
A Survey of Recursive Combinatorics

William Gasarch ∗

Dept. of Comp. Sci. and Inst. for Adv. Studies
University of Maryland
College Park, MD 20742

Contents

1 Introduction 1
1.1 General Philosophy . 2
1.2 Related Work . 3

2 Definitions and Notation 3

3 König’s Lemma 5
3.1 Definition and Classical Version 6
3.2 Recursive Analogue is False 7
3.3 Recursion-Theoretic Modifications 8
3.4 Miscellaneous . 9

4 Ramsey’s Theorem 10
4.1 Definitions and Classical Version 10
4.2 Recursive Analogue is False 12
4.3 How Hard is it to Tell if a Homogeneous set is Recursive? . . . 14
4.4 Recursion-Theoretic Modifications 16
4.5 Connections to Proof Theory 20
4.6 Miscellaneous . 24

4.6.1 2-colorings of [N]ω . 24

∗Supported in part by NSF grants CCR-84-05079, CCR-88-03641, and CCR-90-20079.

1

4.6.2 Almost Homogeneous Sets 25
4.6.3 Degrees of Homogeneous Sets 26
4.6.4 Dual Ramsey Theorem 26
4.6.5 Ramsey Theory and Peano Arithmetic 27

5 Coloring Infinite Graphs 27
5.1 Definitions and Classical Version 27
5.2 Recursive Analogue is False for Recursive Graphs 30
5.3 How Hard is it to Determine χr(G)? 34
5.4 Combinatorial Modification 38
5.5 Recursive Analogue is False for Highly Recursive Graphs . . . 39
5.6 Recursion-Theoretic Modification 44
5.7 Miscellaneous . 45

5.7.1 Bounding the Genus 45
5.7.2 Bounding the degree 46
5.7.3 Regular Graphs . 46
5.7.4 Perfect Graphs . 47
5.7.5 On-line colorings . 47
5.7.6 Coloring Directed Graphs 47
5.7.7 Coloring Interval Graphs 48
5.7.8 Decidable Graphs . 48
5.7.9 A-recursive Graphs . 48
5.7.10 Complexity of Finding χ(G) and χr(G) 49
5.7.11 Actually finding a coloring 50
5.7.12 Polynomial Graphs . 51

6 Hall’s Theorem on Bipartite Graphs 52
6.1 Definitions and Classical Version 52
6.2 Recursive Analogue is False 55
6.3 How Hard is it to Determine if there is a Recursive Solution? . 58
6.4 Recursion-Theoretic Modification 61
6.5 Recursion-Combinatorial Modification 62
6.6 Miscellaneous . 64

7 Dilworth’s Theorem for Partial Orders 65
7.1 Definitions and Classical Version 66
7.2 Recursive Analogue is False 70

2

7.3 How Hard is it to Determine wr(P)? 78
7.4 Combinatorial Modifications 83

7.4.1 Bounding the Recursive Width 84
7.4.2 Bounding the Recursive Width Given Partial Information 92

7.5 Recursion-Theoretic Modification 94
7.6 Recursion-Combinatorial Modification 95
7.7 Miscellaneous . 100

7.7.1 Recursive Dimension 101
7.7.2 Improving the Recursive Width 102
7.7.3 Height . 102

8 Miscellaneous Results in Recursive Combinatorics 102
8.1 Extending Partial Orders . 103
8.2 Vizing’s Theorem . 103
8.3 Graph Isomorphism and Recursive Categoricity 103
8.4 Eulerian and Hamiltonian Paths 104
8.5 Van Der Waerden’s Theorem 105
8.6 Sets of Positive Density . 106
8.7 Abstract Constructions in Recursive Graph Theory 107
8.8 Relativized results . 107
8.9 Applications to Complexity Theory 107
8.10 Applications using Σ1

1-completeness 108
8.11 Ramsey-Type Edge Colorings 109
8.12 Schröder-Bernstein Theorem and Banach’s Theorem 110
8.13 König’s Max-Min Theorem . 110
8.14 Arrow’s Theorem . 111
8.15 An Undecidable Problem in Finite Graph Theory 111
8.16 Hindman’s Theorem . 112
8.17 Recursive Linear Orderings . 112

8.17.1 Recursive Automorphisms 113
8.18 Well Quasi Orderings . 113

9 Acknowledgments 114

3

1 Introduction

Many theorems in infinite combinatorics have noneffective proofs. Nerode’s
recursive mathematics program [124] involves looking at noneffective proofs
and seeing if they can be made effective. The framework is recursion-theoretic.
For example, to see if the theorem (which we denote T) ‘Every vector space
has a basis’ has an effective proof, one might look at the statement (which
we denote S) ‘Given a recursive vector space, one can effectively find a basis
for it’. If statement S is false, then there can be no effective proof of Theo-
rem T (statement S is false, see [123]). We examine theorems about infinite
combinatorics in this context. Given a theorem in infinite combinatorics that
has a noneffective proof, we ask the following three questions:

1. Is the recursive analogue true? (Usually no.)

2. Is some modification of the recursive analogue true? (Usually yes.) The
modification can be either

(a) recursion-theoretic (i.e., in Theorem T above we might replace
‘one can effectively find’ with ‘one can find recursively in the oracle
A’ for some well behaved A), or

(b) combinatorial (i.e., change the type of object you want to find).

