Exposition by William Gasarch-U of MD

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

 Σ is the alphabet, usually $\Sigma = \{a, b\}$.

(ロト (個) (E) (E) (E) (E) のへの

 Σ is the alphabet, usually $\Sigma = \{a, b\}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

 Σ^* is the set of all strings over Σ . Includes the empty string.

 Σ is the alphabet, usually $\Sigma = \{a, b\}$.

 Σ^* is the set of all strings over Σ . Includes the empty string.

Example $\Sigma = \{a, b\}$ then

 $\Sigma^* = \{e, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, \dots, \}$

ション ふゆ アメリア メリア しょうくしゃ

 Σ is the alphabet, usually $\Sigma = \{a, b\}$.

 Σ^* is the set of all strings over Σ . Includes the empty string.

Example $\Sigma = \{a, b\}$ then

 $\Sigma^* = \{e, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, \dots, \}$

 $L \subseteq \{a, b\}^*$ is often called a language.

Subsequence

Let $x \in \Sigma^*$

 $x = \sigma_1 \sigma_2 \cdots \sigma_n$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

SUBSEQ(x) is the set of all subsequences of x.

Subsequence

Let $x \in \Sigma^*$

 $x = \sigma_1 \sigma_2 \cdots \sigma_n$

SUBSEQ(x) is the set of all subsequences of x.

Example

 $SUBSEQ(aaba) = \{e, a, b, aa, ab, ba, aaa, aab, aba, aaba\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

L is regular \implies SUBSEQ(L) is regular. This is easy to prove.

L is regular \implies SUBSEQ(L) is regular.

This is easy to prove.

Take the DFA for L and put between any two states add an e-transition.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

L is regular \implies SUBSEQ(L) is regular.

This is easy to prove.

Take the DFA for L and put between any two states add an e-transition.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

L context-free \implies SUBSEQ(L) context-free. This is easy to prove.

L is regular \implies SUBSEQ(L) is regular.

This is easy to prove.

Take the DFA for L and put between any two states add an e-transition.

 $L \text{ context-free } \Longrightarrow \text{ SUBSEQ}(L) \text{ context-free.}$ This is easy to prove.

Add rules that replace each $\sigma \in \Sigma$ on the RHS with *e*.

L is regular \implies SUBSEQ(L) is regular.

This is easy to prove.

Take the DFA for L and put between any two states add an e-transition.

L context-free \implies SUBSEQ(L) context-free. This is easy to prove. Add rules that replace each $\sigma \in \Sigma$ on the RHS with e.

Question *L* decidable \implies SUBSEQ(*L*) decidable?

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Def (X, \preceq) is a **Quasi Order** if

• If $x \leq y$ and $y \leq z$ then $x \leq z$ (transitive).

For all $x \in X$, $x \preceq x$ (reflexive).

Def (X, \preceq) is a **Quasi Order** if

• If
$$x \leq y$$
 and $y \leq z$ then $x \leq z$ (transitive).

For all
$$x \in X$$
, $x \preceq x$ (reflexive).

Note that it is possible to have $x \leq y$ and $y \leq x$ but $x \neq y$.

Def (X, \preceq) is a **Quasi Order** if

• If $x \leq y$ and $y \leq z$ then $x \leq z$ (transitive).

For all $x \in X$, $x \preceq x$ (reflexive).

Note that it is possible to have $x \leq y$ and $y \leq x$ but $x \neq y$. If we insist that

 $x \preceq y$ and $y \preceq x \implies x = y$. then that is a partial order.

Def (X, \preceq) is a **Quasi Order** if

• If $x \leq y$ and $y \leq z$ then $x \leq z$ (transitive).

For all $x \in X$, $x \preceq x$ (reflexive).

Note that it is possible to have $x \leq y$ and $y \leq x$ but $x \neq y$. If we insist that

 $x \preceq y$ and $y \preceq x \implies x = y$. then that is a partial order.

Most wqo are also partial order, but NOT the one on the HW which caused this hot mess.

Def (X, \preceq) is a **Well Quasi Order (wqo)** if $(X \preceq)$ is a quasi order AND the following holds: For all infinite sequences x_1, x_2, \ldots

there exists i < j with $x_i \preceq x_j$. We call this an **uptick**.

Def (X, \preceq) is a **Well Quasi Order (wqo)** if $(X \preceq)$ is a quasi order AND the following holds: For all infinite sequences x_1, x_2, \ldots there exists i < j with $x_i \preceq x_j$. We call this an **uptick**.

