#### **BILL, RECORD LECTURE!!!!**

BILL RECORD LECTURE!!!

# Are There Better Bounds on the VDW Numbers?

**Exposition by William Gasarch** 

January 23, 2025

In 1983 there were two thoughts in the air

In 1983 there were two thoughts in the air

1. W(k, c) is not prim rec and a **logician** will prove this deep result.

In 1983 there were two thoughts in the air

- 1. W(k, c) is not prim rec and a **logician** will prove this deep result.
- 2. Surely W(k, c) is prim rec and a **combinatorist** will prove this perhaps with a clever elementary technique.

In 1983 there were two thoughts in the air

- 1. W(k,c) is not prim rec and a **logician** will prove this deep result.
- 2. Surely W(k, c) is prim rec and a **combinatorist** will prove this perhaps with a clever elementary technique. My Response Stop calling me Shirley.

In 1983 there were two thoughts in the air

- 1. W(k, c) is not prim rec and a **logician** will prove this deep result.
- 2. Surely W(k,c) is prim rec and a **combinatorist** will prove this perhaps with a clever elementary technique. My Response Stop calling me Shirley.

So what happened?

In 1983 there were two thoughts in the air

- 1. W(k, c) is not prim rec and a **logician** will prove this deep result.
- 2. Surely W(k,c) is prim rec and a **combinatorist** will prove this perhaps with a clever elementary technique. My Response Stop calling me Shirley.

So what happened?

Logician (Shelah) proved W(k,c) prim rec: clever!

In 1983 there were two thoughts in the air

- 1. W(k, c) is not prim rec and a **logician** will prove this deep result.
- 2. Surely W(k,c) is prim rec and a **combinatorist** will prove this perhaps with a clever elementary technique. My Response Stop calling me Shirley.

So what happened?

#### Logician (Shelah) proved W(k,c) prim rec: clever!

- Proof is elementary. Can present here but won't.
- Bounds still large. Fifth Level of PR hierarchy.

# Deep Math From Search for Better Upper Bounds on VDW Numbers

**Exposition by William Gasarch** 

January 23, 2025

Well, a plan anyway.

Well, a plan anyway.

We outline a plan for getting better upper bounds on W(k, c).

Well, a plan anyway.

We outline a plan for getting better upper bounds on W(k, c).

On the one hand, it lead to very deep mathematics.

Well, a plan anyway.

We outline a plan for getting better upper bounds on W(k, c).

On the one hand, it lead to very deep mathematics.

On the other hand,

Well, a plan anyway.

We outline a plan for getting better upper bounds on W(k,c).

On the one hand, it lead to very deep mathematics.

On the other hand,

It DID succeed! (Oh! Thats a good thing!)

**Definition** Let  $A \subseteq \mathbb{N}$  The upper density of A is

$$\limsup_{n\to\infty}\frac{|A\cap[n]|}{n}$$

**Definition** Let  $A \subseteq \mathbb{N}$  The upper density of A is

$$\limsup_{n\to\infty}\frac{|A\cap[n]|}{n}$$

**Definition Positive upper density** means that the upper density is > 0.

**Definition** Let  $A \subseteq \mathbb{N}$  The upper density of A is

$$\limsup_{n\to\infty}\frac{|A\cap[n]|}{n}$$

**Definition Positive upper density** means that the upper density is > 0.

#### **Examples**

1. For all k,  $\{x : x \equiv 0 \pmod{k}\}$  has upper den  $\frac{1}{k}$ .

**Definition** Let  $A \subseteq \mathbb{N}$  The upper density of A is

$$\limsup_{n\to\infty}\frac{|A\cap[n]|}{n}$$

**Definition Positive upper density** means that the upper density is > 0.

#### **Examples**

- 1. For all k,  $\{x : x \equiv 0 \pmod{k}\}$  has upper den  $\frac{1}{k}$ .
- 2.  $\{x^2 : x \in \mathbb{N}\}$  has upper den 0.

## A Conjecture, 1936

**Conjecture** If  $A \subseteq \mathbb{N}$  has positive upper density then, for all k, A has a k-AP.

## A Conjecture, 1936

**Conjecture** If  $A \subseteq \mathbb{N}$  has positive upper density then, for all k, A has a k-AP.

Theorem Conj implies VDW's Theorem. Left to you.

# A Conjecture, 1936

**Conjecture** If  $A \subseteq \mathbb{N}$  has positive upper density then, for all k, A has a k-AP.

Theorem Conj implies VDW's Theorem. Left to you.

