BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

The Probabilistic Method: Sum-Free Sets

Exposition by William Gasarch

Definition: A set of numbers A is **sum-free** if there is NO $x, y, z \in A$ such that x + y = z.

Example: Let $y_1, \ldots, y_m \in (1/3, 2/3)$ (so they are all between 1/3 and 2/3). Note that $y_i + y_j > 2/3$, hence $y_i + y_j \notin \{y_1, \ldots, y_m\}$.

Another Example

Def: frac(x) is the fractional part of x. E.g., frac(1.414) = .414.

(ロト (個) (E) (E) (E) (E) のへの

Another Example

Def: $\operatorname{frac}(x)$ is the fractional part of x. E.g., $\operatorname{frac}(1.414) = .414$. **Lemma:** If y_1, y_2, y_3 are such that $\operatorname{frac}(y_1), \operatorname{frac}(y_2), \operatorname{frac}(y_3) \in (1/3, 2/3)$ then $y_1 + y_2 \neq y_3$.

Another Example

Def: $\operatorname{frac}(x)$ is the fractional part of x. E.g., $\operatorname{frac}(1.414) = .414$. **Lemma:** If y_1, y_2, y_3 are such that $\operatorname{frac}(y_1), \operatorname{frac}(y_2), \operatorname{frac}(y_3) \in (1/3, 2/3)$ then $y_1 + y_2 \neq y_3$. Proof left to the reader.

Theorem For all $\epsilon > 0$, for all $A \subseteq \mathbb{R}$, |A| = n, there is a sum-free subset $X \subseteq A$ such that $|X| \ge (1/3 - \epsilon)n$.

Theorem For all $\epsilon > 0$, for all $A \subseteq \mathbb{R}$, |A| = n, there is a sum-free subset $X \subseteq A$ such that $|X| \ge (1/3 - \epsilon)n$. **Pf** Let *L* be LESS than everything in *A* and *U* be BIGGER than everything in *A*. We will make U - L LARGE later.

Theorem For all $\epsilon > 0$, for all $A \subseteq \mathbb{R}$, |A| = n, there is a sum-free subset $X \subseteq A$ such that $|X| \ge (1/3 - \epsilon)n$. **Pf** Let *L* be LESS than everything in *A* and *U* be BIGGER than everything in *A*. We will make U - L LARGE later. For $a \in [L, U]$ let

$$B_a = \{x \in A : \operatorname{frac}(ax) \in (1/3, 2/3)\}.$$

ション ふゆ アメビア メロア しょうくしゃ

Theorem For all $\epsilon > 0$, for all $A \subseteq \mathbb{R}$, |A| = n, there is a sum-free subset $X \subseteq A$ such that $|X| \ge (1/3 - \epsilon)n$. **Pf** Let *L* be LESS than everything in *A* and *U* be BIGGER than everything in *A*. We will make U - L LARGE later. For $a \in [L, U]$ let

$$B_a = \{x \in A : \operatorname{frac}(ax) \in (1/3, 2/3)\}.$$

ション ふゆ アメビア メロア しょうくしゃ

For all a, B_a is sum-free by Lemma above.

Theorem For all $\epsilon > 0$, for all $A \subseteq \mathbb{R}$, |A| = n, there is a sum-free subset $X \subseteq A$ such that $|X| \ge (1/3 - \epsilon)n$. **Pf** Let *L* be LESS than everything in *A* and *U* be BIGGER than everything in *A*. We will make U - L LARGE later. For $a \in [L, U]$ let

$$B_a = \{x \in A : \operatorname{frac}(ax) \in (1/3, 2/3)\}.$$

ション ふゆ アメビア メロア しょうくしゃ

For all a, B_a is sum-free by Lemma above. SO we need an a such that B_a is LARGE.

What is the EXPECTED VALUE of $|B_a|$?

What is the EXPECTED VALUE of $|B_a|$? Let $x \in A$.

What is the EXPECTED VALUE of $|B_a|$? Let $x \in A$.

$\Pr_{a\in[L,U]}(\operatorname{frac}(ax)\in(1/3,2/3))$

What is the EXPECTED VALUE of $|B_a|$? Let $x \in A$.