Thm If (X, \preceq) is a wqo then for all infinite sequences x_1, x_2, \ldots there exists an infinite mono increasing subsequence.

Def (X, \leq) is a **Well Quasi Order (wqo)** if $(X \leq)$ is a quasi order AND the following holds: For all infinite sequences x_1, x_2, \ldots there exists i < j with $x_i \leq x_j$. We call this an **uptick**.

Thm If (X, \preceq) is a wqo then for all infinite sequences x_1, x_2, \ldots there exists an infinite mono increasing subsequence. **Proof** Use Ramsey theory! Assume i < j.

Def (X, \leq) is a **Well Quasi Order (wqo)** if $(X \leq)$ is a quasi order AND the following holds: For all infinite sequences x_1, x_2, \ldots there exists i < j with $x_i \leq x_j$. We call this an **uptick**.

Thm If (X, \preceq) is a wqo then for all infinite sequences x_1, x_2, \ldots there exists an infinite mono increasing subsequence. **Proof** Use Ramsey theory! Assume i < j.

$$COL(i,j) = \begin{cases} UP & \text{if } x_i \leq x_j \\ DOWN & \text{if } x_j \prec x_i \\ INCOMP & \text{if } x_i \text{ and } x_j \text{ are incomparable} \end{cases}$$
(1)

Def (X, \leq) is a **Well Quasi Order (wqo)** if $(X \leq)$ is a quasi order AND the following holds: For all infinite sequences x_1, x_2, \ldots there exists i < j with $x_i \leq x_j$. We call this an **uptick**.

Thm If (X, \preceq) is a wqo then for all infinite sequences x_1, x_2, \ldots there exists an infinite mono increasing subsequence. **Proof** Use Ramsey theory! Assume i < j.

$$COL(i,j) = \begin{cases} UP & \text{if } x_i \leq x_j \\ DOWN & \text{if } x_j \prec x_i \\ INCOMP & \text{if } x_i \text{ and } x_j \text{ are incomparable} \end{cases}$$
(1)

There is an infinite homog set.

Def (X, \leq) is a **Well Quasi Order (wqo)** if $(X \leq)$ is a quasi order AND the following holds: For all infinite sequences x_1, x_2, \ldots there exists i < j with $x_i \leq x_j$. We call this an **uptick**.

Thm If (X, \preceq) is a wqo then for all infinite sequences x_1, x_2, \ldots there exists an infinite mono increasing subsequence. **Proof** Use Ramsey theory! Assume i < j.

$$COL(i,j) = \begin{cases} UP & \text{if } x_i \leq x_j \\ DOWN & \text{if } x_j \prec x_i \\ INCOMP & \text{if } x_i \text{ and } x_j \text{ are incomparable} \end{cases}$$
(1)

There is an infinite homog set.

CANT be color DOWN: Get a sequence with no uptick.

Def (X, \leq) is a **Well Quasi Order (wqo)** if $(X \leq)$ is a quasi order AND the following holds: For all infinite sequences x_1, x_2, \ldots there exists i < j with $x_i \leq x_j$. We call this an **uptick**.

Thm If (X, \preceq) is a wqo then for all infinite sequences x_1, x_2, \ldots there exists an infinite mono increasing subsequence. **Proof** Use Ramsey theory! Assume i < j.

$$COL(i,j) = \begin{cases} UP & \text{if } x_i \leq x_j \\ DOWN & \text{if } x_j \prec x_i \\ INCOMP & \text{if } x_i \text{ and } x_j \text{ are incomparable} \end{cases}$$
(1)

There is an infinite homog set.

CANT be color DOWN: Get a sequence with no uptick. CANT be color INCOMP: Get a sequence with no uptick.

Def (X, \preceq) is a **Well Quasi Order (wqo)** if $(X \preceq)$ is a quasi order AND the following holds: For all infinite sequences x_1, x_2, \ldots there exists i < j with $x_i \preceq x_j$. We call this an **uptick**.

Thm If (X, \preceq) is a wqo then for all infinite sequences x_1, x_2, \ldots there exists an infinite mono increasing subsequence. **Proof** Use Ramsey theory! Assume i < j.

$$COL(i,j) = \begin{cases} UP & \text{if } x_i \leq x_j \\ DOWN & \text{if } x_j \prec x_i \\ INCOMP & \text{if } x_i \text{ and } x_j \text{ are incomparable} \end{cases}$$
(1)

There is an infinite homog set.

CANT be color DOWN: Get a sequence with no uptick. CANT be color INCOMP: Get a sequence with no uptick. HAS to be color UP- so we get an infinite increasing subsequence.