The hope was that the proof of Conj would require a new proof of VDW's Theorem that would lead to better bounds.

#### Roth's Theorem, 1952

**Theorem** If  $A \subseteq \mathbb{N}$  has positive upper density then A has a 3-AP.

#### Roth's Theorem, 1952

**Theorem** If  $A \subseteq \mathbb{N}$  has positive upper density then A has a 3-AP.

► The proof used Fourier Analysis so not elementary

#### Roth's Theorem, 1952

**Theorem** If  $A \subseteq \mathbb{N}$  has positive upper density then A has a 3-AP.

- ► The proof used Fourier Analysis so not elementary
- ▶ Roth won the Fields Medal in 1958 for his work on Diophantine approximation (so not for this work).

**Szemeredi** Proved the conjecture in 1975.

Szemeredi's proof used VDW's theorem and hence did not give better bounds.

- Szemeredi's proof used VDW's theorem and hence did not give better bounds.
- ► Even so, it introduced very deep methods.

- Szemeredi's proof used VDW's theorem and hence did not give better bounds.
- ► Even so, it introduced very deep methods.
- Proof is elementary but strains the use of the word elementary.

- Szemeredi's proof used VDW's theorem and hence did not give better bounds.
- ► Even so, it introduced very deep methods.
- Proof is elementary but strains the use of the word elementary.
- ► The theorem is known as **Szemeredi's Theorem**.

- Szemeredi's proof used VDW's theorem and hence did not give better bounds.
- ► Even so, it introduced very deep methods.
- Proof is elementary but strains the use of the word elementary.
- ► The theorem is known as **Szemeredi's Theorem**.
- ➤ Szemeredi should have won Fields Medal (\$15,000) but did not since combinatorics was not seen as deep math.

- Szemeredi's proof used VDW's theorem and hence did not give better bounds.
- ► Even so, it introduced very deep methods.
- Proof is elementary but strains the use of the word elementary.
- ► The theorem is known as Szemeredi's Theorem.
- ➤ Szemeredi should have won Fields Medal (\$15,000) but did not since combinatorics was not seen as deep math.
- Szemeredi won the Abel Prize (\$700,000) in 2012 for his work in combinatorics.

- Szemeredi's proof used VDW's theorem and hence did not give better bounds.
- ► Even so, it introduced very deep methods.
- Proof is elementary but strains the use of the word elementary.
- ► The theorem is known as **Szemeredi's Theorem**.
- ➤ Szemeredi should have won Fields Medal (\$15,000) but did not since combinatorics was not seen as deep math.
- Szemeredi won the Abel Prize (\$700,000) in 2012 for his work in combinatorics. So there!
- ► What is better financially: Fields Medal when you are 40 or Abel prize when you are 70?

- Szemeredi's proof used VDW's theorem and hence did not give better bounds.
- Even so, it introduced very deep methods.
- Proof is elementary but strains the use of the word elementary.
- ► The theorem is known as Szemeredi's Theorem.
- ➤ Szemeredi should have won Fields Medal (\$15,000) but did not since combinatorics was not seen as deep math.
- Szemeredi won the Abel Prize (\$700,000) in 2012 for his work in combinatorics. So there!
- ▶ What is better financially: Fields Medal when you are 40 or Abel prize when you are 70? Fields Medal can lead to better jobs and pay while you are still young.

- Szemeredi's proof used VDW's theorem and hence did not give better bounds.
- ► Even so, it introduced very deep methods.
- Proof is elementary but strains the use of the word elementary.
- ► The theorem is known as Szemeredi's Theorem.
- ➤ Szemeredi should have won Fields Medal (\$15,000) but did not since combinatorics was not seen as deep math.
- Szemeredi won the Abel Prize (\$700,000) in 2012 for his work in combinatorics. So there!
- What is better financially: Fields Medal when you are 40 or Abel prize when you are 70? Fields Medal can lead to better jobs and pay while you are still young. I wish this was my dilemma.

Furstenberg Proved the conjecture in 1977 using ergodic theory.

▶ Proof is nonconstructive, so gives no bounds on W(k, c).

- ▶ Proof is nonconstructive, so gives no bounds on W(k, c).
- Some proof theorists disagree and say you can get bounds from Furstenberg's proof. The bounds are much worse than VDW's proof.

- ▶ Proof is nonconstructive, so gives no bounds on W(k, c).
- Some proof theorists disagree and say you can get bounds from Furstenberg's proof. The bounds are much worse than VDW's proof.
- ► His technique was later used to prove Poly VDW theorem.

