# BILL, RECORD LECTURE!!!!

#### BILL RECORD LECTURE!!!



# Ramsey Fails for $\ensuremath{\mathbb{R}}$

# **Exposition by William Gasarch**

March 29, 2025

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

#### **Ramsey Over the Reals**

We restate Ramsey's Theorem over  $\ensuremath{\mathbb{N}}$  in a different way.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Here is natural generalization to  $\mathbb{R}$ :

Here is natural generalization to  $\mathbb{R}$ : **Conjecture**  $\forall \text{COL}: \binom{\mathbb{R}}{2} \rightarrow [2] \exists$  homog set H such that  $|H| = |\mathbb{R}|$ .

ション ふゆ アメリア メリア しょうくしゃ

Here is natural generalization to  $\mathbb{R}$ : **Conjecture**  $\forall \text{COL}: \binom{\mathbb{R}}{2} \rightarrow [2] \exists \text{ homog set } H \text{ such that } |H| = |\mathbb{R}|.$ We will show that this Conj is **false**.

ション ふゆ アメビア メロア しょうくしゃ

Here is natural generalization to  $\mathbb{R}$ : **Conjecture**  $\forall \text{COL} \colon \binom{\mathbb{R}}{2} \to [2] \exists$  homog set H such that  $|H| = |\mathbb{R}|$ . We will show that this Conj is **false**. The proof uses AC by using WOP.

**The Well Ordering Principle** For all X there is an ordinal  $\alpha$  and a bijection from  $\alpha$  to X. Can take the least ordinal

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

**The Well Ordering Principle** For all X there is an ordinal  $\alpha$  and a bijection from  $\alpha$  to X. Can take the least ordinal **Note** You can take  $\alpha$  to be the least ordinal with cardinality |X|.

**The Well Ordering Principle** For all X there is an ordinal  $\alpha$  and a bijection from  $\alpha$  to X. Can take the least ordinal **Note** You can take  $\alpha$  to be the least ordinal with cardinality |X|. **The Reals** Let  $\omega_1$  be the least uncountable ordinal.  $\omega_1$  can be identified with the set of all countable ordinals.

ション ふゆ アメビア メロア しょうくしゃ

**The Well Ordering Principle** For all X there is an ordinal  $\alpha$  and a bijection from  $\alpha$  to X. Can take the least ordinal

**Note** You can take  $\alpha$  to be the least ordinal with cardinality |X|.

ション ふゆ アメビア メロア しょうくしゃ

**The Reals** Let  $\omega_1$  be the least uncountable ordinal.

 $\omega_1$  can be identified with the set of all countable ordinals.

By WOP there is a function  $\mathbb{R} \to \omega_1$ .

**The Well Ordering Principle** For all X there is an ordinal  $\alpha$  and a bijection from  $\alpha$  to X. Can take the least ordinal

**Note** You can take  $\alpha$  to be the least ordinal with cardinality |X|.

ション ふゆ アメビア メロア しょうくしゃ

**The Reals** Let  $\omega_1$  be the least uncountable ordinal.

 $\omega_1$  can be identified with the set of all countable ordinals.

By WOP there is a function  $\mathbb{R} \to \omega_1$ .

This map induces a well-ordering  $\prec$  on  $\mathbb R$ 

- **The Well Ordering Principle** For all X there is an ordinal  $\alpha$  and a bijection from  $\alpha$  to X. Can take the least ordinal
- **Note** You can take  $\alpha$  to be the least ordinal with cardinality |X|.

ション ふゆ アメビア メロア しょうくしゃ

- **The Reals** Let  $\omega_1$  be the least uncountable ordinal.
- $\omega_1$  can be identified with the set of all countable ordinals.
- By WOP there is a function  $\mathbb{R} \to \omega_1$ .
- This map induces a well-ordering  $\prec$  on  $\mathbb R$
- ${\mathbb R}$  can be well ordered. Is that strange?

(We will assume CH for convenience.)

(We will assume CH for convenience.)  $\leq$  is a well ordering of the reals.

(We will assume CH for convenience.)  $\leq$  is a well ordering of the reals. Let  $\omega_1$  be the first uncountable ordinal.

(We will assume CH for convenience.)  $\leq$  is a well ordering of the reals. Let  $\omega_1$  be the first uncountable ordinal. There is a bijection  $f: \omega_1 \to \mathbb{R}$ .

(We will assume CH for convenience.)  $\leq$  is a well ordering of the reals. Let  $\omega_1$  be the first uncountable ordinal. There is a bijection  $f: \omega_1 \to \mathbb{R}$ . WO the  $\mathbb{R}$  by  $f(1) < f(2) < \cdots f(\omega) < \cdots < f(\omega^{\omega}) < \cdots$ .