3. How hard is it (in the arithmetic hierarchy) to determine if a given
instance of the theorem has a recursive solution?

Item i is an example of recursive mathematics. This field has its roots
in two early papers in recursive algebra [56, 135]; however, Nerode is the
modern founder of recursive mathematics [124]. Item ii.a is an attempt to
measure just how noneffective the proofs are, and is evident in the work
of Jockusch on Ramsey’s Theorem [87]. Item ii.b is an attempt to recover
the effective aspects of combinatorics in infinite domains, and was first men-
tioned by Kierstead in his work on Dilworth’s theorem for infinite partial
orders [94]. Item iii was an outgrowth of an attempt to link recursive graph
theory to complexity theory. For example, 3-colorability of finite graphs is of
unknown complexity (since it is NP-complete), so the problem of determin-
ing if an infinite graph is 3-colorable might be a good analogue. This was
the (unstated) motivation behind the first paper that analyzed such issues

4

[13]. Item iii was first pursued by Beigel and Gasarch [13]. Subsequent work
has been done by Harel [77], and Gasarch and Martin [66].

There are not many published papers pursuing item iii, so many such
results appear here for the first time.

1.1 General Philosophy

In each section of this paper we will state a noneffective theorem, sketch a
proof, and then consider possible recursive analogues and their modifications.
More detail than usual will be given in the proofs of the noneffective theorems.
This is because (1) if we want to examine a noneffective proof, then that proof
ought to be in this paper, and (2) these proofs tend to not get written down,
as most authors (rightly so) just say ‘by the usual compactness arguments’
or ‘by König’s lemma on infinite trees.’

Some of the proofs in this paper look similar and can probably be put into
an abstract framework. Indeed, (1) abstract frameworks for constructions of
recursive partial orders [97] and recursive graphs [31] have been worked out,
and (2) an abstract framework for recursion-theoretic theorems, namely the
theory of Π0

1 classes [35] has been worked out. We do not use these or other
frameworks, because such devices make reading more difficult for readers not
familiar with the area.

Each section has a subsection of miscellaneous results, as does the paper.
The results mentioned here are not proven and are intended more to point
the reader to references.

It was my intention to mention every single result in recursive combina-
torics that was known. While it is doubtful that I’ve succeeded, I believe I
have come close.

1.2 Related Work

Downey has written a survey [49] of recursive linear orderings. In addition,
the last chapter of Rosenstein’s book [143] is on recursive linear orderings.
Cenzer and Remmel have written a survey [35] on Π1

0 classes. These arise
often in recursive combinatorics and in other parts of recursive mathematics.

In this survey we often give index-set results about how hard certain
combinatorical results are. Cenzer and Remmel [34] have refined some of
those results.

5

2 Definitions and Notation

In this section we present definitions and notations that are used throughout
this paper. We do not define notions relevant to combinatorical objects in
this section, but rather in the section where they are used (e.g., ‘homogeneous
set’ is defined in the section on Ramsey Theory).

All recursion-theoretic notation is standard and follows [159].

Notation 2.1 Let A ⊆ N and k ∈ N.

1. [A]k is the set of all k-element subsets of A.

2. ∃∞ means ‘for infinitely many’.

3. ∀∞ means ‘for all but a finite number of’.

4. µx[P (x)] means ‘the least x such that P (x) holds’.

5. A() and χA both represent the characteristic function of A.

6. ⟨x, y⟩ is a recursive bijection from N×N to N. Similarly for ⟨x1, . . . , xn⟩.
All functions in this paper are on 1 variable; however we may write
f(⟨x, y⟩) and {e}(⟨x, y⟩) as f(x, y) and {e}(x, y).

7. {0}, {1}, . . . is a standard list of all Turing machines. We use {e}
for both the Turing machine and the partial recursive function that it
computes. We is the domain of {e}.

8. {0}(), {1}(), . . . is a standard list of all oracle Turing machines. We use
{e}A for both the oracle Turing machine with oracle A, and the partial
recursive-in-A function that it computes. WA

e is the domain of {e}A.

9. K is the halting set, Ks denotes the first s elements in some fixed re-
cursive enumeration of K. TOT01 denotes the set of indices of total
functions that are 0-1 valued. TOTINF01 denotes the set of indices
of total functions that are 0-1 valued and take on the value 0 infinitely
often TOTa is the set of indices of total functions whose image is con-
tained in {1, . . . , a}.

6

10. If A is a set then A′, the jump of A, is {e : {e}A(e) ↓}, i.e., the
halting set relative to A. If f is a function, then f ′, the jump of f , is
{e : {e}f (e) ↓}, where {e}() is defined in such a way as to be able to
access a function instead of a set.

11. If σ is a finite sequence of natural numbers then we think of it as being
a function from {0, 1, . . . , |σ|−1} to N, which we also denote by σ. The
value of σ(i) is the i + 1st element of the sequence (we do this since
there is no ‘0th element of a sequence’). Hence the value of σ(i) is the
value of the function at i.

12. If σ is an infinite sequence of natural numbers then we think of it as
being a function from N to N, and the same conventions as in the last
item apply.

