multiple of n and is
one otherwise. We show that the MOD,,-degree of both the MOD,, and
~MOD,, functions is N 1) exactly when there is a prime dividing n but
not m. The MOD,,-degree of the MOD,, function is 1; we show that
the MOD,,-degree of “MOD,, is N®1) if m is not a power of a prime,
O(1) otherwise. A corollary is that there exists an oracle relative to
which the MOD,,,P classes (such as ®P) have this structure: MOD,,P
is closed under complementation and union iff m is a prime power, and
MOD,,P is a subset of MOD,, P iff all primes dividing n also divide m.
Key words. Complexity of finite functions; circuit complexity; compu-
tation by polynomials; relativized complexity.
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1. Introduction

Lower bounds in circuit complexity are currently hindered by what at first
glance appears to be a small technical point. It is known that AC® circuits
which also allow MOD,, gates for some fixed prime p can’t compute the MOD,
function for any g which is not a power of p (Razborov 1987, Smolensky 1987).
In contrast, it is not known if AC® circuits which also allow MODg gates can
compute every function in NP. It is conjectured that (as with the case of
MOD,) AC® with MOD,,, gates for any integer m can’t compute the MOD,,
function when there is a prime dividing n but not m (Smolensky 1987). Indeed,
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1t might be that some slight extension of the Razborov-Smolensky techniques
will prove the conjecture. But there is also the very interesting possibility that
MODg gates really are more powerful than MOD,, gates! If this were true, it
would pinpoint why MODg lower bounds are not forthcoming.

How could MODg be computationally different from MOD,? In this paper,
we study this question in the polynomial model of computation. We say that
a polynomial P over Z,, represents a boolean function ¥ on N inputs if for all
0-1 valued assignments & € {0,1}", F(&) = 0 iff P(Z) = 0. In other words, we
interpret the output of P to be the boolean value 1 if P(Z) # 0 mod m, and
0 otherwise. This is very similar to the standard definition of a MOD,, gate
which outputs 1 iff the number of input 1s is non-zero modulo m (Razborov
1987, Smolensky 1987, Barrington 1986). The MOD,,-degree of F', denoted
8(F,m), is the degree of the lowest degree polynomial which represents it. This
model of boolean function complexity has been well explored in the case where
m is a prime power (Smolensky 1987, Barrington 1992a, Beigel and Tarui 1991,
Beigel and Gill 1992). It is known that §(OR,p) = [N/(p — 1)| (Smolensky
1987). It is also known that §(MOD,,p) = Q(N) when n is not a power of p
(Smolensky 1987).

In the case of composite moduli, there have been very few results in this
model (see, e.g., Krause and Waack 1991, Szegedy 1989, which we review be-
low). The obvious reason for this technical gap is that the techniques in the
case of a prime modulus p have heavily relied on the fact that Z, is a field.
We prove results, modulo a composite m, which shed light on the essential
similarities and differences between working MOD,, and working MOD,,,.

A natural conjecture is that §(OR,m) = [N/(m — 1)], just as in the prime
case (Barrington 1992a). In Section 2, we prove that §(OR,m) = O(+v/N),
where r is the number of distinct prime factors of m. We find this surprising.
It gives a natural computational setting where MODyg really is more powerful
than MOD,,. Furthermore, our construction uses only symmetric polynomials.
Our upper bound is the best possible if only symmetric polynomials are allowed.
We leave open the tantalizing possibility that for non-symmetric polynomials
the MOD,,,-degree of OR might be as low as O(log N), the lower bound proved
after our work by Tardos and Barrington (1994)—previously the best bound
was only w(1) (Barrington et al. 1990). We show that a low degree or sparse
sub-linear degree polynomial for OR would have as a consequence the existence
of small, low-depth MOD,, circuits for the AND function.