(We will assume CH for convenience.)  $\leq$  is a well ordering of the reals. Let  $\omega_1$  be the first uncountable ordinal. There is a bijection  $f: \omega_1 \to \mathbb{R}$ . WO the  $\mathbb{R}$  by  $f(1) < f(2) < \cdots f(\omega) < \cdots < f(\omega^{\omega}) < \cdots$ . Odd Fact 1: Since every element of  $\omega_1$  has a countable number of elements LESS than it,

ション ふぼう メリン メリン しょうくしゃ

 $\forall x \in \mathbb{R},$  the set  $\{y \colon y \prec x\}$  is countable.

(We will assume CH for convenience.)  $\leq$  is a well ordering of the reals. Let  $\omega_1$  be the first uncountable ordinal. There is a bijection  $f: \omega_1 \to \mathbb{R}$ . WO the  $\mathbb{R}$  by  $f(1) < f(2) < \cdots f(\omega) < \cdots < f(\omega^{\omega}) < \cdots$ . Odd Fact 1: Since every element of  $\omega_1$  has a countable number of elements LESS than it,  $\forall x \in \mathbb{R}$ , the set  $\{y: y \prec x\}$  is countable.

ション ふぼう メリン メリン しょうくしゃ

Odd Fact 2:  $(\forall x \in \mathbb{R})(\exists x^+)$  such that  $x \prec x^+$  and  $\neg \exists y[x \prec y \prec x^+]$ .

(We will assume CH for convenience.)  $\prec$  is a well ordering of the reals. Let  $\omega_1$  be the first uncountable ordinal. There is a bijection  $f: \omega_1 \to \mathbb{R}$ . WO the  $\mathbb{R}$  by  $f(1) < f(2) < \cdots + f(\omega) < \cdots < f(\omega^{\omega}) < \cdots$ . **Odd Fact 1:** Since every element of  $\omega_1$  has a countable number of elements LESS than it.  $\forall x \in \mathbb{R}$ , the set  $\{y : y \prec x\}$  is countable. Odd Fact 2:  $(\forall x \in \mathbb{R})(\exists x^+)$  such that  $x \prec x^+$  and  $\neg \exists y [x \prec y \prec x^+]$ .

Odd? Do these two odd facts make your doubt WOP?

Lets look at

$$A_n = \left\{ x \in \mathbb{R} \colon |x^+ - x| > \frac{1}{n} \right\}.$$

Lets look at

$$A_n = \bigg\{ x \in \mathbb{R} \colon |x^+ - x| > \frac{1}{n} \bigg\}.$$

\*ロト \*昼 \* \* ミ \* ミ \* ミ \* のへぐ

How big can  $A_n$  be? We look at  $A_{1/2}$ .

Lets look at

$$A_n = \bigg\{ x \in \mathbb{R} \colon |x^+ - x| > \frac{1}{n} \bigg\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

How big can  $A_n$  be? We look at  $A_{1/2}$ .

It is possible that  $(\forall x \in (0,1))[x^+ = x + 1].$ 

Lets look at

$$A_n = \bigg\{ x \in \mathbb{R} \colon |x^+ - x| > \frac{1}{n} \bigg\}.$$

How big can  $A_n$  be? We look at  $A_{1/2}$ .

It is possible that  $(\forall x \in (0, 1))[x^+ = x + 1]$ .  $0.5^+ = 1.5, 0.8^+ = 1.8$ .

Lets look at

$$A_n = \bigg\{ x \in \mathbb{R} \colon |x^+ - x| > \frac{1}{n} \bigg\}.$$

How big can  $A_n$  be? We look at  $A_{1/2}$ .

It is possible that  $(\forall x \in (0, 1))[x^+ = x + 1]$ .  $0.5^+ = 1.5, \ 0.8^+ = 1.8$ . Then

Lets look at

$$A_n = \bigg\{ x \in \mathbb{R} \colon |x^+ - x| > \frac{1}{n} \bigg\}.$$

How big can  $A_n$  be? We look at  $A_{1/2}$ .

It is possible that  $(\forall x \in (0, 1))[x^+ = x + 1].$  $0.5^+ = 1.5, 0.8^+ = 1.8.$  Then

$$(0,1) \subseteq A = \left\{ x \colon |x^+ - x| > \frac{1}{2} \right\}.$$

Lets look at

$$A_n = \bigg\{ x \in \mathbb{R} \colon |x^+ - x| > \frac{1}{n} \bigg\}.$$

How big can  $A_n$  be? We look at  $A_{1/2}$ .

It is possible that  $(\forall x \in (0, 1))[x^+ = x + 1]$ .  $0.5^+ = 1.5, 0.8^+ = 1.8$ . Then

$$(0,1)\subseteq A=\left\{x\colon |x^+-x|>\frac{1}{2}\right\}.$$

so  $|A_{1/2}| = |\mathbb{R}|$ .

Lets look at

$$A_n = \bigg\{ x \in \mathbb{R} \colon |x^+ - x| > \frac{1}{n} \bigg\}.$$

How big can  $A_n$  be? We look at  $A_{1/2}$ .