13. If σ is a finite sequence and τ is a finite or infinite sequence then σ ⪯ τ
means that σ is a prefix of τ , and σ ≺ τ means that σ is a proper prefix
of τ .

14. If Σ is a set then Σ∗ is the set of finite strings over Σ. The most usual
uses are {0, 1}∗ and N∗.

15. λ denotes the empty string.

In this paper we often deal with functions where we care about the answer
only if the input is of a certain form. We will ignore what happens otherwise.
For example, in Section 5 we will have a convention by which certain numbers
represent graphs, and others do not; and we may want f(e) to be meaningful
only if e represents a graph. For this reason we introduce the notion of a
Promise Problem, originally defined (in a complexity theory context) in [53].

Definition 2.2 A promise problem is a set D together with a partial func-
tion f such that D is a subset of the domain of f . Let (D, f) be a promise
problem, and X be a set. A solution to (D, f) is a total function g that
agrees with f on D. (D, f) is recursive in X if there is a solution g to (D, f)
such that g ≤T X. X is recursive in (D, f) if, for every solution g to (D, f),
X ≤T g.

7

Definition 2.3 Let (D,A) be a promise problem where A is a 0-1 valued
partial function. A solution to (D,A) is a set B that agrees with A on D.
(D,A) is Σn if some solution is a Σn set. (D,A) is Σn-hard if all solutions
are Σn-hard sets. A promise problem is Σn-complete if it is both in Σn and
is Σn-hard. The same definitions apply to Πn.

3 König’s Lemma

König’s lemma is an important theorem in infinite combinatorics. Many
theorems in infinite combinatorics can be derived from it, including Theorems
4.3, 5.3, 6.5, and 7.3. We do not prove these theorems using König’s lemma,
since we want each chapter to be self contained.

In this section we (1) present a proof of the classical König’s lemma, (2)
show that a recursive analogue is false and give an index set version, and
(3) state (but do not prove) a recursion-theoretic analogue that is true. The
latter is due to Jockusch and Soare [90] and is called the ‘low basis theo-
rem.’ We will use it in later chapters to obtain recursion-theoretic versions
of theorems in infinite combinatorics.

3.1 Definition and Classical Version

Definition 3.1 A tree is a subset T of N∗ such that if σ ∈ T and τ ⪯ σ then
τ ∈ T . A tree is bounded if there exists a function g such that, for all σ ∈ T ,
|σ| ≥ n+ 1⇒ σ(n) ≤ g(n). (Recall that σ(n) is the (n+ 1)st element of the
sequence σ.)

Definition 3.2 Let T be a tree. An infinite branch of T is an infinite
sequence σ such that every finite prefix of σ is in T . To each infinite branch
σ we associate a function as indicated in Notation 2.1.xii. We view T as a
set of functions by identifying T with the set of infinite branches of T .

Theorem 3.3 (König’s Lemma [106]) If T is an infinite tree and T is
bounded then T has an infinite branch.

8

Proof:
Let σ0 = λ and note that σ0 ∈ T . Assume inductively that σn ∈ T and

the set {σ ∈ T : σn ⪯ σ} is infinite. Let

an = µx[σnx ∈ T ∧ |{σ ∈ T : σnx ⪯ σ}| = ℵ0]
σn+1 = σnx

For all n an exists because T is bounded. The sequence a0, a1, . . . is an
infinite branch of T .

The proof of Theorem 3.3 given above is noneffective. To see if the proof
could have been made effective we will look at a potential analogue. In order
to state this analogue we need some definitions.

Definition 3.4 A tree T is recursive if the set T is recursive. A tree T is
recursively bounded if T is recursive, T is bounded, and the bounding function
is recursive.

Definition 3.5 A number e = ⟨e1, e2⟩ is an index for a recursively bounded
tree if (1) e1 ∈ TOT01 and decides a set we denote T , (2) the set T is a
tree, (3) e2 ∈ TOT and {e2} is a bounding function for T . T is the tree
determined by e. The tree determined by e is denoted Te. We denote the set
of indices for recursively bounded trees by TREE. Note that TREE is Π2.

Potential Analogue 3.6 There is a recursive algorithm A that performs
the following. Given an index e for an infinite recursively bounded tree T ,
A outputs an index for a recursive infinite branch. A consequence is that all
infinite recursively bounded trees have recursive infinite branches.

3.2 Recursive Analogue is False

We show that the potential analogue is false. This was first shown by
Kleene [104] and seems to be the first negative result in recursive combi-
natorics.

Definition 3.7 A pair of sets A and B is recursively inseparable if A∩B = ∅
and there is no recursive R such that A ⊆ R and B ⊆ R.

9

Note 3.8 The sets A = {x : φx(x) ↓= 0} and B = {x : φx(x) ↓= 1} are
easily seen to be a pair of r.e. recursively inseparable sets.

Theorem 3.9 There exists an infinite recursively bounded tree with no infi-
nite recursive branches.

Proof: Let A,B be a pair of r.e. sets that are recursively inseparable.
We define a recursively bounded tree T such that every infinite branch of T
codes a set that separates A and B. Let T be defined by σ ∈ T iff

1. (∀i < |σ|)σ(i) ∈ {0, 1},

2. (∀i < |σ|)i ∈ A|σ| ⇒ σ(i) = 1,

3. (∀i < |σ|)i ∈ B|σ| ⇒ σ(i) = 0.