- ▶ Proof is nonconstructive, so gives no bounds on W(k, c).
- Some proof theorists disagree and say you can get bounds from Furstenberg's proof. The bounds are much worse than VDW's proof.
- ► His technique was later used to prove Poly VDW theorem.
- Proof is not elementary.

- ▶ Proof is nonconstructive, so gives no bounds on W(k, c).
- Some proof theorists disagree and say you can get bounds from Furstenberg's proof. The bounds are much worse than VDW's proof.
- ► His technique was later used to prove Poly VDW theorem.
- Proof is not elementary.
- ► Furstenberg won the Abel Prize (\$700,000) in 2020.

**Gowers** Proved the conjecture in 2001 using Fourier analysis and combinatorics.

**Gowers** Proved the conjecture in 2001 using Fourier analysis and combinatorics.

**Gowers** Proved the conjecture in 2001 using Fourier analysis and combinatorics.

$$W(k,c) \le 2^{2^{c^{2^{2^{k+9}}}}}$$

**Gowers** Proved the conjecture in 2001 using Fourier analysis and combinatorics.

► Gowers proof gave upper bounds you can actually write down:

$$W(k,c) \le 2^{2^{c^{2^{2^{k+9}}}}}$$

Proof is not elementary.

**Gowers** Proved the conjecture in 2001 using Fourier analysis and combinatorics.

$$W(k,c) \le 2^{2^{c^{2^{2^{k+9}}}}}$$

- Proof is not elementary.
- ▶ Gowers won the Fields Medal (\$15,000) in 1998 for this work.

**Gowers** Proved the conjecture in 2001 using Fourier analysis and combinatorics.

$$W(k,c) \le 2^{2^{c^{2^{2^{k+9}}}}}$$

- Proof is not elementary.
- ► Gowers won the Fields Medal (\$15,000) in 1998 for this work. Why did Gowers win the Fields Medal but not Szemeredi?

**Gowers** Proved the conjecture in 2001 using Fourier analysis and combinatorics.

$$W(k,c) \le 2^{2^{c^{2^{2^{k+9}}}}}$$

- Proof is not elementary.
- ► Gowers won the Fields Medal (\$15,000) in 1998 for this work. Why did Gowers win the Fields Medal but not Szemeredi?
  - Gowers work used traditional deep math. Szemeredi's used new deep math that was not appreciated.

**Gowers** Proved the conjecture in 2001 using Fourier analysis and combinatorics.

$$W(k,c) \le 2^{2^{c^{2^{2^{k+9}}}}}$$

- Proof is not elementary.
- ► Gowers won the Fields Medal (\$15,000) in 1998 for this work. Why did Gowers win the Fields Medal but not Szemeredi?
  - Gowers work used traditional deep math. Szemeredi's used new deep math that was not appreciated.
  - ► Combinatorics was less respected in 1975 then in 1998.

**Gowers** Proved the conjecture in 2001 using Fourier analysis and combinatorics.

$$W(k,c) \le 2^{2^{c^{2^{2^{k+9}}}}}$$

- Proof is not elementary.
- ► Gowers won the Fields Medal (\$15,000) in 1998 for this work. Why did Gowers win the Fields Medal but not Szemeredi?
  - Gowers work used traditional deep math. Szemeredi's used new deep math that was not appreciated.
  - ► Combinatorics was less respected in 1975 then in 1998.
  - ► Causes of change: (1) combinatorics using deep math, (2) CS inspired new problems in combinatorics.

- W(3,2) = 9
- W(3,3) = 27
- W(3,4) = 76

- W(3,2) = 9
- W(3,3) = 27
- W(3,4) = 76
- W(4,2) = 35
- W(4,3) = 293

- W(3,2) = 9
- W(3,3) = 27
- W(3,4) = 76
- W(4,2) = 35
- W(4,3) = 293
- W(5,2) = 178

- W(3,2) = 9
- W(3,3) = 27
- W(3,4) = 76
- W(4,2) = 35
- W(4,3) = 293
- W(5,2) = 178
- W(6,2) = 1132: was Michal Kouril's PhD thesis. Very clever.

- W(3,2) = 9
- W(3,3) = 27
- W(3,4) = 76
- W(4,2) = 35
- W(4,3) = 293
- W(5,2) = 178
- W(6,2) = 1132: was Michal Kouril's PhD thesis. Very clever.

I've asked Kouril when we will get W(7,2).