It is possible that  $(\forall x \in (0, 1))[x^+ = x + 1]$ .  $0.5^+ = 1.5, 0.8^+ = 1.8$ . Then

$$(0,1)\subseteq A=\left\{x\colon |x^+-x|>\frac{1}{2}\right\}.$$

ション ふゆ アメビア メロア しょうくしゃ

so  $|A_{1/2}| = |\mathbb{R}|$ . This is possible since  $\leq$  has no connection to the usual  $\leq$ .

Lets look at

$$A_n = \bigg\{ x \in \mathbb{R} \colon |x^+ - x| > \frac{1}{n} \bigg\}.$$

How big can  $A_n$  be? We look at  $A_{1/2}$ .

It is possible that  $(\forall x \in (0, 1))[x^+ = x + 1]$ .  $0.5^+ = 1.5, 0.8^+ = 1.8$ . Then

$$(0,1)\subseteq A=\left\{x\colon |x^+-x|>\frac{1}{2}\right\}.$$

so  $|A_{1/2}| = |\mathbb{R}|$ . This is possible since  $\leq$  has no connection to the usual  $\leq$ . Our counterexample to Ramsey will make  $\leq$  and  $\leq$  relate.

Lets look at

$$A_n = \bigg\{ x \in \mathbb{R} \colon |x^+ - x| > \frac{1}{n} \bigg\}.$$

How big can  $A_n$  be? We look at  $A_{1/2}$ .

It is possible that  $(\forall x \in (0, 1))[x^+ = x + 1]$ .  $0.5^+ = 1.5, 0.8^+ = 1.8$ . Then

$$(0,1)\subseteq A=\left\{x\colon |x^+-x|>rac{1}{2}
ight\}.$$

so  $|A_{1/2}| = |\mathbb{R}|$ . This is possible since  $\leq$  has no connection to the usual  $\leq$ . Our counterexample to Ramsey will make  $\leq$  and  $\leq$  relate. Note:  $\mathbb{R} = \bigcup_{i=1}^{\infty} A_i$ .

Lets look at

$$A_n = \bigg\{ x \in \mathbb{R} \colon |x^+ - x| > \frac{1}{n} \bigg\}.$$

How big can  $A_n$  be? We look at  $A_{1/2}$ .

It is possible that  $(\forall x \in (0, 1))[x^+ = x + 1]$ .  $0.5^+ = 1.5, 0.8^+ = 1.8$ . Then

$$(0,1)\subseteq A=\left\{x\colon |x^+-x|>rac{1}{2}
ight\}.$$

so  $|A_{1/2}| = |\mathbb{R}|$ . This is possible since  $\leq$  has no connection to the usual  $\leq$ . Our counterexample to Ramsey will make  $\leq$  and  $\leq$  relate. Note:  $\mathbb{R} = \bigcup_{i=1}^{\infty} A_i$ . so  $(\exists i)[|A_i| = |\mathbf{R}|]$ .

#### Ramsey over $\mathbb R$ Does not hold

#### **Thm** $\exists \text{COL} \colon \binom{\mathbb{R}}{2} \to [2]$ s.t. there is NO homog set of size $|\mathbb{R}|$ .

\*ロト \*昼 \* \* ミ \* ミ \* ミ \* のへぐ
**Thm**  $\exists \text{COL}: \binom{\mathbb{R}}{2} \rightarrow [2]$  s.t. there is NO homog set of size  $|\mathbb{R}|$ . Here is the coloring

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○

**Thm**  $\exists COL: \binom{\mathbb{R}}{2} \rightarrow [2]$  s.t. there is NO homog set of size  $|\mathbb{R}|$ . Here is the coloring

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(1)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○

**Thm**  $\exists COL: \binom{\mathbb{R}}{2} \rightarrow [2]$  s.t. there is NO homog set of size  $|\mathbb{R}|$ . Here is the coloring

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(1)

Examples

**Thm**  $\exists \text{COL}: \binom{\mathbb{R}}{2} \rightarrow [2]$  s.t. there is NO homog set of size  $|\mathbb{R}|$ . Here is the coloring

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(1)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Examples If  $1 \leq 2$  then  $\{1, 2\}$  is **R**.

**Thm**  $\exists \text{COL}: \binom{\mathbb{R}}{2} \rightarrow [2]$  s.t. there is NO homog set of size  $|\mathbb{R}|$ . Here is the coloring

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(1)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Examples

If  $1 \leq 2$  then  $\{1, 2\}$  is **R**. If  $2 \leq 1$  then  $\{1, 2\}$  is **B**.

**Thm**  $\exists \text{COL}: \binom{\mathbb{R}}{2} \rightarrow [2]$  s.t. there is NO homog set of size  $|\mathbb{R}|$ . Here is the coloring

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(1)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Examples

If  $1 \leq 2$  then  $\{1,2\}$  is **R**. If  $2 \leq 1$  then  $\{1,2\}$  is **B**. Next page finish!

