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0.1 Brouwer’s Fixed Point Theorem

We are interesting in the following question: For which function f and do-
mains D is the following true:

If f : D → D is a function then (∃x)[f(x) = x].
We give some examples of classes of f where this is true, then classes

of f where this is false, then finally state and prove Brouwer’s fixed point
theorem which gives a wide class of (f,D) where it is true.

Theorem 0.1.1

1. If f is a continous map from [0, 1] to [0, 1] then there exists an x ∈ [0, 1]
such that f(x) = x.

2. There exists a continous map f from (0, 1) to (0, 1) such that there is
no x with f(x) = x.

3. There exists a continous map f from [0, 1] ∪ [2, 3] to [0, 1] ∪ [2, 3] such
that there is no x with f(x) = x.

4. There exists a continous map f from R to R such that there is no x
with f(x) = x.

5. There exists a continous map f from S1 to S1 such that there is no x
with f(x) = x. (S1 is the circle.)

Proof:
1) Let g(x) = f(x)− x. Note that:

g(0) = f(0)− 0 = f(0) ≥ 0.
g(1) = f(1)− 1 ≤ 0.
Since g is continous, by the intermediate value theorem, there exists an

x0 ∈ [0, 1] such that g(x0) = 0. Note that f(x0) = x0.

2)

f(x) =

{
x+ 1 if x ∈ [0, 1]

x− 2 if x ∈ [2, 3]
(1)

3) f(x) = x2 from (0, 1) to (0, 1) works.

4) f(x) = x+ 1 works.

5) We take S1 to be the unit circle in the plane. We denote a point p on
the circle by the angle θ (in radians) between the x-axis and the line from
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the origin to p. Take f(θ) = θ + π. (Any multiple of π that is not an even
multiple of π works.)

What property does [0, 1] have that (0, 1), R, and S1 lack?

1. (0, 1) is not closed. If X ⊆ R1 that is not closed then (I think) one can
construct a continous function f : X → X with no fixed point.

2. R is unbounded. If x ⊆ R

We state Brouwer’s Fixed Point Theorem in stages, increasing generality
as we go.

Theorem 0.1.2

1. If f is a continous function from [a, b] to [a, b] then f has a fixed point.

2. Let n ∈ N. Let B be a closed ball in Rn. If f is a continous function
from B to B then f has a fixed point.

3. Let n ∈ N. Let B be a nonempty convex compact subset of Rn. If f is
a continous function from B to B then f has a fixed point.

We omit the proof
BILL- I MIGHT PUT IN A PROOF LATER.

0.2 Continous functions from S1 to S1

The simplest case where Brouwer’s Fixed Point Theorem fails is S1. That
is, there is a continous function from S1 to S1 with no fixed point. We
will present a theorem about continous functions from S1 to S1 that can be
regarded as an approximate Fixed Point Theorem.

Def 0.2.1 Let M be a matric space. Let f be a function from M to M . Let
x ∈M .

1. x is fixed if f(x) = x.

2. x is periodic if there exists n, f (n)(x) = x. n is the degree of the fixed
point. Note that a fixed point is a periodic point of degree 1.
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3. x is recurrent if there exists a sequence of naturals n1, n2, . . . , such
that limi∈N f

(ni)(x) = x. Note that a periodic point is a recurrent point
though a boring one.

We give examples of continou functions from S1 to S1 to see if they have
fixed points, periodic points, or recurrent points.

We take S1 to be the unit circle in the plane. We denote a point p on the
circle by the angle θ (in radians) between the x-axis and the line from the
origin to p.
1) f(θ) = θ + π. Every point is periodic with n = 2.

2) f(θ) = θ + π
1011

. Every point is periodic with n = 2022.

3) f(θ) = θ + π
√

2. We will soon prove that every point is recurrent.
BILL- WILL PROVE THIS IS RECURRENT LATER.
Are there interesting examples of continous functions f from S1 to S1 that

have a fixed point? No. Are there interesting examples of continous functions
f from S1 to S1 that have a periodic point? No. Are there interesting
examples of continous functions f from S1 to S1 that have a recurrent point?
Yes.

Theorem 0.2.2 Let f is a conntinous functions from S1 to S1.

1. If f has a fixed point then f is the identity function.

2. If f has a periodic point of degree n then f (n) is the identity.

Proof:
1) LATER
2) LATER

Lemma 0.2.3 Let G be an additive subgroup of the group [0, 1) with addition
mod 1. Then either:

• G is dense.

• There exists r ∈ [0, 1) such that G = {nr : n ∈ N mod 1}.
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Proof:
Case 1: there exists a sequence of elements of G, g1, g2, . . . such that
g1, g2, g3, . . . converges to 0.