 $\mathrm{Pr}_{a\in [L,U]}(\mathrm{frac}(ax)\in (1/3,2/3))$

We take U - L large enough so that this prob is $\geq (1/3 - \epsilon)$.

$$E(|B_a|) = \sum_{x \in A} \operatorname{Pr}_{a \in [L, U]}(\operatorname{frac}(ax) \in (1/3, 2/3))$$

What is the EXPECTED VALUE of $|B_a|$? Let $x \in A$.

$$\Pr_{\boldsymbol{a}\in[\boldsymbol{L},\boldsymbol{U}]}(\operatorname{frac}(\boldsymbol{a}\boldsymbol{x})\in(1/3,2/3))$$

We take U - L large enough so that this prob is $\geq (1/3 - \epsilon)$.

$$E(|B_a|) = \sum_{x \in A} \Pr_{a \in [L,U]}(\operatorname{frac}(ax) \in (1/3, 2/3))$$

$$=\sum_{x\in A}(1/3-\epsilon)$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

What is the EXPECTED VALUE of $|B_a|$? Let $x \in A$.

$$\Pr_{\boldsymbol{a}\in[\boldsymbol{L},\boldsymbol{U}]}(\operatorname{frac}(\boldsymbol{a}\boldsymbol{x})\in(1/3,2/3))$$

We take U - L large enough so that this prob is $\geq (1/3 - \epsilon)$.

$$E(|B_a|) = \sum_{x \in A} \Pr_{a \in [L, U]}(\operatorname{frac}(ax) \in (1/3, 2/3))$$

$$=\sum_{x\in A}(1/3-\epsilon)$$

$$=(1/3-\epsilon)n$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

What is the EXPECTED VALUE of $|B_a|$? Let $x \in A$.

$$\Pr_{\boldsymbol{a}\in[\boldsymbol{L},\boldsymbol{U}]}(\operatorname{frac}(\boldsymbol{a}\boldsymbol{x})\in(1/3,2/3))$$

We take U - L large enough so that this prob is $\geq (1/3 - \epsilon)$.

$$E(|B_a|) = \sum_{x \in A} \Pr_{a \in [L, U]}(\operatorname{frac}(ax) \in (1/3, 2/3))$$

$$=\sum_{x\in A}(1/3-\epsilon)$$

$$=(1/3-\epsilon)n$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

So THERE EXISTS an *a* such that $|B_a| \ge (1/3 - \epsilon)n$.

What is the EXPECTED VALUE of $|B_a|$? Let $x \in A$.

$$\Pr_{\boldsymbol{a}\in[\boldsymbol{L},\boldsymbol{U}]}(\operatorname{frac}(\boldsymbol{a}\boldsymbol{x})\in(1/3,2/3))$$

We take U - L large enough so that this prob is $\geq (1/3 - \epsilon)$.

$$E(|B_a|) = \sum_{x \in A} \Pr_{a \in [L, U]}(\operatorname{frac}(ax) \in (1/3, 2/3))$$

$$=\sum_{x\in A}(1/3-\epsilon)$$

$$=(1/3-\epsilon)n$$

So THERE EXISTS an *a* such that $|B_a| \ge (1/3 - \epsilon)n$. What is *a*?

・ロト・西ト・モート モー シタク

What is the EXPECTED VALUE of $|B_a|$? Let $x \in A$.

$$\Pr_{\boldsymbol{a}\in[\boldsymbol{L},\boldsymbol{U}]}(\operatorname{frac}(\boldsymbol{a}\boldsymbol{x})\in(1/3,2/3))$$

We take U - L large enough so that this prob is $\geq (1/3 - \epsilon)$.

$$E(|B_a|) = \sum_{x \in A} \Pr_{a \in [L, U]}(\operatorname{frac}(ax) \in (1/3, 2/3))$$

$$=\sum_{x\in A}(1/3-\epsilon)$$

$$=(1/3-\epsilon)n$$

So THERE EXISTS an *a* such that $|B_a| \ge (1/3 - \epsilon)n$. What is *a*? I DON"T KNOW AND I DON"T CARE!

What is the EXPECTED VALUE of $|B_a|$? Let $x \in A$.

$$\Pr_{\boldsymbol{a}\in[\boldsymbol{L},\boldsymbol{U}]}(\operatorname{frac}(\boldsymbol{a}\boldsymbol{x})\in(1/3,2/3))$$

We take U - L large enough so that this prob is $\geq (1/3 - \epsilon)$.

$$E(|B_a|) = \sum_{x \in A} \Pr_{a \in [L, U]}(\operatorname{frac}(ax) \in (1/3, 2/3))$$

$$=\sum_{x\in A}(1/3-\epsilon)$$

$$=(1/3-\epsilon)n$$

So THERE EXISTS an *a* such that $|B_a| \ge (1/3 - \epsilon)n$. What is *a*? I DON''T KNOW AND I DON''T CARE! End of Pf

Let f(n) be the largest sum-free set of a set of n integers.

Let f(n) be the largest sum-free set of a set of n integers. 1) Erdos (1965): $f(n) \ge \frac{n}{3}$ (our proof).

Let f(n) be the largest sum-free set of a set of n integers.

- 1) Erdos (1965): $f(n) \ge \frac{n}{3}$ (our proof).
- 2) Alon & Kleitman (1990): $f(n) \ge \frac{n+1}{3}$.

Let f(n) be the largest sum-free set of a set of n integers.

- 1) Erdos (1965): $f(n) \ge \frac{n}{3}$ (our proof).
- 2) Alon & Kleitman (1990): $f(n) \ge \frac{n+1}{3}$. Modified Prob Arg.