Clearly T is recursively bounded and every infinite branch of T is the
characteristic function of a set that separates A and B. Since A and B are
recursively inseparable, T has no infinite recursive branches.

Theorem 3.10 The set

RECBRANCH = {e | Te has a recursive infinite branch }.

is Σ3-complete.

Proof:
RECBRANCH consists of all ⟨e1, e2⟩ ∈ TREE such that there exists i

with the following properties:

1. i ∈ TOT01.

2. (∀σ)[{i}(σ) = 1⇒ {e1}(σ) = 1].

3. (∀σ)(∃x)(∀y ≤ {e2}(|σ| + 1), y ̸= x)[({i}(σ) = 1 ⇒ ({i}(σx) = 1 ∧
{i}(σy) = 0)].

10

Clearly RECBRANCH is in Σ3. To show that RECBRANCH is Σ3-
complete we use the Σ3-complete set

SEP = {⟨x, y⟩ : Wx and Wy are recursively separable}.

(For a proof that this set is Σ3-complete see [159].) We show SEP ≤m

RECBRANCH.
Given ⟨x, y⟩ we define a recursively bounded tree T such that every infinite

branch of T codes a set that separatesWx andWy. Let T be defined by σ ∈ T
iff the following hold.

1. (∀i < |σ|)[σ(i) ∈ {0, 1}].

2. (∀i < |σ|)[i ∈ Wx,|σ| ⇒ σ(i) = 1].

3. (∀i < |σ|)[i ∈ Wy,|σ| ⇒ σ(i) = 0].

Clearly T is recursively bounded and every infinite branch of T is the
characteristic function of a set that separates Wx and Wy. Hence T has an
infinite recursive branch iff ⟨x, y⟩ ∈ SEP .

3.3 Recursion-Theoretic Modifications

Kreisel [109] showed that every infinite recursively bounded tree has a branch
B ≤T K (this follows easily from examining the proof of König’s Lemma).
Shoenfield [149] improved this to B <T K. Jockusch and Soare [90] improved
this further to B′ ≤T K. This is referred to as ‘the low basis theorem.’

We introduce some notation which we will use later when applying the
low basis theorem, then state the theorem in that notation.

Definition 3.11 A set of functions F is Π0
1 if there exists a recursive predi-

cate R such that f ∈ F iff (∀n)[R(⟨f(0), . . . , f(n)⟩)]. If, in addition, there is
a recursive function g such that (∀f ∈ F)(∀n)f(n) ≤ g(n), then F is called
a recursively bounded Π0

1 class. This definition easily relativizes to Π0,A
1 class

by taking R ≤T A.

Theorem 3.12 (Low Basis Theorem [90]) If F is a nonempty recursively
bounded Π0

1 class, then there exists f ∈ F such that f ′ ≤T K.

11

There is also a relativized form.

Theorem 3.13 (Relativized Low Basis Theorem) Let B be a set and
F be a nonempty Π0,B

1 class. If there exists g ≤T B such that (∀f ∈ F)(∀n ∈
N)[f(n) ≤ g(n)], then there exists f ∈ F such that f ′ ≤T B′.

To apply the theorem later, and to see that it yields a recursion-theoretic
version of König’s Lemma, we need the following proposition.

Proposition 3.14 If T is a recursive (recursively bounded) tree, then the
set of infinite branches forms a (recursively bounded) Π0

1 class.

Corollary 3.15 If T is an infinite recursively bounded tree than T has an
infinite branch B such that B′ ≤T K.

3.4 Miscellaneous

Carstens and Golze [29] considered adding some number of cross connections
to the tree and seeing if it then had a recursive path. A tree with cross
connections is a graph that can be looked at as a tree with some of the
vertices on a level connected to each other. The nth level is saturated if for
all sets of n vertices on that level there exist two that are connected. A
tree is highly recursive if, given a node, you can determine all of its children.
Carstens and Golze showed that if G is a highly recursive tree with cross
connections such that every level is saturated, then there exists a recursive
infinite path. They were motivated by questions about one-dimensional cell
spaces.

4 Ramsey’s Theorem

We consider Ramsey’s Theorem on colorings of [N]2. We (1) present the
classical proof of the Ramsey’s Theorem on colorings of [N]2, due to Ram-
sey [136, 137] (see [68] for several proofs), (2) show that a recursive analogue
of Ramsey’s Theorem is false and give an index-set version, (3) show that
there are two recursion-theoretic modifications that are true, (4) state some
results in proof theory that are related to this work, and (5) state some
miscellaneous results.

12

4.1 Definitions and Classical Version

Definition 4.1 A k-coloring of [N]m is a map from [N]m into {1, 2, . . . , k}.
(It does not need to satisfy any additional properties.) The elements of
{1, 2, . . . , k} are called colors. If k = 2, then we may refer to 1 as ‘RED’and
2 as ‘BLUE’ (note that RED<BLUE).

Definition 4.2 Let c be a k-coloring of [N]m, i be a color, and A ⊆ N. A
is i-homogeneous with respect to c if (1) A is infinite, and (2) for all distinct
x1, . . . , xm ∈ A, c({x1, . . . , xm}) = i. A is homogeneous with respect to c if
there is an i such that A is i-homogeneous with respect to c. We often drop
the ‘with respect to c’ if the coloring is clear from context.