Define the N-variable boolean function MOD,, to be 0 only when the number
of input ones is a multiple of n, and 1 otherwise. In Section 3, we extend what
is known to a composite modulus: for any integer m, §( MOD,,,m) = N() and



Polynomials modulo composite numbers 3

§(-MOD,,,m) = NY) when n has a prime divisor that is not a divisor of m.
In the case of a square free m, we have §(-MOD,,,m) = Q(N). For all m, it is
obvious that §(MOD,,,m) = 1. If m is a prime power, then it is known that
8(-MOD,,,m) = O(1). In contrast, if m is not a prime power, we show that
§(-MOD,,, m) = N¥) (Q(N) if m is square free).

The complexity class MOD,,,P is defined to generalize the definition of §P.
A language L belongs to MOD,,, P if there exists a nondeterministic polynomial-
time machine M such that # € L iff the number of accepting paths of M(z) is
non-zero modulo m (Babai and Fortnow 1990, Toda and Ogiwara 1992, Tarui
1993). In Section 4, we use our lower bounds to construct an oracle such that
MOD,,P is closed under complementation and union iff n is a prime power, and
MOD,P C MOD,,P iff all prime divisors of n are divisors of m. This oracle is
consistent with the known structure of these classes.

A MOD,, polynomial of degree d has an associated MOD,, circuit consisting
of an unbounded fan-in MOD,, gate at the root where each wire leading into
it 1s a function of no more than d of the input variables. Such circuits can be
thought of as the MOD,, versions of perceptrons (Minsky and Papert 1968).
Our upper bound for the OR function shows that such circuits can be more
powerful than expected. Our lower bound proves that, when m is not a prime
power, natural complexity classes based on these circuits are not closed under
complementation. Thus, definitions which were robust for prime powers fail
to be for other numbers. We suggest a more robust definition: A(F,m) is the
lowest degree of any polynomial P over Z,, such that F(£) = 0 and F(y) =1
implies P(Z) # P(y). In Section 5, on open problems, we propose the A
measure as the correct next step.

2. Computing OR modulo a composite m

2.1. Background. It is natural to expect that it is difficult to compute the
AND or OR function with components which can only sum their inputs modulo
a constant. In the setting of constant-depth unbounded fan-in circuits, this
intuition leads to the conjecture that exponential size is needed (McKenzie et
al. 1991), in particular that AND is not in the polynomial size class called
variously “CC°®” (McKenzie et al. 1991) or “pure ACC” (Yao 1990, Beigel and
Tarui 1991). Progress towards proving this conjecture has been very limited,
as we shall see.

The same intuition also says that the MOD,,-degree of the OR function
should be large, because simply summing modulo m should not be able to
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convert any number of small AND or OR operations into a large one. It is
not hard to construct a polynomial of degree [(N/(m —1)] representing the N-
variable OR function, or to prove that this degree is optimal in the case where m
is a prime or prime power. But for general non-prime-power m, the best lower
bound known until recently on the MOD,,-degree of OR was a nonconstant
but very slowly-growing function arising from a Ramsey argument (Barrington
et al. 1990). There is now a (log N)™*) lower bound, which is O(log N) if m
is divided by only two distinct primes, due to Tardos and Barrington (1994).

This and related questions came up in the study of permutation branching
programs, or non-uniform automata over groups ( Barrington 1989, Barring-
ton and Thérien 1988, Barrington et al. 1990). This model of computation is
closely related both to polynomials over finite rings and to circuits of MOD,,
gates (Barrington 1990, 1992a). It was here, in the study of width three per-
mutation branching programs (Barrington 1985), that an important distinction
was noticed. With MOD,,, calculations, it is difficult or impossible to force a
computation to always give one of two output values (e.g., to compute the
characteristic function of a set) rather than any of m values (e.g., to “repre-
sent” a set in our current terminology). Later, the nonconstant bound on the
MOD,,-degree of OR showed that OR cannot be computed in any size by non-
uniform automata over nilpotent groups, which correspond to a restricted case

of MOD,, circuits (Barrington et al. 1990).