Def One (X, \preceq) is a **Well Quasi Order (wqo)** if (X, \preceq) is a quasi order AND for all infinite sequences

 x_1, x_2, \ldots

there exists i < j with $x_i \preceq x_j$. We call this an **uptick**.

Def One (X, \preceq) is a **Well Quasi Order (wqo)** if (X, \preceq) is a quasi order AND for all infinite sequences

 x_1, x_2, \ldots

there exists i < j with $x_i \preceq x_j$. We call this an **uptick**.

Def Two (X, \preceq) is a **Well Quasi Order (wqo)** if (X, \preceq) is a quasi order AND for all infinite sequences

 x_1, x_2, \ldots

there exists an infinite mono increasing sequence.

Def One (X, \preceq) is a **Well Quasi Order (wqo)** if (X, \preceq) is a quasi order AND for all infinite sequences

 x_1, x_2, \ldots

there exists i < j with $x_i \preceq x_j$. We call this an **uptick**.

Def Two (X, \preceq) is a **Well Quasi Order (wqo)** if (X, \preceq) is a quasi order AND for all infinite sequences

 x_1, x_2, \ldots

there exists an infinite mono increasing sequence.

Use Def One when want to prove (X, \preceq) is a wqo.

Def One (X, \preceq) is a **Well Quasi Order (wqo)** if (X, \preceq) is a quasi order AND for all infinite sequences

 x_1, x_2, \ldots

there exists i < j with $x_i \preceq x_j$. We call this an **uptick**.

Def Two (X, \preceq) is a **Well Quasi Order (wqo)** if (X, \preceq) is a quasi order AND for all infinite sequences

 x_1, x_2, \ldots

there exists an infinite mono increasing sequence.

Use Def One when want to prove (X, \preceq) is a wqo.

Use Def Two when you already know (X, \preceq) is a wgo.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$X = \{a, b\}^*$$

Order is

$$X = \{a, b\}^*$$

Order is

• If
$$|x| < |y|$$
 then $x \prec y$.

$$X = \{a, b\}^*$$

Order is

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 $X = \{a, b\}^*$ Order is

If |x| < |y| then x ≺ y.
If |x| = |y| then incomparable.
Discuss Prove this is a wqo.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Def *H* is a **minor** of *G* (Denoted by $H \leq_m G$) if one can obtain *H* by taking *G* and carrying out the following operations in some order:

- 1) Remove a vertex (and all of the edges from it).
- 2) Remove an edge.
- 3) Contract an Edge (so merge vertices at ends).

Let \mathcal{G} be the set of all graphs.

Def *H* is a **minor** of *G* (Denoted by $H \leq_m G$) if one can obtain *H* by taking *G* and carrying out the following operations in some order:

ション ふぼう メリン メリン しょうくしゃ

- 1) Remove a vertex (and all of the edges from it).
- 2) Remove an edge.
- 3) Contract an Edge (so merge vertices at ends).

Let \mathcal{G} be the set of all graphs. Hard Thm (\mathcal{G}, \preceq_m) is a wqo.

Def *H* is a **minor** of *G* (Denoted by $H \leq_m G$) if one can obtain *H* by taking *G* and carrying out the following operations in some order:

ション ふぼう メリン メリン しょうくしゃ

- 1) Remove a vertex (and all of the edges from it).
- 2) Remove an edge.
- 3) Contract an Edge (so merge vertices at ends).

Let \mathcal{G} be the set of all graphs.

Hard Thm (\mathcal{G}, \preceq_m) is a wqo.

1) Proven by Robertson and Seymour.

Def *H* is a **minor** of *G* (Denoted by $H \leq_m G$) if one can obtain *H* by taking *G* and carrying out the following operations in some order:

- 1) Remove a vertex (and all of the edges from it).
- 2) Remove an edge.
- 3) Contract an Edge (so merge vertices at ends).

Let \mathcal{G} be the set of all graphs.

Hard Thm (\mathcal{G}, \preceq_m) is a wqo.

1) Proven by Robertson and Seymour.

2) Proved in a series of 20 papers which are over 500 pages written between 1983 and 2004.

ション ふゆ アメリア メリア しょうくしゃ

Very Hard Theorem (We Won't Prove it)

Def *H* is a **minor** of *G* (Denoted by $H \leq_m G$) if one can obtain *H* by taking *G* and carrying out the following operations in some order:

- 1) Remove a vertex (and all of the edges from it).
- 2) Remove an edge.
- 3) Contract an Edge (so merge vertices at ends).