We show that G is dense. Let 0 ≤ a < b < 1. We show that some
element of G is between a and b. Let b − a = d. Let g be an element of
the sequence such that 0 < g < min{a, d/2}. Look at g, 2g, 3g, . . .. Let n be
such that ng is the largest element < a. Then (n + 1)g > a. Since g < d/2,
a < (n+ a)g < b.
Case 2: There is no such sequence. Hence there exists g ∈ G such that
0 < g and there is no element of G in [0, g).

Look at g, 2g, 3g, . . ..
We show these are all of the elements of G. Assume not. Then there

exists n ∈ N and h ∈ G such that ng < h < n(g + 1). Subtract ng from this
to get 0 < h− ng < g. This contradicts having no element in [0, g).

FROM THIS CAN PROVE f(θ) = θ+απ where α ∈ R−Q has all points
recurrent LATER.

We now show that every continous function from S1 to S1 has a recurrent
point. This is a subcase of Birkoff’s Recurrence Theorem. The general Birkoff
Recurrence has a different proof.

Def 0.2.4 Let f is a functions from S1 to S1. Let E ⊆ S1. E is invariant
for f if f(E) = E. If the function f is understood we just say invariant.

We define what it means for a continous bijection to be minimal in two
ways that are equivlant.

Def 0.2.5 Let f be a continous bijection from S1 to S1.

1. f is minimal if for every x ∈ S1 the set {f (n)(x) : n ∈ Z} is dense.

2. f is minimal if there is no proper closed subset E such that f(E) = E.

BILL- PROVE EQUIVALENCE LATER.
(Used
https://www.math.cuhk.edu.hk/course_builder/1516/math6081a/lecture1.

pdf

We will need the following notion for the statement and proof of Birhoff’s
theorem.
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Def 0.2.6 Let (X, d) be a metric space.

1. Let x ∈ X and ε ∈ R+. Then

B(x, ε) = {y : d(x, y) < ε}.

2. A basic open set is a set of the form B(x, ε).

3. An open set is a union of basic open sets. The union can be finite or
infinite, any cardinality.

4. A closed set is the compliment of an open set. It is also know that a
closed set contains all of its limit points.

5. (This definition looks unmotivated but its use in the Theorem ?? will
show why its just right.) (X, d) is compact if for every collection of open
set O1, O2, . . . such that X ⊆ ∪∞i=1 there is a finite set of the open sets
that also covers X. (I wrote this as the set of open sets is countable,
but it could be of any cardinality.)

The next theorem gives examples of compact metric spaces. One of them
will be useful in the next problem.

Theorem 0.2.7

1. [0, 1] is compact.

2. S1 is compact.

3. R is not compact.

Proof: LATER

Theorem 0.2.8 Let f be a continous bijection from S1 to S1. There is an
f -invariant E ⊆ S1 such that f restricted to E is minimal.

Proof:
Let F be the set of all Y ⊆ S1 with the following properties.

• Y 6= ∅.
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• Y is closed.

• f(Y ) = Y .

Since S1 ∈ F , F 6= ∅.
We order F be reverse inclusion. Note that S1 is minimal.
We show that this ordering satisfies Zorn’s Lemma.
All we need is that if Y1 ⊃ Y2 ⊂ Y3 ⊂ · · · then Y = ∩i=1Yi satisfies the

three properties.
Items 2 and 3 are easy.
Item 1 is the key one- need that the intersection is nonempty. Assume,

by way of contraction, that the intersection of the Yi’s is empty. Then the
complement of the intersection is S1. Hence

S1 ⊆
∞⋃
i=1

X − Yi.

Since Yi is closed, X − Yi is open. Hence this is an open cover. Since S1

is compact there exists a finite subcover. Hence there exists an n such that

S1 ⊆
n⋃
i=1

X − Yi.

Take the complement to get

∅ ⊇
n⋂
i=1

Yi = Yn.

Hence Yn = ∅ which is a contradiction.
We apply Zorn’s lemma to obtain a closed set Y that is maximal in the

ordering on F . Hence there is no closed nonempty set Z such that Z ⊂ Y
and which has f(Z) = Z.

We show that every z ∈ Z is recurrent.
Look at Q(z) = {f (n)(z) : n ∈ N}
Recall that this is {f (n)(z) : n ∈ N} together with all of that sets limit

points.
If z ∈ Q(z) then either z = f (n)(z) for n, so then z is trivially recurrent

or elements in the orbit of z get arbitrarily close to z, so z is recurrent.
We show that z ∈ Q(z).
Clearly Q(z) is nonempty, f(Q(z)) = Q(z), and Q(z) is closed.
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Since f(Yn) = Yn, since z ∈ Yn, Q(z) ⊆ Yn. But Yn is maximal in the
reverse ordering, so Q(z) = Yn. Hence z ∈ Q(z).