Thérien posed the question of the MOD,,-degree of OR, and the related
question of how large a collection of linear polynomials modulo m is needed
for the collection to represent OR, in the sense that the N inputs are all zero
iff all the polynomials are zero. Any lower bound in the latter case gives a
corresponding lower bound on the size of MOD,, circuits for AND or OR, of
any depth. Smolensky (1990) had previously shown an Q(log N) lower bound
on this size by a different argument. Then, Barrington (1992a) showed an
Q(N/log N) lower bound in the course of a general investigation of both these
questions, and finally Thérien (1992) gave an Q(N) lower bound by the methods
of Barrington et al. (1990). This result would be implied by a linear lower
bound on the MOD,,-degree of OR, but not vice versa.

Independently of this effort, other researchers have also derived degree lower
bounds for MOD,, polynomials. Krause and Waack (1991) use a form of com-
munication complexity to investigate the complexity of the boolean function
EQn(z,y), which is one iff the N-bit strings z and y are identical. They
show that any polynomial computing this function in our sense has exponen-
tially many terms, and this implies that this function has linear MOD,,-degree
(Krause, personal communication). In his Ph.D. thesis, Szegedy (1989) ex-
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tends the methods of Smolensky (1987) to give an Q(+/N) lower bound on the
MOD,,-degree of the N-variable majority function. His bound also holds for
functions which agree with the majority function on all but a constant fraction
of the possible input assignments. Subsequent to our own work, Tsai (1993)
has shown a lower bound of N/2 for the MOD,,-degree of the majority func-
tion and Grolmusz (1994) has shown an O(log N) lower bound on the degree
of the generalized inner product function (even with the more robust definition
of Section 5).

2.2. A Surprising Upper Bound. In fact, the MOD,,-degree of OR for a
non-prime-power m is less than linear, and there is even a symmetric function
which witnesses that fact. To see this, we need some notation dealing with
symmetric functions. For simplicity, let m = p; ... p,, with » > 1, be a square-
free composite number. Define the n'* elementary symmetric function s,(%)
to be the sum of all monomials of degree n in the N input variables. If 5 of
the input variables are on, the value of s,(Z) is (731), independently of N—we
will write this as s,(j). We may think of the s, as being single polynomials
over infinitely many variables, noting that their value is well-defined whenever
only finitely many of the inputs are 1. A symmetric polynomial of degree d is
simply a linear combination of s, s1, ..., s4.

It is not hard to show that for prime p, the function s,(j) mod p, which is
equal to (31) mod p, is periodic. The period is p®, the least power of p such that
n < p°. Furthermore, the polynomials so,...,spe_; are linearly independent
modulo p so that they are a basis of the vector space of symmetric functions
with period p°. If N < p°, the OR of N variables is represented modulo p by
the function f(j) with f(j) = 0 for j = 0 (mod p°) and f(j) = 1 otherwise.
This function has degree at most p® — 1.

But now, consider an arbitrary degree d and let ¢; be the greatest power of p;
such that ¢; —1 < d. By the above, there is a degree-d symmetric polynomial f;
such that f;(7) =0 (mod p;) iff j = 0 (mod ¢;). Using the Chinese Remainder
Theorem, let f be the unique polynomial modulo m such that f = f; (mod p;)
for all 5. Clearly, f(7) = 0 (mod m) iff fi(j) = 0 (mod p;) for all 7 iff 7 = 0
(mod g), where q is the product of the ¢;. This f thus represents the OR of
up to ¢ — 1 variables. Since each ¢; is ©(d), ¢ = ©(d") and so we have that
for square-free composite m, the MOD,,-degree of the OR of N variables is
O(NY/™).

In the case where m is not square-free but still not a prime power, the same
result can be proved similarly. First, consider the periodicity of the function
si(7) mod p® for a single prime p. One can show by induction that if : < p?,
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then s;(j + p***7') = s:(j) (mod p°). Furthermore, although the functions s;
for 7 < p® do not generate all functions of this period, they do generate a
function g which correctly computes the OR of up to p* — 1 variables, namely:

p*-1

g= 2 ()" s

=1

(This is because for any j such that 1 < 7 <p* — 1, g(j) = 1 over the integers
and hence also in Zy.) This means that the MOD,.-degree of the OR of
N variables is O(N), making the MOD,,-degree O(N/") if m = p5* ... per.