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(2)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへで

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(2)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○

Let H be a homog set. We show |H| is countable.

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(2)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Let *H* be a homog set. We show |H| is countable. We assume the color is **R**. (**B** case is similar.)

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(2)

ション ふゆ アメビア メロア しょうくしゃ

Let *H* be a homog set. We show |H| is countable. We assume the color is **R**. (**B** case is similar.) New Notation For this proof if  $x \in H$  then  $x^+$  is least element in *H* that is bigger than x.  $x^+$  exists since  $\mathbb{R}$  is well ordered.

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(2)

Let *H* be a homog set. We show |H| is countable. We assume the color is **R**. (**B** case is similar.) New Notation For this proof if  $x \in H$  then  $x^+$  is least element in *H* that is bigger than *x*.  $x^+$  exists since  $\mathbb{R}$  is well ordered. Key  $(\forall x \in H)[x < x^+]$ .

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(2)

Let *H* be a homog set. We show |H| is countable. We assume the color is **R**. (**B** case is similar.) New Notation For this proof if  $x \in H$  then  $x^+$  is least element in *H* that is bigger than *x*.  $x^+$  exists since  $\mathbb{R}$  is well ordered. Key  $(\forall x \in H)[x < x^+]$ .

$$A_n = \left\{ x \in H \colon x^+ - x > \frac{1}{n} \right\}.$$

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(2)

Let *H* be a homog set. We show |H| is countable. We assume the color is **R**. (**B** case is similar.) New Notation For this proof if  $x \in H$  then  $x^+$  is least element in *H* that is bigger than x.  $x^+$  exists since  $\mathbb{R}$  is well ordered. Key  $(\forall x \in H)[x < x^+]$ .

$$A_n = \left\{ x \in H \colon x^+ - x > \frac{1}{n} \right\}.$$

Clearly  $H = \bigcup_{i=1}^{\infty} A_n$ .

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(2)

Let *H* be a homog set. We show |H| is countable. We assume the color is **R**. (**B** case is similar.) New Notation For this proof if  $x \in H$  then  $x^+$  is least element in *H* that is bigger than x.  $x^+$  exists since  $\mathbb{R}$  is well ordered. Key  $(\forall x \in H)[x < x^+]$ .

$$A_n = \left\{ x \in H \colon x^+ - x > \frac{1}{n} \right\}.$$

Clearly  $H = \bigcup_{i=1}^{\infty} A_n$ . We show  $\forall n \ A_n$  is ctble, so H is ctble.

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(2)

Let *H* be a homog set. We show |H| is countable. We assume the color is **R**. (**B** case is similar.) New Notation For this proof if  $x \in H$  then  $x^+$  is least element in *H* that is bigger than x.  $x^+$  exists since  $\mathbb{R}$  is well ordered. Key  $(\forall x \in H)[x < x^+]$ .

$$A_n = \left\{ x \in H \colon x^+ - x > \frac{1}{n} \right\}.$$

Clearly  $H = \bigcup_{i=1}^{\infty} A_n$ . We show  $\forall n \ A_n$  is ctble, so H is ctble. Look at intervals

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(2)

Let *H* be a homog set. We show |H| is countable. We assume the color is **R**. (**B** case is similar.) New Notation For this proof if  $x \in H$  then  $x^+$  is least element in *H* that is bigger than *x*.  $x^+$  exists since  $\mathbb{R}$  is well ordered. Key  $(\forall x \in H)[x < x^+]$ .

$$A_n = \left\{ x \in H \colon x^+ - x > \frac{1}{n} \right\}.$$

Clearly  $H = \bigcup_{i=1}^{\infty} A_n$ . We show  $\forall n \ A_n$  is ctble, so H is ctble. Look at intervals

$$\cdots \left[-\frac{3}{n}, -\frac{2}{n}\right)\left[-\frac{2}{n}, -\frac{1}{n}\right)\left[-\frac{1}{n}, \frac{0}{n}\right)\left[\frac{0}{n}, \frac{1}{n}\right)\left[\frac{1}{n}, \frac{2}{n}\right)\cdots$$

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(2)

Let *H* be a homog set. We show |H| is countable. We assume the color is **R**. (**B** case is similar.) New Notation For this proof if  $x \in H$  then  $x^+$  is least element in *H* that is bigger than *x*.  $x^+$  exists since  $\mathbb{R}$  is well ordered. Key  $(\forall x \in H)[x < x^+]$ .

$$A_n = \left\{ x \in H \colon x^+ - x > \frac{1}{n} \right\}.$$

Clearly  $H = \bigcup_{i=1}^{\infty} A_n$ . We show  $\forall n \ A_n$  is ctble, so H is ctble. Look at intervals

$$\cdots \left[-\frac{3}{n}, -\frac{2}{n}\right)\left[-\frac{2}{n}, -\frac{1}{n}\right)\left[-\frac{1}{n}, \frac{0}{n}\right]\left[\frac{0}{n}, \frac{1}{n}\right]\left[\frac{1}{n}, \frac{2}{n}\right)\cdots$$

Can't have  $|A_n \cap [\frac{i}{n}, \frac{i+1}{n})| \ge 2$ .

