BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Slight Improvement on R(k)

Exposition by William Gasarch

March 14, 2025

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

・ロト ・ 四ト ・ ヨト ・ ヨト ・ 白 ・ うへで

We proved

We proved **Theorem** $R(a, b) \leq R(a - 1, b) + R(a, b - 1)$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

We proved **Theorem** $R(a, b) \le R(a - 1, b) + R(a, b - 1)$ Now lets used it

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

Thm For all $a, b \ge 2$, $R(a, b) \le {a+b \choose b}$.

・ロト・日本・ヨト・ヨト・ヨー つへぐ

Thm For all $a, b \ge 2$, $R(a, b) \le {a+b \choose b}$. We prove this by induction on a + b.

うつん 川 へいくいく マート

Thm For all $a, b \ge 2$, $R(a, b) \le {a+b \choose b}$. We prove this by induction on a + b. **Base** If a + b = 4 then a = b = 2.

Thm For all $a, b \ge 2$, $R(a, b) \le {\binom{a+b}{b}}$. We prove this by induction on a + b. **Base** If a + b = 4 then a = b = 2. R(2, 2) = 1

Thm For all $a, b \ge 2$, $R(a, b) \le {\binom{a+b}{b}}$. We prove this by induction on a + b. Base If a + b = 4 then a = b = 2. R(2,2) = 1 ${\binom{2+2}{2}} = {\binom{4}{2}} = 6$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Thm For all $a, b \ge 2$, $R(a, b) \le {\binom{a+b}{b}}$. We prove this by induction on a + b. Base If a + b = 4 then a = b = 2. R(2,2) = 1 ${\binom{2+2}{2}} = {\binom{4}{2}} = 6$. 1 < 6.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

IH For all a', b' with a' + b' < a + b, $R(a', b') \leq \binom{a'+b'}{a'}$.

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

IH For all a', b' with a' + b' < a + b, $R(a', b') \le {a'+b' \choose a'}$. IS

IH For all a', b' with a' + b' < a + b, $R(a', b') \le {a'+b' \choose a'}$. IS $R(a, b) \le R(a - 1, b) + R(a, b - 1)$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

IH For all
$$a', b'$$
 with $a' + b' < a + b$, $R(a', b') \le {a'+b' \choose a'}$.
IS
 $R(a, b) \le R(a - 1, b) + R(a, b - 1) \le {a+b-1 \choose b} + {a+b-1 \choose b-1}$.

・ロト・西ト・ヨト・ヨー うへぐ

IH For all
$$a', b'$$
 with $a' + b' < a + b$, $R(a', b') \le {a'+b' \choose a'}$.
IS
 $R(a, b) \le R(a - 1, b) + R(a, b - 1) \le {a+b-1 \choose b} + {a+b-1 \choose b-1}$.
Need
 $\binom{a+b-1}{b} + \binom{a+b-1}{b-1} \le \binom{a+b}{b}$

IH For all
$$a', b'$$
 with $a' + b' < a + b$, $R(a', b') \le {a'+b' \choose a'}$.
IS
 $R(a, b) \le R(a - 1, b) + R(a, b - 1) \le {a+b-1 \choose b} + {a+b-1 \choose b-1}$.
Need
 $\binom{a+b-1}{b} + \binom{a+b-1}{b-1} \le \binom{a+b}{b}$

Actually they are equal. We prove this on the next slide.

$$egin{pmatrix} \mathsf{a}+\mathsf{b}-1 \ \mathsf{b} \end{pmatrix} + egin{pmatrix} \mathsf{a}+\mathsf{b}-1 \ \mathsf{b}-1 \end{pmatrix} \leq egin{pmatrix} \mathsf{a}+\mathsf{b} \ \mathsf{b} \end{pmatrix}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

$$egin{pmatrix} \mathsf{a}+\mathsf{b}-1 \ \mathsf{b} \end{pmatrix} + egin{pmatrix} \mathsf{a}+\mathsf{b}-1 \ \mathsf{b}-1 \end{pmatrix} \leq egin{pmatrix} \mathsf{a}+\mathsf{b} \ \mathsf{b} \end{pmatrix}$$

(ロト (個) (E) (E) (E) (E) のへの

RHS is numb of ways to choose *b* elts from a set of a + b elts.

$$egin{pmatrix} \mathsf{a}+\mathsf{b}-1 \ \mathsf{b} \end{pmatrix} + egin{pmatrix} \mathsf{a}+\mathsf{b}-1 \ \mathsf{b}-1 \end{pmatrix} \leq egin{pmatrix} \mathsf{a}+\mathsf{b} \ \mathsf{b} \end{pmatrix}$$

RHS is numb of ways to choose *b* elts from a set of a + b elts. We show LHS also solves that problem. Say there are a + b people.

