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Ramsey Over the Reals

We restate Ramsey’s Theorem over N in a different way.

Thm ∀COL :
(N
2

)
→ [2] ∃ homog set H such that |H| = |N|.

Here is natural generalization to R:
Conjecture ∀COL :

(R
2

)
→ [2] ∃ homog set H such that |H| = |R|.

We will show that this Conj is false.

The proof uses AC by using WOP.
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Recall The Well Orderings Principle

The Well Ordering Principle For all X there is an ordinal α and
a bijection from α to X . Can take the least ordinal

Note You can take α to be the least ordinal with cardinality |X |.
The Reals Let ω1 be the least uncountable ordinal.
ω1 can be identified with the set of all countable ordinals.

By WOP there is a function R→ ω1.
This map induces a well-ordering ≺ on R
R can be well ordered. Is that strange?
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Consequences of R Being Well Ordered

(We will assume CH for convenience.)

� is a well ordering of the reals.
Let ω1 be the first uncountable ordinal.
There is a bijection f : ω1 → R.
WO the R by f (1) < f (2) < · · · f (ω) < · · · < f (ωω) < · · · .
Odd Fact 1: Since every element of ω1 has a countable number of
elements LESS than it,
∀x ∈ R, the set {y : y ≺ x} is countable.

Odd Fact 2:
(∀x ∈ R)(∃x+) such that x ≺ x+ and ¬∃y[x ≺ y ≺ x+].

Odd? Do these two odd facts make your doubt WOP?
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What Does x+ Look Like

Lets look at

An =

{
x ∈ R : |x+ − x | > 1

n

}
.

How big can An be? We look at A1/2.

It is possible that (∀x ∈ (0, 1))[x+ = x + 1].
0.5+ = 1.5, 0.8+ = 1.8. Then

(0, 1) ⊆ A =

{
x : |x+ − x | > 1

2

}
.

so |A1/2| = |R|.
This is possible since � has no connection to the usual ≤.
Our counterexample to Ramsey will make � and ≤ relate.
Note: R =

⋃∞
i=1 Ai . so (∃i)[|Ai | = |R|].
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Ramsey over R Does not hold

Thm ∃COL :
(R
2

)
→ [2] s.t. there is NO homog set of size |R|.

Here is the coloring

COL{x , y} =

{
R if � and ≤ agree on {x , y}
B if � and ≤ disagree on {x , y}

(1)

Examples
If 1 � 2 then {1, 2} is R.
If 2 � 1 then {1, 2} is B.
Next page finish!
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Ramsey over R Does not hold

COL{x , y} =

{
R if � and ≤ agree on {x , y}
B if � and ≤ disagree on {x , y}

(2)

Let H be a homog set. We show |H| is countable.
We assume the color is R. (B case is similar.)
New Notation For this proof if x ∈ H then x+ is least element in
H that is bigger than x . x+ exists since R is well ordered.
Key (∀x ∈ H)[x < x+].

An =

{
x ∈ H : x+ − x >

1

n

}
.

Clearly H =
⋃∞

i=1 An.
We show ∀n An is ctble, so H is ctble. Look at intervals

· · · [−3

n
,−2

n
)[−2

n
,−1

n
)[−1

n
,

0

n
)[

0

n
,

1

n
)[

1

n
,

2

n
) · · ·

Can’t have |An ∩ [ in ,
i+1
n )| ≥ 2. so H countable.
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Recap, Finish, Reflection

We showed that the for the coloring

COL{x , y} =

{
R if � and ≤ agree on {x , y}
B if � and ≤ disagree on {x , y}

(3)

all homog sets are countable.

I This is a stronger result then we originally stated: the homog
set can’t be of any cardinality bigger than countable. If ¬CH
is true this matters.

I This result would not be accepted by my Darling since it uses
the Axiom of Choice which can also be used to prove the
Banach-Tarski Paradox.

Thm (AC) ∃COL :
(R
2

)
→ [2] s.t. every homog set of size ≤ |N|.

Gary you look mad.
See next page for how to make Gary happy, which will also make
Meatloaf happy.
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Making Gary Happy

1) There are theorems of the form If COL :
(R
2

)
is a 2-coloring

THAT SATISFIES SOME NICE PROPERTY then there is a
homog set H such that |H| = |R|. There has been some work on
this.