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(2)

Let *H* be a homog set. We show |H| is countable. We assume the color is **R**. (**B** case is similar.) New Notation For this proof if  $x \in H$  then  $x^+$  is least element in *H* that is bigger than x.  $x^+$  exists since  $\mathbb{R}$  is well ordered. Key  $(\forall x \in H)[x < x^+]$ .

$$A_n = \left\{ x \in H \colon x^+ - x > \frac{1}{n} \right\}.$$

Clearly  $H = \bigcup_{i=1}^{\infty} A_n$ . We show  $\forall n \ A_n$  is ctble, so H is ctble. Look at intervals

$$\cdots \left[-\frac{3}{n}, -\frac{2}{n}\right)\left[-\frac{2}{n}, -\frac{1}{n}\right)\left[-\frac{1}{n}, \frac{0}{n}\right]\left[\frac{0}{n}, \frac{1}{n}\right]\left[\frac{1}{n}, \frac{2}{n}\right)\cdots$$

Can't have  $|A_n \cap [\frac{i}{n}, \frac{i+1}{n})| \ge 2$ . so *H* countable.

We showed that the for the coloring

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○

We showed that the for the coloring

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(3)

(ロト (個) (E) (E) (E) (E) のへの

all homog sets are countable.

We showed that the for the coloring

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(3)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

all homog sets are countable.

► This is a stronger result then we originally stated: the homog set can't be of any cardinality bigger than countable. If ¬CH is true this matters.

We showed that the for the coloring

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(3)

all homog sets are countable.

- ► This is a stronger result then we originally stated: the homog set can't be of any cardinality bigger than countable. If ¬CH is true this matters.
- This result would not be accepted by my Darling since it uses the Axiom of Choice which can also be used to prove the Banach-Tarski Paradox.

We showed that the for the coloring

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(3)

all homog sets are countable.

- ► This is a stronger result then we originally stated: the homog set can't be of any cardinality bigger than countable. If ¬CH is true this matters.
- This result would not be accepted by my Darling since it uses the Axiom of Choice which can also be used to prove the Banach-Tarski Paradox.

Thm (AC)  $\exists \operatorname{COL}: \binom{\mathbb{R}}{2} \rightarrow [2]$  s.t. every homog set of size  $\leq |\mathbb{N}|$ .

We showed that the for the coloring

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(3)

all homog sets are countable.

- ► This is a stronger result then we originally stated: the homog set can't be of any cardinality bigger than countable. If ¬CH is true this matters.
- This result would not be accepted by my Darling since it uses the Axiom of Choice which can also be used to prove the Banach-Tarski Paradox.

Thm (AC)  $\exists \text{COL}: \binom{\mathbb{R}}{2} \rightarrow [2]$  s.t. every homog set of size  $\leq |\mathbb{N}|$ . Gary you look mad.

We showed that the for the coloring

$$\operatorname{COL}\{x, y\} = \begin{cases} \mathsf{R} & \text{if } \preceq \text{ and } \leq \text{ agree on } \{x, y\} \\ \mathsf{B} & \text{if } \preceq \text{ and } \leq \text{ disagree on } \{x, y\} \end{cases}$$
(3)

all homog sets are countable.

- ► This is a stronger result then we originally stated: the homog set can't be of any cardinality bigger than countable. If ¬CH is true this matters.
- This result would not be accepted by my Darling since it uses the Axiom of Choice which can also be used to prove the Banach-Tarski Paradox.

Thm (AC)  $\exists COL: \binom{\mathbb{R}}{2} \rightarrow [2]$  s.t. every homog set of size  $\leq |\mathbb{N}|$ . Gary you look mad.

See next page for how to make Gary happy, which will also make Meatloaf happy.

# Making Gary Happy

- ▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

1) There are theorems of the form If COL:  $\binom{\mathbb{R}}{2}$  is a 2-coloring THAT SATISFIES SOME NICE PROPERTY then there is a homog set *H* such that  $|H| = |\mathbb{R}|$ . There has been some work on this.

ション ふゆ アメビア メロア しょうくしゃ

1) There are theorems of the form If COL:  $\binom{\mathbb{R}}{2}$  is a 2-coloring THAT SATISFIES SOME NICE PROPERTY then there is a homog set *H* such that  $|H| = |\mathbb{R}|$ . There has been some work on this.

2) Work in ZF, not ZFC. Perhaps add some other axioms. I think there has been some work on this but its not stated this way.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Here is a game that is more evidence of Darlings axiom Math Games are NOT Fun Games.

Here is a game that is more evidence of Darlings axiom Math Games are NOT Fun Games.

Let  $A \subseteq (0,1)$ . Think of the reals as expressed in binary.