Summarizing, then, we have the following theorem.

THEOREM 2.1. The MOD,,-degree of the OR of N variables is O(N*/™), where

r is the number of distinct primes dividing m.O

2.3. A Matching Lower Bound for Symmetric Polynomials. While
we cannot rule out the possibility that some other polynomials of very slowly
growing degree represent OR, we can say that any symmetric polynomial does
essentially no better than our upper bound above:

THEOREM 2.2. If a symmetric polynomial modulo m represents the OR of N
variables, then it has degree Q(N'/"), where r is the number of distinct primes
dividing m.

Proor.  We observed above that for any prime power p®, any symmetric
polynomial of degree d satisfies f(7) = f(j +p*T*™') (mod p®), where z is such
that p* = ©(d). This means that any symmetric polynomial modulo m is also
periodic, with period ©(d"). Thus, unless N = O(d") (i.e., d = Q(N'/")), the
symmetric function has f(j) = f(0) (mod m) for some 0 < j < N and cannot
represent the OR function. O

2.4. Consequences. Itis natural to ask whether this surprising upper bound
might help us build MOD,, circuits for AND or OR. Suppose the MOD,,-degree
of ORis d(N). Using DeMorgan’s Law, with a single MOD,,, gate we can reduce
the N-way AND to at most (m—1) (1(\17) d-way ANDs. We then have two choices:
implement the d-way ANDs by brute force, using depth-2 MOD,, circuits each
of size O(2%), or apply the construction recursively to the d-way ANDs. If we
use our d = O(N'/) construction without recursion, we get a depth-3 MOD,,,
20(N'/"logN) A dditional recursion increases the depth without
much reduction in the size. (It is straighforward, extending the k = 2 version

circuit of size
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of Barrington (1985), to construct depth-k, size 20(N*D) MOD,, circuits for
AND whenever m is not a prime power. Therefore these circuits are not too
surprising. )

If it were possible to reduce the MOD,,,-degree of OR further, however, there
would be important consequences. Getting the MOD,,-degree below polyno-
mial (d = N°(")), would yield subexponential circuits of depth 3, and getting
it poly-log would yield quasi-polynomial size circuits. The latter result would
collapse the quasi-polynomial size circuit complexity classes gC'C° and gACC°,
as defined in Barrington (1992b). This may be interpreted either to say that
such small MOD,, circuits for AND and OR are conceivable or that improving
the MOD,,-degree bound is unlikely.

Even with a MOD,,-degree of N1)  there would be interesting MOD,,
circuits if we could get a polynomial with many fewer than (1(\17
By the recursive construction, a representation of OR with degree d = N¢
(a < 1) and s terms would give a MOD,, circuit of depth O(loglog N) and size
stgle N Unfortunately, symmetric polynomials have every possible nonzero

) nonzero terms.

term of their degree.

3. Lower bounds for MOD, and the negation of MOD,,

In this section, we present an N lower bound on the MOD,,-degree of
the MOD,, function whenever there is a prime divisor of n that is not a divisor
of m. For composite m, this is the first progress on Smolensky’s question (1987)
whether polynomial size circuits of AND, OR, and MOD,,, gates can compute
the MOD,, function for some prime p that is not a divisor of m.

We also present an N lower bound on the MOD,,-degree of the -MOD,,
function when m is not a prime power. This lower bound contrasts sharply with
the corresponding lower bounds when m is a prime power (Hertrampf 1990,
Beigel and Gill 1992, Beigel and Tarui 1991, Barrington 1992a, Smolensky
1987). If the set of prime divisors of n is contained in the set of prime divisors
of m, then the MOD,,-degrees of -MOD,, and of MOD,, are also O(1). If m is
a prime power then the MOD,,-degree of the function -MOD,, is O(1).