We exhibit a whimsical scenario to illustrate these concepts. Suppose
that you host a party with a countably infinite number of guests. Assume
their names are 0,1,2,. . .. Color each pair of guests RED if they know each
other, and BLUE if they do not. This is a 2-coloring of [N]2. A RED-
homogeneous set is an infinite set of people all of whom know each other,
and a BLUE-homogeneous set is an infinite set of people no two of whom
know each other.

We will later see that Ramsey’s theorem (infinite version) guarantees that
there is either a RED-homogeneous set or a BLUE-homogeneous set. This
was first proven by Ramsey [136, 137]. For more on Ramsey theory (mostly
finite versions) see [68].

We study the following simplified version of Ramsey’s theorem (the gen-
eral version involves m-colorings of [N]k). We give a direct proof; it can also
be proven by König’s Lemma (Theorem 3.3).

Theorem 4.3 If c is a k-coloring of [N]2, then there exists a homogeneous
set.

Proof:
The variable d will range over the colors {1, . . . , k}.
Let A0 = N and a1 = 1. Assume inductively that An−1 ⊆ N, a1, . . . , an ∈

N, and c1, . . . , cn−1 ∈ {1, . . . , k} have been defined such that (1) An−1 is

13

infinite, (2) a1, . . . , an are distinct, and (3) (∀i)(1 ≤ i ≤ n−1)(∀x ∈ Ai−{ai})
c({x, ai}) = ci. Let

cn = µd[|{x : c({x, an}) = d} ∩ An−1| =∞] (exists since An−1 is infinite),
An = {x : c({x, an}) = cn} ∩ An−1 (is infinite by the choice of cn),

an+1 = µx[x ∈ An − {a1, . . . , an}] (exists since An is infinite).

It is easy to see that these values satisfy (1),(2), and (3) above.
Let d be the least color that appears infinitely often in the sequence

c1, c2, Let A = {ai : ci = d}. It is easy to see that A is d-homogeneous.

The proof of Theorem 4.3 given above is noneffective. To see if the proof
could have been made effective, we look at the following potential analogue.

Potential Analogue 4.4 There is a recursive algorithm A that performs
the following. Given an index e for a recursive 2-coloring of [N]2, A outputs
an index for a recursive homogeneous set. A consequence is that all recursive
2-colorings of [N]2 induce a recursive homogeneous set.

Specker [161] showed that this Potential Analogue is false. We present a
simpler proof by Jockusch [87]. We then show that some recursion-theoretic
modifications are true and are the best possible. In particular, we will show
the following results, all due to Jockusch.

1. There exists a recursive 2-coloring of [N]2 such that no homogeneous
set is r.e.

2. There exists a recursive 2-coloring c of [N]2 such that no homogeneous
set is recursive in K. This coloring c also induces no Σ2 homogeneous
sets.

3. Every recursive 2-coloring of [N]2 induces a Π2 homogeneous set. This
is the best possible in terms of the arithmetic hierarchy (by item ii).

4. Every recursive 2-coloring of [N]2 induces a homogeneous set A such
that A′ ≤T ∅′′.

14

4.2 Recursive Analogue is False

Definition 4.5 A set A is bi-immune if neither A nor A has an infinite r.e.
subset.

Theorem 4.6 There exists c, a recursive 2-coloring of [N]2, such that no
homogeneous set is r.e.

Proof:
LetX be a bi-immune set such thatX ≤T K (such is easily constructed by

an initial-segment argument). By the limit lemma (see [159, p. 57]) there ex-
ists a 0-1 valued recursive function f(x, s) such that X(x) = lims→∞ f(x, s).
Let c be the following coloring:

c({a, b}) =
{
f(a, b) + 1 if a < b;
f(b, a) + 1 if b < a.

(The purpose of the ‘+1’ is to ensure that range(c) ⊆ {1, 2}.)
It is easy to see that a 1-homogeneous set is an infinite subset of X,

and a 2-homogeneous set is an infinite subset of X. Since X is bi-immune,
there are no infinite r.e. subsets of X or X, hence there are no r.e. infinite
homogeneous sets.

Theorem 4.7 There exists c, a recursive 2-coloring of [N]2, such that no
homogeneous set is recursive in K. This coloring also has no Σ2 homogeneous
set.

Proof:
By the limit lemma, for every set A ≤T K there exists a 0-1 valued

primitive recursive f such that A(x) = lims→∞ f(x, s). Let f0, f1, f2, . . . be a
standard enumeration of all 2-place 0-1 valued primitive recursive functions.
Let Ai be the partial function defined by Ai(x) = lims→∞ fi(x, s) (if for x the
limit does not exist, then Ai(x) is not defined). Note that every set recursive
in K is some Ai. We use Ai to represent both the set and its characteristic
function.