2) Work in ZF, not ZFC. Perhaps add some other axioms. I think
there has been some work on this but its not stated this way.
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Axiom of Determinacy (AD)

Here is a game that is more evidence of Darlings axiom Math
Games are NOT Fun Games.

Let A ⊆ (0, 1). Think of the reals as expressed in binary.
Alice picks a1 Bob picks b1 Alice picks a2 Bob picks b2 etc.
If .a1b1a2b2 · · · ∈ A then Alice wins.
If .a1b1a2b2 · · · /∈ A then Bob wins.
A set A ⊆ (0, 1) is determined if either Alice or Bob has a
winning strategy.
Known AC implies ∃A ⊆ (0, 1) which is NOT determined.
Known Borel sets are determined.
Axiom of Determinacy (AD) ALL A ⊆ (0, 1) are determined.
PRO AD implies all sets are measurable so NO Banach-Tarski.
PRO Sets of reals are well behaved.
CON(to some) Negates AC
CON You call that an axiom? (TELL STORY)
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Large Cardinal Axioms
Note the following:
If A is finite then 2A is finite.

Restate this:
If A ⊆ N, |A| < |N| then |2A| < |N|.
Are there any other sets X such that
If A ⊆ X , |A| < |X | then |2A| < |X |.
(such sets that are BIGGER than N are Inaccessible Cardinals).

Vote Yes, No, Ind of ZFC.

Ind of ZFC- sort of

Such a set X would satisfy the axioms of ZFC.

If ZFC could prove that X exists, the ZFC would prove its own
consistency, which violates Godel’s Second Incompleteness
theorem.

SO ZFC cannot prove X exists.

So far ZFC has not been able to show that X does not exist. Most
set theorists think that ZFC + ∃X is consistent.



Large Cardinal Axioms
Note the following:
If A is finite then 2A is finite.
Restate this:
If A ⊆ N, |A| < |N| then |2A| < |N|.

Are there any other sets X such that
If A ⊆ X , |A| < |X | then |2A| < |X |.
(such sets that are BIGGER than N are Inaccessible Cardinals).

Vote Yes, No, Ind of ZFC.

Ind of ZFC- sort of

Such a set X would satisfy the axioms of ZFC.

If ZFC could prove that X exists, the ZFC would prove its own
consistency, which violates Godel’s Second Incompleteness
theorem.

SO ZFC cannot prove X exists.

So far ZFC has not been able to show that X does not exist. Most
set theorists think that ZFC + ∃X is consistent.



Large Cardinal Axioms
Note the following:
If A is finite then 2A is finite.
Restate this:
If A ⊆ N, |A| < |N| then |2A| < |N|.
Are there any other sets X such that
If A ⊆ X , |A| < |X | then |2A| < |X |.
(such sets that are BIGGER than N are Inaccessible Cardinals).

Vote Yes, No, Ind of ZFC.

Ind of ZFC- sort of

Such a set X would satisfy the axioms of ZFC.

If ZFC could prove that X exists, the ZFC would prove its own
consistency, which violates Godel’s Second Incompleteness
theorem.

SO ZFC cannot prove X exists.

So far ZFC has not been able to show that X does not exist. Most
set theorists think that ZFC + ∃X is consistent.



Large Cardinal Axioms
Note the following:
If A is finite then 2A is finite.
Restate this:
If A ⊆ N, |A| < |N| then |2A| < |N|.
Are there any other sets X such that
If A ⊆ X , |A| < |X | then |2A| < |X |.
(such sets that are BIGGER than N are Inaccessible Cardinals).

Vote Yes, No, Ind of ZFC.

Ind of ZFC- sort of

Such a set X would satisfy the axioms of ZFC.

If ZFC could prove that X exists, the ZFC would prove its own
consistency, which violates Godel’s Second Incompleteness
theorem.

SO ZFC cannot prove X exists.

So far ZFC has not been able to show that X does not exist. Most
set theorists think that ZFC + ∃X is consistent.



