
Well Quasi Orders

Exposition by William Gasarch-U of MD



Our Motivating Question

Σ is the alphabet, usually Σ = {a, b}.

Σ∗ is the set of all strings over Σ.
Includes the empty string.

Example Σ = {a, b} then

Σ∗ = {e, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, . . . , }

L ⊆ {a, b}∗ is often called a language.
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Subsequence

Let x ∈ Σ∗

x = σ1σ2 · · ·σn
SUBSEQ(x) is the set of all subsequences of x .

Example

SUBSEQ(aaba) = {e, a, b, aa, ab, ba, aaa, aab, aba, aaba}.
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If L is BLAH then SUBSEQ(L) is BLAH

L is regular =⇒ SUBSEQ(L) is regular.
This is easy to prove.

Take the DFA for L and put between any two states add an
e-transition.

L context-free =⇒ SUBSEQ(L) context-free.
This is easy to prove.

Add rules that replace each σ ∈ Σ on the RHS with e.

Question L decidable =⇒ SUBSEQ(L) decidable?
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Quasi Orders

Def (X ,�) is a Quasi Order if

I If x � y and y � z then x � z (transitive).

I For all x ∈ X , x � x (reflexive).

Note that it is possible to have x � y and y � x but x 6= y .
If we insist that
x � y and y � x =⇒ x = y .
then that is a partial order.

Most wqo are also partial order, but NOT the one on the HW
which caused this hot mess.
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Well Quasi Orders
Def (X ,�) is a Well Quasi Order (wqo) if (X �) is a quasi
order AND the following holds:
For all infinite sequences x1, x2, . . .
there exists i < j with xi � xj . We call this an uptick.

Thm If (X ,�) is a wqo then for all infinite sequences x1, x2, . . .
there exists an infinite mono increasing subsequence.
Proof Use Ramsey theory! Assume i < j .

COL(i , j) =


UP if xi � xj

DOWN if xj ≺ xi

INCOMP if xi and xj are incomparable

(1)

There is an infinite homog set.
CANT be color DOWN: Get a sequence with no uptick.
CANT be color INCOMP: Get a sequence with no uptick.
HAS to be color UP- so we get an infinite increasing subsequence.
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Now Two Defs of wqo
Def One (X ,�) is a Well Quasi Order (wqo) if (X ,�) is a
quasi order AND
for all infinite sequences

x1, x2, . . .

there exists i < j with xi � xj . We call this an uptick.

Def Two (X ,�) is a Well Quasi Order (wqo) if (X ,�) is a
quasi order AND
for all infinite sequences

x1, x2, . . .

there exists an infinite mono increasing sequence.

Use Def One when want to prove (X ,�) is a wqo.

Use Def Two when you already know (X ,�) is a wqo.
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Interesting Example of a wqo

X = {a, b}∗
Order is

I If |x | < |y | then x ≺ y .

I If |x | = |y | then incomparable.

Discuss Prove this is a wqo.
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Very Hard Theorem (We Won’t Prove it)

Def H is a minor of G (Denoted by H �m G ) if one can obtain H
by taking G and carrying out the following operations in some
order:
1) Remove a vertex (and all of the edges from it).
2) Remove an edge.
3) Contract an Edge (so merge vertices at ends).

Let G be the set of all graphs.

Hard Thm (G,�m) is a wqo.
1) Proven by Robertson and Seymour.
2) Proved in a series of 20 papers which are over 500 pages written
between 1983 and 2004.
3) Will use later: Fix H. Testing H � G takes O(n3) time where n
is the number of vertices in G .

We use (G,�m) as an example of a wqo in the next few slides.
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Planar Graphs
Notice the following

1) Planar graphs are closed under minor. That is, if G is planar
and H �m G , then H is planar.

2) (Wagner’s Thm) G is planar IFF ((K3,3 6�m G ) and (K5 6�m G ))

These two facts are connected.
Def Let (X ,�) be a wqo. (EXAMPLE: (G,�m).) Let Y ⊆ X
(EXAMPLE Y is the planar graphs.)
1) Y is closed downward if

(∀y ∈ Y )(∀x ∈ X )[x �m y =⇒ x ∈ Y ].

(Planar graphs are closed downward.)

2) O is an Obstruction Set for Y if

(∀x /∈ Y )(∃o ∈ O)[o �m x ].

(Obstruction set for Planar graphs is {K3,3,K5}.)
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Obstruction Set Theorem

Thm Let (X ,�) be a wqo. Let Y ⊆ X be closed downward. Then
there exists a Finite Obstruction Set for Y .

Pf Let O be the set of minimal elements that are NOT in Y :

O = {x ∈ X − Y : (∀y)[y ≺ x =⇒ y ∈ Y ]}

We claim O is a finite obstruction set.

1) O is Obstruction: If z1 ∈ X − Y then either z1 ∈ O (DONE) or
z1 /∈ O, so there exists z2 ∈ X − Y with z2 ≺ z1. Repeat process
with z2. end up with

z1 � z2 � z3 · · ·

Has to stop or else have infinite descending sequence. Ends at an
element of O.

2) O is finite: All elements of O are incomparable to each other. If
O was infinite then would have an infinite antichain.
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O = {x ∈ X − Y : (∀y)[y ≺ x =⇒ y ∈ Y ]}
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z1 /∈ O, so there exists z2 ∈ X − Y with z2 ≺ z1. Repeat process
with z2. end up with
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Has to stop or else have infinite descending sequence. Ends at an
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Using The GMT to Prove Problems are in P

Let H ≤ G mean that H is a minor of G .

Known Fix H. The set {G : H ≤ G} is in O(n3) times.

Corollary of GMT If G is a set of graphs closed downward under
minor (e.g, planar graphs) then there exists a finite obs set for G.

Theorem If G is a set of graphs closed downward under minor
(e.g, planar graphs) then G is in O(n3) time.

This seems like
Good News Many sets are in O(n3) times. Some algorithms not
known before GMT.
Next Slide is a Good News-Bad News discussion.
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Good News; Bad News

1) Good News Many sets are in O(n3) times. Some algorithms
not known before GMT.

2) Bad News Proof gives that algorithm exists but not how to
obtain them.

3) Good News There are ways to extract out an algorithm.

4) Bad News Terrible constants, not usable.

5) Good News Knowing that some problems were in P inspired
people to come up with better algorithms.
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