We construct c, a recursive 2-coloring of [N]2, to satisfy the following
requirements:

15

Re: Ae total, infinite ⇒ (∃x, y, z ∈ Ae)[x, y, z distinct and c({x, z}) ̸=
c({y, z})]

It is easy to see that such a c will have no homogeneous set A ≤T K.
Let As

e = {x : fe(x, s) = 1} ∩ {0, 1, . . . , s− 1}.
CONSTRUCTION

Stage s: In this stage we will determine c({s, 0}), c({s, 1}), . . . , c({s, s− 1}),
and try to satisfy R0, . . . , Rs. For each Re (0 ≤ e ≤ s) in turn we look for
the least two elements x, y ∈ As

e such that c({s, x}) and c({s, y}) are not yet
determined. If such an x and y exist, then set c({s, x}) = 1 and c({s, y}) = 2.
After all the requirements are considered, set c({s, x}) = 1 for all x ≤ s− 1
such that c({s, x}) is not determined.

END OF CONSTRUCTION.
It is clear that c is recursive. We show that each Re is satisfied. Assume

Ae is total and infinite. Let x1 < x2 < · · · < x2e+2 be the first 2e+2 elements
of Ae. Let s′ be such that for all y ≤ x2e+2, for all t ≥ s′, fe(y, t) = Ae(y).
Let s be the least stage such that s ≥ s′ and s ∈ Ae. At stage s, when
considering Re, at most 2e of the pairs {s, xi} will have been colored (each
Re′ , 0 ≤ e′ ≤ e − 1, colors at most two pairs). Hence there exist x, y ∈
{x1, . . . , x2e+2} ⊆ Ae such that c({s, x}) ̸= c({s, y}). Since x, y, s ∈ Ae, Re is
satisfied.

We now show that c has no homogeneous Σ2 sets. Assume, by way of
contradiction, that there is a Σ2 homogeneous set. Every infinite Σ2 set has
an infinite subset that is recursive in K, hence there exists an infinite subset
B (of the homogeneous set) such that B ≤T K. Since an infinite subset of a
homogeneous set is homogeneous, B is a homogeneous set. Since B ≤T K,
this contradicts the nature of c.

4.3 How Hard is it to Tell if a Homogeneous set is
Recursive?

In Section 4.2 we saw that it is possible for a recursive 2-coloring of [N]2 to
not induce any recursive homogeneous sets. We examine how hard it is to
tell if this is the case. We will show that the problem of determining if a
coloring induces a recursive homogeneous set is Σ3-complete.

16

Notation 4.8 Throughout this section let D be the set of indices for total
recursive functions whose range is a subset of {1, 2}. We interpret elements
of D as 2-colorings of [N]2.

Lemma 4.9 There exists a recursive function f such that
x ∈ COF ⇒ {f(x)}K decides a finite set,
x /∈ COF ⇒ {f(x)}K decides a bi-immune set.

Proof:
Given x, we ‘try’ to construct a bi-immune set A ≤T K by an initial-

segment argument. If x ∈ COF , then our attempt will fail and A will be
finite; however, if x /∈ COF , then our attempt will succeed.

We try to construct A to satisfy the following requirements:
R2e : We infinite ⇒ (∃y ∈ We − A),
R2e+1 : We infinite ⇒ (∃y ∈ We − A).
At the end of stage s of the construction, we will have (1) As, an initial

segment of A, and (2) is, the index of the next requirement that needs to be
satisfied. Note that if |As| = n, then A has been determined for 0, 1, . . . , n−1.

Formally the construction should be of an oracle Turing machine {f(x)}().
Informally, we write it as a construction recursive in K, since the only oracle
we use is K.

CONSTRUCTION of {f(x)}K .
Stage 0: A0 = λ (the empty string). i0 = 0.

Stage s+1: Ask K ‘s ∈ Wx?’ If YES, then set As+1 = As0, is+1 = is, and
go to the next stage. If NO, then we work on satisfying Ris . There are two
cases, depending on whether is is even or odd.

If is = 2e, then do the following: Ask K ‘(∃y ∈ We)[y ≥ |As|]?’ (so
A(y) has not yet been determined). If NO, then We is finite, so R2e is
satisfied, hence we set As+1 = As0 and is+1 = is + 1. If YES, then we set
As+1 = As0

y+1−|As| (so A(y) = 0) and is+1 = is + 1.
If is = 2e + 1, then do the following. Ask K ‘(∃y ∈ We)[y ≥ |As|]?’

(so A(y) has not yet been determined). If NO, then We is finite, so R2e is
satisfied, hence we set As+1 = As0 and is+1 = is + 1. If YES, then we set
As+1 = As0

y−|As|1 (so A(y) = 1) and is+1 = is + 1.

END OF CONSTRUCTION

17

If x ∈ COF , then for almost all s we merely append 0 to As. Hence A is
finite, and {f(x)}K decides a finite set.

If x /∈ COF , then for every i, requirement Ri is satisfied at stage s + 1,
where s is the i+ 1st element of W x. Hence all requirements are satisfied, A
is bi-immune, and {f(x)}K decides a bi-immune set.

Theorem 4.10 The set

RECRAM = {e : e ∈ TWOCOL and {e} induces a recursive homog. set}

is Σ3-complete.

Proof:
RECRAM consists of all e ∈ TWOCOL such that there exist i, d with

the following properties:

1. i ∈ TOT01 and d ∈ {1, 2},

2. (∃∞x){i}(x) = 1,

3. (∀x, y)[({i}(x) = 1 ∧ {i}(y) = 1 ∧ x ̸= y)⇒ {e}(x, y) = d].