Let f(n) be the largest sum-free set of a set of n integers.

- 1) Erdos (1965): $f(n) \ge \frac{n}{3}$ (our proof).
- 2) Alon & Kleitman (1990): $f(n) \ge \frac{n+1}{3}$. Modified Prob Arg.

3) Bourgain (1997): $f(n) \ge \frac{n+2}{3}$.

Let f(n) be the largest sum-free set of a set of n integers.

- 1) Erdos (1965): $f(n) \ge \frac{n}{3}$ (our proof).
- 2) Alon & Kleitman (1990): $f(n) \ge \frac{n+1}{3}$. Modified Prob Arg.

3) Bourgain (1997): $f(n) \ge \frac{n+2}{3}$. Sophisticated!

Let f(n) be the largest sum-free set of a set of n integers.

- 1) Erdos (1965): $f(n) \ge \frac{n}{3}$ (our proof).
- 2) Alon & Kleitman (1990): $f(n) \ge \frac{n+1}{3}$. Modified Prob Arg.

- 3) Bourgain (1997): $f(n) \ge \frac{n+2}{3}$. Sophisticated!
- 4) Eberhard, Green, Manners (2014): $f(n) < \frac{n}{3-\epsilon}$.

Let f(n) be the largest sum-free set of a set of n integers.

- 1) Erdos (1965): $f(n) \ge \frac{n}{3}$ (our proof).
- 2) Alon & Kleitman (1990): $f(n) \ge \frac{n+1}{3}$. Modified Prob Arg.

- 3) Bourgain (1997): $f(n) \ge \frac{n+2}{3}$. Sophisticated!
- 4) Eberhard, Green, Manners (2014): $f(n) < \frac{n}{3-\epsilon}$.
- 5) Bedert (2025): $f(n) \ge \frac{n}{3} + \Omega(\log \log n)$.

Let f(n) be the largest sum-free set of a set of n integers.

- 1) Erdos (1965): $f(n) \ge \frac{n}{3}$ (our proof).
- 2) Alon & Kleitman (1990): $f(n) \ge \frac{n+1}{3}$. Modified Prob Arg.
- 3) Bourgain (1997): $f(n) \ge \frac{n+2}{3}$. Sophisticated!
- 4) Eberhard, Green, Manners (2014): $f(n) < \frac{n}{3-\epsilon}$.
- 5) Bedert (2025): $f(n) \ge \frac{n}{3} + \Omega(\log \log n)$. 36 dense pages.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let f(n) be the largest sum-free set of a set of n integers.

- 1) Erdos (1965): $f(n) \ge \frac{n}{3}$ (our proof).
- 2) Alon & Kleitman (1990): $f(n) \ge \frac{n+1}{3}$. Modified Prob Arg.
- 3) Bourgain (1997): $f(n) \ge \frac{n+2}{3}$. Sophisticated!
- 4) Eberhard, Green, Manners (2014): $f(n) < \frac{n}{3-\epsilon}$.
- 5) Bedert (2025): $f(n) \ge \frac{n}{3} + \Omega(\log \log n)$. 36 dense pages.

Bedert's result is important since it shows $\exists g(n), \lim_{n\to\infty} g(n) = \infty$ such that

Let f(n) be the largest sum-free set of a set of n integers.

- 1) Erdos (1965): $f(n) \ge \frac{n}{3}$ (our proof).
- 2) Alon & Kleitman (1990): $f(n) \ge \frac{n+1}{3}$. Modified Prob Arg.
- 3) Bourgain (1997): $f(n) \ge \frac{n+2}{3}$. Sophisticated!
- 4) Eberhard, Green, Manners (2014): $f(n) < \frac{n}{3-\epsilon}$.
- 5) Bedert (2025): $f(n) \ge \frac{n}{3} + \Omega(\log \log n)$. 36 dense pages.

Bedert's result is important since it shows $\exists g(n), \lim_{n\to\infty} g(n) = \infty$ such that $f(n) \ge \frac{n}{3} + g(n)$.

Let f(n) be the largest sum-free set of a set of n integers.

- 1) Erdos (1965): $f(n) \ge \frac{n}{3}$ (our proof).
- 2) Alon & Kleitman (1990): $f(n) \ge \frac{n+1}{3}$. Modified Prob Arg.
- 3) Bourgain (1997): $f(n) \ge \frac{n+2}{3}$. Sophisticated!
- 4) Eberhard, Green, Manners (2014): $f(n) < \frac{n}{3-\epsilon}$.
- 5) Bedert (2025): $f(n) \ge \frac{n}{3} + \Omega(\log \log n)$. 36 dense pages.

Bedert's result is important since it shows $\exists g(n), \lim_{n\to\infty} g(n) = \infty$ such that $f(n) \ge \frac{n}{3} + g(n)$.

This opens up a new line of research: Improve g(n).