Our N lower bounds become Q(N) lower bounds in the special case
where the modulus m is square-free. Subsequent to our work, Tsai (1993) has
been able to remove this restriction and demonstrate that if m is not a prime
power and n has a prime divisor that does not divide m, each of the functions

-MOD,,, MOD,,, and -MOD,, requires linear degree.
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LEMMA 3.1. Let g be a polynomial in binary variables z1,...,zy. Let m be a
square-free number whose largest prime divisor is pmax. Suppose that g satisfies:

o g(z1,...,zx5) # 0 (mod m) if the sum of the inputs is zero, and

o g(z1,...,2zx) =0 (mod m) if this sum is a power of a prime divisor of m
(an “m-power”).

Then the degree of q is at least N/(2pmax)-

PrOOF. The proof is by contradiction. Suppose that g satisfies our hypothesis
and that the degree of g is less than N/(2pmax). Then, the degree of g is less
than N/(2p) for every prime p that divides m.
Let p be any prime that divides m. Find the largest k such that 2p* —1 < N.
Let n = 2p® — 1. Let
r(@1,...,¢n) = q(z1,...,2n,0,...,0)

be obtained by setting £x_pn11,...,2zx to 0 in g. Note that the degree of »
is less than or equal to the degree of g and that »(0,...,0) = ¢(0,---,0).
Furthermore, r satisfies the following conditions:

o r(z1,...,2,) Z0 (mod m)ifz; =--- =2, =0, and
o 7(x1,...,%,) =0 (mod m) if 35, ;<, #; is an m-power.

Let S denote a subset of {z1,...,z,}. Let

s = [[z-J](1- =),

z€eS z¢S

T = Hm

€S

We can write r in two ways:
r(@1,...,2,) = Z CsTs, (3.1)
s
r(z1,...,@n) = Y Ccsmg, (3.2)
s

where cg and ¢ satisfy the following equalities:

cp Z 0 (mod m),
cs =0 (mod m) if |S|is an m-power,

cs =0 if |S| > N/(2p).
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Let
ag; = Z cg,
|S|=12
oi = Y cs.
|S|=12
Then we have the following equalities:
0g = Cp,
o; =0 (mod m) if 7 is an m-power,
ol =0 if 1 > N/(2p).
We note that
e = (_1)|S|—|TICT‘
TCS
Therefore,
o = (=117l
|S|=i TCS

i—3j
) (_1@(’;:;)( PR
- oy (1)
_ (—1)1;(2:1)(_1)10’

Recall that n = 2p* — 1. Let ¢ = p*, so that n — ¢ = p* — 1. By Kummer’s
theorem,

(") # 0 tmodn)

0 (mod p) f0<j<u.

AN
s 3
[
&, o,
SN———
Il
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Therefore,

of = (-1} ((Z : z)(—l)"ai 4 (z:g)(_l)ﬂ% ) (mod p)
(e (7)) o)

because oy = ¢y). But, 0; = 0 (mod m) because 7 = p*. Therefore
( (0] ) 4 )

n—1

ot = (—1)1’( " ) co (mod p).

Because k was chosen so that 2pF*! — 1 > N it follows that i = p* > N/(2p),
so o; = 0. Since (n:) # 0 (mod p), it is necessary that ¢y = 0 (mod p).
Therefore,

q(0,...,0) =7(0,...,0) = ¢g = 0 (mod p).
Since ¢(0,...,0) is divisible by every prime p that divides m, and m is square-
free, ¢(0,...,0) = 0 (mod m), a contradiction. O

It follows that the MOD,,-degree of the negation of the MOD,, predicate
is Q(N) if m is a square-free composite number.