Clearly RECRAM is Σ3. To show that RECRAM is Σ3-hard we show
that COF ≤m RECRAM .

Given x, we produce an index for a recursive coloring of [N]2 such that
x ∈ COF iff that coloring has a recursive homogeneous set. Let f be defined
as in Lemma 4.9. Let Ax be the set decided by {f(x)}K and let g be the
total recursive 0-1 valued function such that Ax(z) = lims→∞ g(z, s) (g exists
by the limit lemma ([159, p. 57]). Let c be the coloring defined by

c({a, b}) =
{
g(a, b) + 1 if a < b;
g(b, a) + 1 if b < a.

(The purpose of the ‘+1’ is to ensure that range(c)⊆ {1, 2}.) Let e be the
index of this coloring. Note that e can be found effectively from x.

If x /∈ COF , then Ax is bi-immune, so c is identical to the coloring in
Theorem 4.6. Hence, by the reasoning used there, no homogeneous set can
be Σ1. Hence no homogeneous set can be recursive.

18

If x ∈ COF , then Ax is finite. We show that in this case there is a re-
cursive homogeneous set, by defining a recursive increasing function h whose
range is homogeneous. Let a be the least number such that none of the
numbers a, a+ 1, a+ 2, . . . are in Ax.

h(0) = a
h(n+ 1) = µb[

∧n
i=0(b > h(i) ∧ g(h(i), b) = 0)]

By induction one can show that h(n) is always defined. It is easy to see
that the set of elements in the range of h forms a homogeneous set.

4.4 Recursion-Theoretic Modifications

Theorem 4.11 If c is a recursive k-coloring of [N]2 then there exists a Π2

homogeneous set.

Proof: We prove the k = 2 case. The general case is similar.
We essentially reprove Ramsey’s Theorem carefully so that the homoge-

neous set is Π2 (the usual proof yields a homogeneous set that is ≤T ∅′′).
We construct a sequence of numbers a1 < a2 < · · · < ai · · · and a sequence

of colors c1, c2, . . . , ci, . . . (we think of ai as being colored ci). The set R of
red numbers will be Π2 in any case, but possibly finite. If R is infinite, then
it will be the homogeneous Π2 set that we seek. If R is finite, then the set B
of blue numbers will be Π2 and infinite; hence it will be our desired Π2 set.

We approximate the ai’s and ci’s in stages by asi and csi . We prove that
both lims→∞ asi and lims→∞ csi exist.

By coloring asi by csi (for 1 ≤ i ≤ k) we are guessing that there is an
infinite number of n such that, for all i ≤ k, c({asi , n}) = csi . We will initially
guess that a number is colored RED, but we may change our minds.

CONSTRUCTION

Stage 0: Set a01 = 0 and color it RED, i.e. c01 =RED.

Stage s+1: We have as1 < · · · < ask (some k) and we want to extend it. Let
M be larger than any number that has ever been an ati for any t ≤ s. Ask
the following question (recursive in K): ‘Does there exist n > M such that,
for all i ≤ k, c({asi , n}) = csi?’

If the answer is YES, then look for n until you find it. Set as+1
k+1 = n and

cs+1
k+1 =RED, and for all i ≤ k set as+1

i = asi and cs+1
i = csi .

19

If the answer is NO, then by a series of similar questions find the value
of max{m : m ≤ k − 1 and (∃n > M)(∀i ≤ m)[c({asi , n}) = csi]} (the
value m = 0 is permitted). Denote this number by m. Let n > M be the
least number such that (∀i ≤ m)[c({asi , n}) = csi]. Note that since m was
maximum, the statement ‘(∀i ≤ m + 1)[c({asi , n}) = csi]’ is false. Hence
c({asm+1, n}) ̸= csm+1. We will keep asm+1 but change its color, and discard
all asi with i ≥ m + 2. Formally, (1) set as+1

m+1 = asm+1, (2) set cs+1
m+1 to the

opposite of what csm+1 was, (3) for i ≤ m set as+1
i = asi and cs+1

i = csi , and
(4) for i ≥ m+2, as+1

i and cs+1
i are undefined. The numbers asi for i ≥ m+2

are called discarded.

END OF CONSTRUCTION.
We show that (1) the sequences of ai’s and ci’s reach limits, and (2) either

the set of RED numbers or the set of BLUE numbers is a Π2 homogeneous
set.

Claim 1: For all e, lims→∞ ase exists and lims→∞ cse exists.

Proof of Claim 1: Note that when a value of m is found in the NO case of
the construction, then the elements discarded are those in places m+ 2 and
larger. This observation will help prove the claim.

We proceed by induction on e. By the above observation, for e = 1,
as1 is never discarded. If ever cs1 turns BLUE, it is because for almost all x
c({as1, x}) is BLUE. Hence it will never change color again.

Assume that the claim is true for i < e, hence for 1 ≤ i ≤ e − 1 there
exists ai = lims→∞ asi and ci = lims→∞ csi . Let s be the least number such
that all the asi and csi (1 ≤ i ≤ e − 1) have settled down, i.e., for all t ≥ s,
ati = ai and cti = ci. By the end of stage s + 1, the values of as+1

e and cs+1
e

are defined. During stages t ≥ s, if the NO case of the construction happens,
then the resulting value of m will be ≥ e. Hence ate will never be discarded,
so ase has reached a limit, which we call ae. Assume ae changes to BLUE at
some stage t ≥ s. During stage t it was noted that for almost all n, if for
all i < e, c({ai, n}) = ci then c({ae, n}) =BLUE. Hence ae will never change
color during a later stage. Hence ce = lims→∞ cse exists.