Here is a game that is more evidence of Darlings axiom Math Games are NOT Fun Games.

Let  $A \subseteq (0,1)$ . Think of the reals as expressed in binary. Alice picks  $a_1$ 

Here is a game that is more evidence of Darlings axiom Math Games are NOT Fun Games.

Let  $A \subseteq (0, 1)$ . Think of the reals as expressed in binary. Alice picks  $a_1$  Bob picks  $b_1$ 

Here is a game that is more evidence of Darlings axiom Math Games are NOT Fun Games.

Let  $A \subseteq (0, 1)$ . Think of the reals as expressed in binary. Alice picks  $a_1$  Bob picks  $b_1$  Alice picks  $a_2$
Here is a game that is more evidence of Darlings axiom Math Games are NOT Fun Games.

Let  $A \subseteq (0, 1)$ . Think of the reals as expressed in binary. Alice picks  $a_1$  Bob picks  $b_1$  Alice picks  $a_2$  Bob picks  $b_2$ 

Here is a game that is more evidence of Darlings axiom Math Games are NOT Fun Games.

Let  $A \subseteq (0, 1)$ . Think of the reals as expressed in binary. Alice picks  $a_1$  Bob picks  $b_1$  Alice picks  $a_2$  Bob picks  $b_2$  etc.

Here is a game that is more evidence of Darlings axiom Math Games are NOT Fun Games.

Let  $A \subseteq (0, 1)$ . Think of the reals as expressed in binary. Alice picks  $a_1$  Bob picks  $b_1$  Alice picks  $a_2$  Bob picks  $b_2$  etc. If  $.a_1b_1a_2b_2\cdots \in A$  then Alice wins.

Here is a game that is more evidence of Darlings axiom Math Games are NOT Fun Games.

Let  $A \subseteq (0, 1)$ . Think of the reals as expressed in binary. Alice picks  $a_1$  Bob picks  $b_1$  Alice picks  $a_2$  Bob picks  $b_2$  etc. If  $.a_1b_1a_2b_2\cdots \in A$  then Alice wins. If  $.a_1b_1a_2b_2\cdots \notin A$  then Bob wins.

Here is a game that is more evidence of Darlings axiom Math Games are NOT Fun Games.

Let  $A \subseteq (0, 1)$ . Think of the reals as expressed in binary. Alice picks  $a_1$  Bob picks  $b_1$  Alice picks  $a_2$  Bob picks  $b_2$  etc. If  $.a_1b_1a_2b_2\cdots \in A$  then Alice wins. If  $.a_1b_1a_2b_2\cdots \notin A$  then Bob wins. A set  $A \subseteq (0, 1)$  is **determined** if either Alice or Bob has a winning strategy.

Here is a game that is more evidence of Darlings axiom Math Games are NOT Fun Games.

Let  $A \subseteq (0, 1)$ . Think of the reals as expressed in binary. Alice picks  $a_1$  Bob picks  $b_1$  Alice picks  $a_2$  Bob picks  $b_2$  etc. If  $.a_1b_1a_2b_2 \cdots \in A$  then Alice wins. If  $.a_1b_1a_2b_2 \cdots \notin A$  then Bob wins. A set  $A \subseteq (0, 1)$  is **determined** if either Alice or Bob has a winning strategy.

**Known** AC implies  $\exists A \subseteq (0, 1)$  which is NOT determined.

Here is a game that is more evidence of Darlings axiom Math Games are NOT Fun Games.

Let  $A \subseteq (0, 1)$ . Think of the reals as expressed in binary. Alice picks  $a_1$  Bob picks  $b_1$  Alice picks  $a_2$  Bob picks  $b_2$  etc. If  $.a_1b_1a_2b_2\cdots \in A$  then Alice wins.

If  $.a_1b_1a_2b_2\cdots \notin A$  then Bob wins.

A set  $A \subseteq (0, 1)$  is **determined** if either Alice or Bob has a winning strategy.

**Known** AC implies  $\exists A \subseteq (0, 1)$  which is NOT determined. **Known** Borel sets are determined.

Here is a game that is more evidence of Darlings axiom Math Games are NOT Fun Games.

Let  $A \subseteq (0, 1)$ . Think of the reals as expressed in binary. Alice picks  $a_1$  Bob picks  $b_1$  Alice picks  $a_2$  Bob picks  $b_2$  etc. If  $.a_1b_1a_2b_2\cdots \in A$  then Alice wins.

If  $.a_1b_1a_2b_2\cdots \notin A$  then Bob wins.

A set  $A \subseteq (0, 1)$  is **determined** if either Alice or Bob has a winning strategy.

**Known** AC implies  $\exists A \subseteq (0, 1)$  which is NOT determined.

Known Borel sets are determined.

Axiom of Determinacy (AD) ALL  $A \subseteq (0,1)$  are determined.

Here is a game that is more evidence of Darlings axiom Math Games are NOT Fun Games.