THEOREM 3.2. Let q be a polynomial in binary variables ¢, ...,zn. Let m be
a square-free composite number whose largest prime divisor is pmax. Suppose

that q(z1,...,zx) = 0 (mod m) iff the sum of the inputs is nonzero modulo m.
Then the degree of q is at least N/(2pmax)-

PROOF. g satisfies the hypotheses of Lemma 3.1. O

Assume that m is a square-free number and p i1s not a divisor of m. We can
show that the MOD,,-degree of the negation of the MOD,, predicate is Q(N),
and the MOD,,-degree of the MOD,, predicate is Q(N/(®~1)),

THEOREM 3.3. Let q be a polynomial in binary variables ¢, ...,zn. Let m be
a square-free number whose largest prime divisor is pmax. Let p be any prime
that is not a divisor of m.

1. Suppose that q(z1,...,zx) = 0 (mod m) iff the sum of the inputs is
nonzero modulo p. Then the degree of q is at least N/(2pmax)-

2. Suppose that q(z1,...,zx) = 0 (mod m) iff the sum of the inputs is zero
modulo p. Then the degree of q is at least

(N = 1)/(p = 1)*7] /(2pmax(p — 1))-
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Proor.

1. g satisfies the hypotheses of Lemma 3.1.

2. Let n = |[((N —1)/(p — 1))*/®1)|. Let £ = (p — 1)nP~*. We may write
(p—1)(z1+---+z,)P" " as the sum of £ monomials, y; +- - -+, each with
coeflicient 1. Let r(z1,...,2,) = q(y1,-.-,¥1,1,0,...,0). Then, letting
8 = Y 1<i<n &3, We have that

r(¢1,...,2,) = 0(modm) <
(p—1)s»'+1 = 0(modp) <
1 = 1 (mod p) <

s % 0 (mod p),

by Fermat’s little theorem. By Theorem 4 above, the degree of r is at
least

(N = 1)/(p = 1)) ® ] /(2prmax).

Therefore, the degree of g is at least equal to

(N = 1)/(2 = 1)) ®V] /(2Pmax(p — 1)),

as required. O

These results can be extended to general m via standard techniques (Her-

trampf 1990, Beigel and Gill 1992, Beigel and Tarui 1991).

THEOREM 3.4. Let m be any number and let p be a prime that is not a divisor
of m. Then the MOD,,-degrees of the functions MOD,, -MOD,, and -MOD,,
are all N®1), O

This is very different from the behavior for prime moduli. If m is prime
then the MOD,,-degree of the -MOD,,, function is a constant, m — 1, by a
folklore theorem (Beigel and Gill 1992, Hertrampf 1990, Beigel and Tarui 1991,
Barrington 1992a, Smolensky 1987).

COROLLARY 3.5. Let m and n be any two numbers such that the set of prime
divisors of n is not contained in the set of prime divisors of m. Then the

MOD,,-degree of the functions MOD,, and -MOD,, are both NO),
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ProOOF. Let p be a prime divisor of n, but not of m. Observe that

Y 1<i<|N/p| Ti 0 (mod p) <=
21<i<p 21<i<|N/p| Ti 0 (mod n),
so the MOD,,-degree of the MOD,, function of N variables is at least the
MOD,,-degree of the MOD,, function of N’ variables, where N' = |N/p|. O

On the other hand, if n and m have the same set of prime divisors, then the
MOD,,,-degree of the function MOD,, is O(1) by a folklore theorem (Beigel and
Gill 1992, Hertrampf 1990, Beigel and Tarui 1991, Barrington 1992a, Smolensky
1987).

4. An oracle for the conjectured relations among
MOD,,P classes

The class MOD,,,P is a generalization of the counting class P (Papadimitriou
and Zachos 1983, Goldschlager and Parberry 1986). First developed by Cai
and Hemachandra (1990), these classes have since been studied by many others
(Beigel 1991, Beigel and Gill 1992, Hertrampf 1990, Babai and Fortnow 1990,
Toda and Ogiwara 1992, Tarui 1993). It is known that MOD,,P = MOD,,/P
where m' is the product of all distinct prime divisors of m (Hertrampf, 1990);
that MOD,,P C MOD,,P if every prime divisor of n is a divisor of m (Her-
trampf, 1990); that MOD,,P is closed under polynomial-time Turing reduc-
tions if m is a power of a prime (Beigel and Gill, 1992); that MOD,,,P is closed
under intersection for all m (Hertrampf, 1990); and that MOD,,,P is closed un-
der union if and only if MOD,,,P is closed under complementation (Hertrampf,
1990).