- W(3,2) = 9
- W(3,3) = 27
- W(3,4) = 76
- W(4,2) = 35
- W(4,3) = 293
- W(5,2) = 178
- W(6,2) = 1132: was Michal Kouril's PhD thesis. Very clever. I've asked Kouril when we will get W(7,2). He said **never**.

- W(3,2) = 9
- W(3,3) = 27
- W(3,4) = 76
- W(4,2) = 35
- W(4,3) = 293
- W(5,2) = 178
- W(6,2) = 1132: was Michal Kouril's PhD thesis. Very clever. I've asked Kouril when we will get W(7,2). He said **never**.

- W(3,2) = 9
- W(3,3) = 27
- W(3,4) = 76
- W(4,2) = 35
- W(4,3) = 293
- W(5,2) = 178
- W(6,2) = 1132: was Michal Kouril's PhD thesis. Very clever. I've asked Kouril when we will get W(7,2). He said **never**.

None of these results used mathematics of interest.

### **Known Lower Bounds**

- 1. Easy Use of Prob Method  $W(k,2) \ge \sqrt{k}2^{k/2}$  (Easy extension to 3 colors)
- 2. Very sophisticated use yields  $W(k,2) \ge \frac{2^k}{k^{\epsilon}}$  (Does not extend to 3 colors.)
- 3. If p is prime then  $W(p,2) \ge p(2^p-1)$ . Constructive! (Does not extend to 3 colors.)

**Green-Tao** proved the following in 2004.

**Green-Tao** proved the following in 2004.

**Theorem** For all k there is a k-AP of primes.

Does not follow from Sz Thm, primes do have upper density 0.

- ▶ Does not follow from Sz Thm, primes do have upper density 0.
- ► Tao won the Field's Medal (\$15,000) in 2006, a MacArthur Genius award (\$500,000) in 2006, and a Breakthrough Prize (\$3,000,000 but not as much prestige) in 2014.

- ▶ Does not follow from Sz Thm, primes do have upper density 0.
- ► Tao won the Field's Medal (\$15,000) in 2006, a MacArthur Genius award (\$500,000) in 2006, and a Breakthrough Prize (\$3,000,000 but not as much prestige) in 2014.
- ► Green won the ConservaMath Medal (\$0) in 2006.

- ▶ Does not follow from Sz Thm, primes do have upper density 0.
- ► Tao won the Field's Medal (\$15,000) in 2006, a MacArthur Genius award (\$500,000) in 2006, and a Breakthrough Prize (\$3,000,000 but not as much prestige) in 2014.
- ► Green won the ConservaMath Medal (\$0) in 2006.

  The ConservaMath Medal is a merit-based alternative to the Field's Medal. Deserving recipients should solve a real longstanding problem, rather than an invented problem.

  Green earned this award in 2006 for the Green-Tao Thm to dim the star of Obama-supporter Tao, making Tao less effectively politically

- ▶ Does not follow from Sz Thm, primes do have upper density 0.
- ► Tao won the Field's Medal (\$15,000) in 2006, a MacArthur Genius award (\$500,000) in 2006, and a Breakthrough Prize (\$3,000,000 but not as much prestige) in 2014.
- ► Green won the ConservaMath Medal (\$0) in 2006.

  The ConservaMath Medal is a merit-based alternative to the Field's Medal. Deserving recipients should solve a real longstanding problem, rather than an invented problem.

  Green earned this award in 2006 for the Green-Tao Thm to dim the star of Obama-supporter Tao, making Tao less effectively politically
- ► There is also a ConservaMedical Medal- an alternative to the Nobel Prize in Medicine. It went to Donald Trump for his Medical Advice on Covonavirus.

- ▶ Does not follow from Sz Thm, primes do have upper density 0.
- ► Tao won the Field's Medal (\$15,000) in 2006, a MacArthur Genius award (\$500,000) in 2006, and a Breakthrough Prize (\$3,000,000 but not as much prestige) in 2014.
- ► Green won the ConservaMath Medal (\$0) in 2006.

  The ConservaMath Medal is a merit-based alternative to the Field's Medal. Deserving recipients should solve a real longstanding problem, rather than an invented problem.

  Green earned this award in 2006 for the Green-Tao Thm to dim the star of Obama-supporter Tao, making Tao less effectively politically
- ► There is also a ConservaMedical Medal- an alternative to the Nobel Prize in Medicine. It went to Donald Trump for his Medical Advice on Covonavirus. I am kidding.