Let  $A \subseteq (0, 1)$ . Think of the reals as expressed in binary. Alice picks  $a_1$  Bob picks  $b_1$  Alice picks  $a_2$  Bob picks  $b_2$  etc. If  $.a_1b_1a_2b_2\cdots \in A$  then Alice wins.

If  $.a_1b_1a_2b_2\cdots \notin A$  then Bob wins.

A set  $A \subseteq (0, 1)$  is **determined** if either Alice or Bob has a winning strategy.

**Known** AC implies  $\exists A \subseteq (0,1)$  which is NOT determined.

Known Borel sets are determined.

**Axiom of Determinacy (AD)** ALL  $A \subseteq (0, 1)$  are determined. **PRO** AD implies all sets are measurable so NO Banach-Tarski.

Here is a game that is more evidence of Darlings axiom Math Games are NOT Fun Games.

Let  $A \subseteq (0, 1)$ . Think of the reals as expressed in binary. Alice picks  $a_1$  Bob picks  $b_1$  Alice picks  $a_2$  Bob picks  $b_2$  etc. If  $.a_1b_1a_2b_2\cdots \in A$  then Alice wins.

If  $.a_1b_1a_2b_2\cdots \notin A$  then Bob wins.

A set  $A \subseteq (0, 1)$  is **determined** if either Alice or Bob has a winning strategy.

**Known** AC implies  $\exists A \subseteq (0,1)$  which is NOT determined.

Known Borel sets are determined.

Axiom of Determinacy (AD) ALL  $A \subseteq (0, 1)$  are determined. PRO AD implies all sets are measurable so NO Banach-Tarski. PRO Sets of reals are well behaved.

Here is a game that is more evidence of Darlings axiom Math Games are NOT Fun Games.

Let  $A \subseteq (0, 1)$ . Think of the reals as expressed in binary. Alice picks  $a_1$  Bob picks  $b_1$  Alice picks  $a_2$  Bob picks  $b_2$  etc. If  $.a_1b_1a_2b_2\cdots \in A$  then Alice wins.

If  $.a_1b_1a_2b_2\cdots \notin A$  then Bob wins.

A set  $A \subseteq (0, 1)$  is **determined** if either Alice or Bob has a winning strategy.

**Known** AC implies  $\exists A \subseteq (0, 1)$  which is NOT determined.

Known Borel sets are determined.

Axiom of Determinacy (AD) ALL  $A \subseteq (0, 1)$  are determined. PRO AD implies all sets are measurable so NO Banach-Tarski. PRO Sets of reals are well behaved. CON(to some) Negates AC

Here is a game that is more evidence of Darlings axiom Math Games are NOT Fun Games.

Let  $A \subseteq (0, 1)$ . Think of the reals as expressed in binary. Alice picks  $a_1$  Bob picks  $b_1$  Alice picks  $a_2$  Bob picks  $b_2$  etc. If  $.a_1b_1a_2b_2\cdots \in A$  then Alice wins.

If  $.a_1b_1a_2b_2\cdots \notin A$  then Bob wins.

A set  $A \subseteq (0, 1)$  is **determined** if either Alice or Bob has a winning strategy.

**Known** AC implies  $\exists A \subseteq (0, 1)$  which is NOT determined.

Known Borel sets are determined.

Axiom of Determinacy (AD) ALL  $A \subseteq (0, 1)$  are determined. PRO AD implies all sets are measurable so NO Banach-Tarski. PRO Sets of reals are well behaved. CON(to some) Negates AC

**CON** You call that an axiom? (TELL STORY)

Note the following: If A is finite then  $2^A$  is finite.

\*ロト \*昼 \* \* ミ \* ミ \* ミ \* のへぐ

Note the following: If A is finite then  $2^A$  is finite. Restate this: If  $A \subseteq \mathbb{N}$ ,  $|A| < |\mathbb{N}|$  then  $|2^A| < |\mathbb{N}|$ .

Note the following: If A is finite then  $2^A$  is finite. Restate this:

If  $A \subseteq \mathbb{N}$ ,  $|A| < |\mathbb{N}|$  then  $|2^A| < |\mathbb{N}|$ .

Are there any other sets X such that If  $A \subseteq X$ , |A| < |X| then  $|2^A| < |X|$ . (such sets that are BIGGER than  $\mathbb{N}$  are **Inaccessible Cardinals**).

Note the following: If A is finite then  $2^A$  is finite. Restate this: If  $A \subseteq \mathbb{N}$ ,  $|A| < |\mathbb{N}|$  then  $|2^A| < |\mathbb{N}|$ . Are there any other sets X such that If  $A \subseteq X$ , |A| < |X| then  $|2^A| < |X|$ . (such sets that are BIGGER than  $\mathbb{N}$  are **Inaccessible Cardinals**). **Vote** Yes, No, Ind of ZFC.