Large Cardinal Axioms
Note the following:
If A is finite then 2A is finite.
Restate this:
If A ⊆ N, |A| < |N| then |2A| < |N|.
Are there any other sets X such that
If A ⊆ X , |A| < |X | then |2A| < |X |.
(such sets that are BIGGER than N are Inaccessible Cardinals).

Vote Yes, No, Ind of ZFC.

Ind of ZFC- sort of

Such a set X would satisfy the axioms of ZFC.

If ZFC could prove that X exists, the ZFC would prove its own
consistency, which violates Godel’s Second Incompleteness
theorem.

SO ZFC cannot prove X exists.

So far ZFC has not been able to show that X does not exist. Most
set theorists think that ZFC + ∃X is consistent.



Large Cardinal Axioms
Note the following:
If A is finite then 2A is finite.
Restate this:
If A ⊆ N, |A| < |N| then |2A| < |N|.
Are there any other sets X such that
If A ⊆ X , |A| < |X | then |2A| < |X |.
(such sets that are BIGGER than N are Inaccessible Cardinals).

Vote Yes, No, Ind of ZFC.

Ind of ZFC- sort of

Such a set X would satisfy the axioms of ZFC.

If ZFC could prove that X exists, the ZFC would prove its own
consistency, which violates Godel’s Second Incompleteness
theorem.

SO ZFC cannot prove X exists.

So far ZFC has not been able to show that X does not exist. Most
set theorists think that ZFC + ∃X is consistent.



Large Cardinal Axioms
Note the following:
If A is finite then 2A is finite.
Restate this:
If A ⊆ N, |A| < |N| then |2A| < |N|.
Are there any other sets X such that
If A ⊆ X , |A| < |X | then |2A| < |X |.
(such sets that are BIGGER than N are Inaccessible Cardinals).

Vote Yes, No, Ind of ZFC.

Ind of ZFC- sort of

Such a set X would satisfy the axioms of ZFC.

If ZFC could prove that X exists, the ZFC would prove its own
consistency, which violates Godel’s Second Incompleteness
theorem.

SO ZFC cannot prove X exists.

So far ZFC has not been able to show that X does not exist. Most
set theorists think that ZFC + ∃X is consistent.



Large Cardinal Axioms
Note the following:
If A is finite then 2A is finite.
Restate this:
If A ⊆ N, |A| < |N| then |2A| < |N|.
Are there any other sets X such that
If A ⊆ X , |A| < |X | then |2A| < |X |.
(such sets that are BIGGER than N are Inaccessible Cardinals).

Vote Yes, No, Ind of ZFC.

Ind of ZFC- sort of

Such a set X would satisfy the axioms of ZFC.

If ZFC could prove that X exists, the ZFC would prove its own
consistency, which violates Godel’s Second Incompleteness
theorem.

SO ZFC cannot prove X exists.

So far ZFC has not been able to show that X does not exist. Most
set theorists think that ZFC + ∃X is consistent.



Large Cardinal Axioms
Note the following:
If A is finite then 2A is finite.
Restate this:
If A ⊆ N, |A| < |N| then |2A| < |N|.
Are there any other sets X such that
If A ⊆ X , |A| < |X | then |2A| < |X |.
(such sets that are BIGGER than N are Inaccessible Cardinals).

Vote Yes, No, Ind of ZFC.

Ind of ZFC- sort of

Such a set X would satisfy the axioms of ZFC.

If ZFC could prove that X exists, the ZFC would prove its own
consistency, which violates Godel’s Second Incompleteness
theorem.

SO ZFC cannot prove X exists.

So far ZFC has not been able to show that X does not exist. Most
set theorists think that ZFC + ∃X is consistent.



Large Cardinal Axioms

Large Cardinal Axiom One Inaccessible Cardinals exist.

PRO N being the only example of a cardinal closed under
powerset would be another example of N-privilege, hence violating
DEI principles.

CON Is LC1 so obvious as to be a axiom?
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Back to Ramsey Theory

Def A Ramsey Cardinal (RC) X is such that if
∀COL :

(X
2

)
→ [2] ∃ homog H, |H| = |X |.

Do RC exist?

Thm If X is a RC then X is inaccessible. Hence we cannot prove
RC ’s exist.
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