By standard techniques (Furst et al. 1984) it is possible to take circuit lower
bounds and construct oracles that separate complexity classes. From our circuit
lower bounds, we can construct an oracle relative to which no containment
relations hold among MOD,,P classes, except for the relations listed in the
preceding paragraph.

THEOREM 4.1. There exists an oracle relative to which the following properties
hold:

o MOD,P C MOD,,P if and only if every prime divisor of n is a prime
divisor of m.

o MOD,,P is closed under complementation if and only if m is a prime
power.

o MOD,,P is closed under union if and only if m is a prime power. O



Polynomials modulo composite numbers 13

5. Open problems, recent progress, and conclusions

Relative to the 6 measure, AND has a different complexity from OR, and
MOD,, has a different complexity from -MOD,,. This says that § does not
provide a robust, well-behaved measure for the purposes of boolean function
complexity. This deficiency is alleviated by proposing a measure which is robust
in both these senses.

DEFINITION 5.1. A(F,m) is defined to be the lowest degree of any polynomial
P over Z,, such that F(Z) = 0 and F(y) = 1 implies P(Z) # P(9).

Because the OR function is zero on only one input setting, it is easy to see
that A(OR,m) = §(OR,m) for all m. Therefore, our results concerning OR
are robust. In contrast, as far as we know, A(MOD,,, m) could be much smaller
than §(MOD,,,m). On the other hand, it is also possible that A(MOD,,, m)
could be Q(6§(MOD,,, m)). We consider our lower bounds for é to be a first step
in getting good bounds for the A measure.

Subsequent to our work, there have been two separate ()(log N) degree lower
bounds proven for the A measure, which are now the best known for natural
functions. Tardos and Barrington (1994) have proven such a bound for the
OR function in the case when m has only two distinct prime divisors (if it has
r prime divisors, the bound degrades to Q((log N)/("~1))). Grolmusz (1994)
has observed that an (log N) degree lower bound for the generalized inner
product function follows from the lower bound on the k-party communication
complexity of that function due to Babai, Nisan, and Szegedy (1989).

We have mentioned Tsai’s extensions of our work (Tsai, 1993) as appro-
priate in the main text. He proves linear lower bounds on the degree of the
majority function, as in earlier work by Szegedy (1989), and on the degree of
the functions ~-MOD,,, MOD,,, and -MOD,,, where m is not a prime power
and n has a prime divisor which does not divide m. The latter results improve
ours in the case when m is not square-free.

Another important question is whether or not there is a degree N° polyno-
mial over Z,, that computes OR and has only a quasi-polynomial number of
non-zero terms. If so, there exist small depth-3 circuits, consisting entirely of
MOD,, gates, that compute the AND function.

Some of our results were inspired by computer examination of small cases of
the general problem. For example, what is the largest N such that §(OR,6) = 2
on N variables? For symmetric polynomials the answer is N = 8, but it is easy
to construct non-symmetric polynomials showing N > 10. Our conjecture is
that N = 10, but we have been unable to confirm this. Recent work by one of
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us (Barrington) along these lines has made some progress, which we summarize
here. Extensive but far from exhaustive computer searches have failed to find
a counterexample to the N = 10 conjecture. However, actually confirming the
conjecture directly by computer search seems so far to be infeasible. It has been
shown analytically (Tardos and Barrington, 1994) that §(OR,6) = Q(log(N))
in general, and §(OR,6) > 2 for N > 18, but this is not a satisfying answer.
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