Note the following: If A is finite then  $2^A$  is finite. Restate this: If  $A \subseteq \mathbb{N}$ ,  $|A| < |\mathbb{N}|$  then  $|2^A| < |\mathbb{N}|$ . Are there any other sets X such that If  $A \subseteq X$ , |A| < |X| then  $|2^A| < |X|$ . (such sets that are BIGGER than  $\mathbb{N}$  are **Inaccessible Cardinals**).

ション ふぼう メリン メリン しょうくしゃ

Vote Yes, No, Ind of ZFC.

Ind of ZFC- sort of

Note the following: If A is finite then  $2^A$  is finite. Restate this:

If  $A \subseteq \mathbb{N}$ ,  $|A| < |\mathbb{N}|$  then  $|2^A| < |\mathbb{N}|$ .

Are there any other sets X such that If  $A \subseteq X$ , |A| < |X| then  $|2^A| < |X|$ . (such sets that are BIGGER than  $\mathbb{N}$  are **Inaccessible Cardinals**).

ション ふぼう メリン メリン しょうくしゃ

Vote Yes, No, Ind of ZFC.

Ind of ZFC- sort of

Such a set X would satisfy the axioms of ZFC.

Note the following: If A is finite then  $2^A$  is finite. Restate this:

If  $A \subseteq \mathbb{N}$ ,  $|A| < |\mathbb{N}|$  then  $|2^A| < |\mathbb{N}|$ .

Are there any other sets X such that If  $A \subseteq X$ , |A| < |X| then  $|2^A| < |X|$ . (such sets that are BIGGER than  $\mathbb{N}$  are **Inaccessible Cardinals**).

Vote Yes, No, Ind of ZFC.

#### Ind of ZFC- sort of

Such a set X would satisfy the axioms of ZFC.

If ZFC could prove that X exists, the ZFC would prove its own consistency, which violates Godel's Second Incompleteness theorem.

Note the following: If A is finite then  $2^A$  is finite. Restate this:

If  $A \subseteq \mathbb{N}$ ,  $|A| < |\mathbb{N}|$  then  $|2^A| < |\mathbb{N}|$ .

Are there any other sets X such that If  $A \subseteq X$ , |A| < |X| then  $|2^A| < |X|$ . (such sets that are BIGGER than  $\mathbb{N}$  are **Inaccessible Cardinals**).

Vote Yes, No, Ind of ZFC.

#### Ind of ZFC- sort of

Such a set X would satisfy the axioms of ZFC.

If ZFC could prove that X exists, the ZFC would prove its own consistency, which violates Godel's Second Incompleteness theorem.

SO ZFC cannot prove X exists.

Note the following: If A is finite then  $2^A$  is finite. Restate this:

If  $A \subseteq \mathbb{N}$ ,  $|A| < |\mathbb{N}|$  then  $|2^A| < |\mathbb{N}|$ .

Are there any other sets X such that If  $A \subseteq X$ , |A| < |X| then  $|2^A| < |X|$ . (such sets that are BIGGER than  $\mathbb{N}$  are **Inaccessible Cardinals**).

Vote Yes, No, Ind of ZFC.

#### Ind of ZFC- sort of

Such a set X would satisfy the axioms of ZFC.

If ZFC could prove that X exists, the ZFC would prove its own consistency, which violates Godel's Second Incompleteness theorem.

SO ZFC cannot prove X exists.

So far ZFC has not been able to show that X does not exist. Most set theorists think that  $ZFC + \exists X$  is consistent.

- イロト イボト イモト - モー のへぐ

Large Cardinal Axiom One Inaccessible Cardinals exist.



Large Cardinal Axiom One Inaccessible Cardinals exist.

**PRO**  $\mathbb{N}$  being the only example of a cardinal closed under powerset would be another example of  $\mathbb{N}$ -privilege, hence violating DEI principles.

Large Cardinal Axiom One Inaccessible Cardinals exist.

**PRO**  $\mathbb{N}$  being the only example of a cardinal closed under powerset would be another example of  $\mathbb{N}$ -privilege, hence violating DEI principles.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

**CON** Is LC1 so obvious as to be a axiom?

#### **Back to Ramsey Theory**

# **Def A Ramsey Cardinal (RC)** X is such that if $\forall \text{COL}: {X \choose 2} \rightarrow [2] \exists \text{ homog } H, |H| = |X|.$

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

#### **Back to Ramsey Theory**

# **Def A Ramsey Cardinal (RC)** X is such that if $\forall \text{COL}: {X \choose 2} \rightarrow [2] \exists \text{ homog } H, |H| = |X|.$

Do RC exist?



#### **Back to Ramsey Theory**

# **Def** A **Ramsey Cardinal (RC)** X is such that if $\forall \text{COL}: \binom{X}{2} \rightarrow [2] \exists \text{ homog } H, |H| = |X|.$

Do RC exist?

**Thm** If X is a RC then X is inaccessible. Hence we cannot prove RC's exist.