(ロ)、

$$egin{pmatrix} \mathsf{a}+\mathsf{b}-1 \ \mathsf{b} \end{pmatrix} + egin{pmatrix} \mathsf{a}+\mathsf{b}-1 \ \mathsf{b}-1 \end{pmatrix} \leq egin{pmatrix} \mathsf{a}+\mathsf{b} \ \mathsf{b} \end{pmatrix}$$

RHS is numb of ways to choose *b* elts from a set of a + b elts. We show LHS also solves that problem. Say there are a + b people. Soren is one of them. There are 2 ways to pick out *b* people.

$$egin{pmatrix} \mathsf{a}+\mathsf{b}-1 \ \mathsf{b} \end{pmatrix} + egin{pmatrix} \mathsf{a}+\mathsf{b}-1 \ \mathsf{b}-1 \end{pmatrix} \leq egin{pmatrix} \mathsf{a}+\mathsf{b} \ \mathsf{b} \end{pmatrix}$$

RHS is numb of ways to choose *b* elts from a set of a + b elts. We show LHS also solves that problem. Say there are a + b people. Soren is one of them. There are 2 ways to pick out *b* people. Include Soren! Need to pick b - 1 from a + b - 1, $\binom{a+b-1}{b-1}$.

ション ふぼう メリン メリン しょうくしゃ

$$egin{pmatrix} \mathsf{a}+\mathsf{b}-1 \ \mathsf{b} \end{pmatrix} + egin{pmatrix} \mathsf{a}+\mathsf{b}-1 \ \mathsf{b}-1 \end{pmatrix} \leq egin{pmatrix} \mathsf{a}+\mathsf{b} \ \mathsf{b} \end{pmatrix}$$

RHS is numb of ways to choose *b* elts from a set of a + b elts. We show LHS also solves that problem. Say there are a + b people. Soren is one of them. There are 2 ways to pick out *b* people. Include Soren! Need to pick b - 1 from a + b - 1, $\binom{a+b-1}{b-1}$. Do NOT include Soren! Need to pick *b* from a + b - 1, $\binom{a+b-1}{b}$.

$$egin{pmatrix} \mathsf{a}+\mathsf{b}-1 \ \mathsf{b} \end{pmatrix} + egin{pmatrix} \mathsf{a}+\mathsf{b}-1 \ \mathsf{b}-1 \end{pmatrix} \leq egin{pmatrix} \mathsf{a}+\mathsf{b} \ \mathsf{b} \end{pmatrix}$$

RHS is numb of ways to choose *b* elts from a set of a + b elts. We show LHS also solves that problem. Say there are a + b people. Soren is one of them. There are 2 ways to pick out *b* people. Include Soren! Need to pick b - 1 from a + b - 1, $\binom{a+b-1}{b-1}$. Do NOT include Soren! Need to pick *b* from a + b - 1, $\binom{a+b-1}{b}$. DONE

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

$$R(k) = R(k,k) \leq {\binom{2k}{k}} \sim rac{2^{2k}}{\sqrt{k}}.$$

$$R(k) = R(k,k) \leq \binom{2k}{k} \sim \frac{2^{2k}}{\sqrt{k}}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

A Slight improvement over $R(k) \leq 2^{2k-1}$.

$$R(k) = R(k,k) \leq \binom{2k}{k} \sim \frac{2^{2k}}{\sqrt{k}}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A Slight improvement over $R(k) \leq 2^{2k-1}$.

Best Known $R(k) \leq (4 - \epsilon)^k$ for a very small ϵ .

$$R(k) = R(k,k) \leq \binom{2k}{k} \sim \frac{2^{2k}}{\sqrt{k}}.$$

A Slight improvement over $R(k) \leq 2^{2k-1}$.

Best Known $R(k) \leq (4 - \epsilon)^k$ for a very small ϵ . Proof is long, hard, and I don't know it.