Let \mathcal{G} be the set of all graphs.

Hard Thm (\mathcal{G}, \preceq_m) is a wqo.

1) Proven by Robertson and Seymour.

2) Proved in a series of 20 papers which are over 500 pages written between 1983 and 2004.

3) Will use later: Fix H. Testing $H \leq G$ takes $O(n^3)$ time where n is the number of vertices in G.

Very Hard Theorem (We Won't Prove it)

Def *H* is a **minor** of *G* (Denoted by $H \leq_m G$) if one can obtain *H* by taking *G* and carrying out the following operations in some order:

- 1) Remove a vertex (and all of the edges from it).
- 2) Remove an edge.
- 3) Contract an Edge (so merge vertices at ends).

Let \mathcal{G} be the set of all graphs.

Hard Thm (\mathcal{G}, \preceq_m) is a wqo.

1) Proven by Robertson and Seymour.

2) Proved in a series of 20 papers which are over 500 pages written between 1983 and 2004.

3) Will use later: Fix H. Testing $H \leq G$ takes $O(n^3)$ time where n is the number of vertices in G.

We use (\mathcal{G}, \leq_m) as an example of a wqo in the next few slides.

Notice the following

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Notice the following

1) Planar graphs are closed under minor. That is, if G is planar and $H \leq_m G$, then H is planar.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Notice the following

1) Planar graphs are closed under minor. That is, if G is planar and $H \leq_m G$, then H is planar.

2) (Wagner's Thm) G is planar IFF $((K_{3,3} \not\preceq_m G) \text{ and } (K_5 \not\preceq_m G))$

Notice the following

1) Planar graphs are closed under minor. That is, if G is planar and $H \leq_m G$, then H is planar.

2) (Wagner's Thm) G is planar IFF (($K_{3,3} \not\preceq_m G$) and ($K_5 \not\preceq_m G$))

These two facts are connected. **Def** Let (X, \preceq) be a wqo. (EXAMPLE: (\mathcal{G}, \preceq_m) .) Let $Y \subseteq X$ (EXAMPLE Y is the planar graphs.)

Notice the following

1) Planar graphs are closed under minor. That is, if G is planar and $H \leq_m G$, then H is planar.

2) (Wagner's Thm) G is planar IFF (($K_{3,3} \not\preceq_m G$) and ($K_5 \not\preceq_m G$))

These two facts are connected. **Def** Let (X, \preceq) be a wqo. (EXAMPLE: (\mathcal{G}, \preceq_m) .) Let $Y \subseteq X$ (EXAMPLE Y is the planar graphs.) 1) Y is **closed downward** if

$$(\forall y \in Y)(\forall x \in X)[x \leq_m y \implies x \in Y].$$

(Planar graphs are closed downward.)

Notice the following

1) Planar graphs are closed under minor. That is, if G is planar and $H \leq_m G$, then H is planar.

2) (Wagner's Thm) G is planar IFF $((K_{3,3} \not\preceq_m G) \text{ and } (K_5 \not\preceq_m G))$

These two facts are connected. **Def** Let (X, \preceq) be a wqo. (EXAMPLE: (\mathcal{G}, \preceq_m) .) Let $Y \subseteq X$ (EXAMPLE Y is the planar graphs.) 1) Y is **closed downward** if

$$(\forall y \in Y)(\forall x \in X)[x \preceq_m y \implies x \in Y].$$

(Planar graphs are closed downward.)

2) O is an Obstruction Set for Y if

$$(\forall x \notin Y)(\exists o \in O)[o \preceq_m x].$$

(Obstruction set for Planar graphs is $\{K_{3,3}, K_5\}$.)

Thm Let (X, \preceq) be a wqo. Let $Y \subseteq X$ be closed downward. Then there exists a **Finite Obstruction Set** for Y.

*ロト *昼 * * ミ * ミ * ミ * のへぐ

Thm Let (X, \preceq) be a wqo. Let $Y \subseteq X$ be closed downward. Then there exists a **Finite Obstruction Set** for Y.

Pf Let *O* be the set of minimal elements that are NOT in *Y*:

$$O = \{x \in X - Y \colon (\forall y)[y \prec x \implies y \in Y]\}$$

We claim O is a finite obstruction set.

Thm Let (X, \preceq) be a wqo. Let $Y \subseteq X$ be closed downward. Then there exists a **Finite Obstruction Set** for *Y*.

Pf Let *O* be the set of minimal elements that are NOT in *Y*:

$$O = \{x \in X - Y \colon (\forall y)[y \prec x \implies y \in Y]\}$$

We claim O is a finite obstruction set.

1) *O* is Obstruction: If $z_1 \in X - Y$ then either $z_1 \in O$ (DONE) or $z_1 \notin O$, so there exists $z_2 \in X - Y$ with $z_2 \prec z_1$. Repeat process with z_2 . end up with

$$z_1 \succ z_2 \succ z_3 \cdots$$

Has to stop or else have infinite descending sequence. Ends at an element of O.

Thm Let (X, \preceq) be a wqo. Let $Y \subseteq X$ be closed downward. Then there exists a **Finite Obstruction Set** for *Y*.

Pf Let *O* be the set of minimal elements that are NOT in *Y*:

$$O = \{x \in X - Y \colon (\forall y)[y \prec x \implies y \in Y]\}$$

We claim O is a finite obstruction set.

1) *O* is Obstruction: If $z_1 \in X - Y$ then either $z_1 \in O$ (DONE) or $z_1 \notin O$, so there exists $z_2 \in X - Y$ with $z_2 \prec z_1$. Repeat process with z_2 . end up with

$$z_1 \succ z_2 \succ z_3 \cdots$$

Has to stop or else have infinite descending sequence. Ends at an element of O.

2) O is finite: All elements of O are incomparable to each other. If O was infinite then would have an infinite antichain.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Let $H \leq G$ mean that H is a minor of G.

Let $H \le G$ mean that H is a minor of G. Known Fix H. The set $\{G : H \le G\}$ is in $O(n^3)$ times.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $H \leq G$ mean that H is a minor of G.

Known Fix *H*. The set $\{G : H \leq G\}$ is in $O(n^3)$ times.

Corollary of GMT If G is a set of graphs closed downward under minor (e.g, planar graphs) then there exists a finite obs set for G.

Let $H \leq G$ mean that H is a minor of G.

Known Fix *H*. The set $\{G : H \leq G\}$ is in $O(n^3)$ times.

Corollary of GMT If \mathcal{G} is a set of graphs closed downward under minor (e.g, planar graphs) then there exists a finite obs set for \mathcal{G} . **Theorem** If \mathcal{G} is a set of graphs closed downward under minor

(e.g, planar graphs) then G is in $O(n^3)$ time.

Let $H \leq G$ mean that H is a minor of G.

Known Fix *H*. The set $\{G : H \leq G\}$ is in $O(n^3)$ times.

Corollary of GMT If G is a set of graphs closed downward under minor (e.g, planar graphs) then there exists a finite obs set for G.

Theorem If \mathcal{G} is a set of graphs closed downward under minor (e.g, planar graphs) then \mathcal{G} is in $O(n^3)$ time.

This seems like

Good News Many sets are in $O(n^3)$ times. Some algorithms not known before GMT.

Let $H \leq G$ mean that H is a minor of G.

Known Fix *H*. The set $\{G : H \leq G\}$ is in $O(n^3)$ times.

Corollary of GMT If G is a set of graphs closed downward under minor (e.g, planar graphs) then there exists a finite obs set for G.

Theorem If \mathcal{G} is a set of graphs closed downward under minor (e.g, planar graphs) then \mathcal{G} is in $O(n^3)$ time.

This seems like

Good News Many sets are in $O(n^3)$ times. Some algorithms not known before GMT.

Next Slide is a Good News-Bad News discussion.

Good News; Bad News

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ へ ○

1) Good News Many sets are in $O(n^3)$ times. Some algorithms not known before GMT.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1) Good News Many sets are in $O(n^3)$ times. Some algorithms not known before GMT.
- 2) **Bad News** Proof gives that algorithm **exists** but not how to obtain them.

- 1) Good News Many sets are in $O(n^3)$ times. Some algorithms not known before GMT.
- 2) **Bad News** Proof gives that algorithm **exists** but not how to obtain them.

3) Good News There are ways to extract out an algorithm.

- 1) Good News Many sets are in $O(n^3)$ times. Some algorithms not known before GMT.
- 2) **Bad News** Proof gives that algorithm **exists** but not how to obtain them.

- 3) Good News There are ways to extract out an algorithm.
- 4) Bad News Terrible constants, not usable.

- 1) **Good News** Many sets are in $O(n^3)$ times. Some algorithms not known before GMT.
- 2) **Bad News** Proof gives that algorithm **exists** but not how to obtain them.
- 3) Good News There are ways to extract out an algorithm.
- 4) Bad News Terrible constants, not usable.
- 5) **Good News** Knowing that some problems were in P **inspired** people to come up with better algorithms.