End of Proof of Claim 1

Claim 2: Let d be either RED or BLUE. If A = {ae : ce = d} is infinite, then
it is homogeneous.

Proof of Claim 2: Let ae, ai be elements of A with e < i. Let s be the least
number such that ase = ae and cse = d. Note that ai must appear in the

20

sequence at a stage past s, and that for all t ≥ s, ase = ate and cse = cte.
By the construction, it must be the case that c({ae, ai}) = d. Hence A is
homogeneous.

End of Proof of Claim 2

Claim 3: Let M = {a1, a2, . . .}, R = {ai : ci =RED}, B = {ai : ci =BLUE}.
The set M is infinite. The sets M and R are Π2. If R is finite, then B is
infinite and Π2.

Proof of Claim 3:
By Claim 1 and the construction M is infinite.
x ∈M iff
(∃s)[[at stage s the YES case occurred with n > x and (∀i)x ̸= asi]∨
[x is discarded at stage s]].
The matrix of this formula is recursive in K, so the entire formula can be

rewritten in Σ2 form. Hence M is Π2.
x ∈ R iff
x /∈M or (∃s)[x changes from RED to BLUE at stage s].
(For x satisfying the second clause, x will either stay in M and be BLUE,

or leave M . In either case, x is not RED.)
The second set is Σ2, since the matrix of the formula is recursive in K.

Hence R is the union of two Σ2 sets, so it is Σ2; therefore, R is Π2.
If R is finite then B = M −R is infinite. Note that the equation

x ∈ B iff x /∈M or x ∈ R

yields a Σ2 definition of B, and hence B is Π2.

End of proof of Claim 3

Theorem 4.12 If c is a recursive k-coloring of [N]2, then there exists a
homogeneous set A such that A′ ≤T ∅′′.

Proof: We prove the k = 2 case. The general case is similar.
We define a Π0

1 class of functions F such that

1. F is nonempty,

2. there exists g ≤T K such that (∀f ∈ F)(∀n)[f(n) ≤ g(n)], and

21

3. for every f ∈ F there exists A ≤T f such that A is homogeneous.

The desired theorem will follow from Theorem 3.13. We describe F by
describing a recursive tree T (see Proposition 3.14).

For σ = (⟨a0, c0⟩, ⟨a1, c1⟩, . . . , ⟨ak, ck⟩), σ ∈ T iff

1. a0 = 0,

2. for all i, 0 ≤ i ≤ k, ci ∈ {1, 2} (we think of the ci as being colors), and

3. for all j, 1 ≤ j ≤ k, aj = µx[x > aj−1 ∧ (∀i ≤ j − 1) c({ai, x}) = ci].

It is clear that testing σ ∈ T is recursive. By a noneffective proof (similar
to the construction of a0, a1, . . . in the proof of Theorem 4.3) one can show
that T has an infinite branch, hence F is nonempty.

We now define a bounding function g ≤T K. We need two auxiliary
functions, NEXT and h.

Let σ = (⟨a0, c0⟩, . . . , ⟨an, cn⟩).

NEXT (σ) =
{
µx[x > an ∧ (∀i ≤ n) c({ai, x}) = ci] if it exists and σ ∈ T ;
0 otherwise.

Note that NEXT ≤T K; and that if σ = (⟨a0, c0⟩, . . . , ⟨an, cn⟩) and σ ∈ T ,
then either

1. NEXT (σ) = x ̸= 0, hence

(a) (⟨a0, c0⟩, . . . , ⟨an, cn⟩, ⟨x, 1⟩) ∈ T , and

(b) (⟨a0, c0⟩, . . . , ⟨an, cn⟩, ⟨x, 2⟩) ∈ T , or

2. NEXT (σ) = 0 and there are no extensions of σ on T .

Let h be defined by h(0) = 1, and

h(n+ 1) = max
a1,...,an∈{1,2,...,h(n)}, c0,...,cn∈{1,2}

NEXT (⟨a0, c0⟩, . . . , ⟨an, cn⟩).

Note that h ≤T K and for all σ ∈ T , for all n, h(n) bounds the first compo-
nent of σ(n).

22

Let g(n) = maxx≤h(n){⟨x, 1⟩, ⟨x, 2⟩}. Clearly g ≤T K and for every σ ∈ T
and n ∈ N, σ(n) ≤ g(n).

Let f be a function defined by an infinite branch of T (i.e., f ∈ F). Let
c ∈ {1, 2} be such that ∃∞nf(n) = ⟨an, c⟩. Let A = {a : (∃i)f(i) = ⟨a, c⟩}.
The set A is homogeneous by the definition of f . Since f is increasing,
A ≤T f .

Theorem 4.12 has been improved by Cholak, Jockusch and Slaman [37].
We state the theorem but not the proof.

Theorem 4.13 If c is a recursive k-coloring of [N]2, then there exists a
homogeneous set A such that A′′ ≤T ∅′′.

The proof uses the result by Jockusch and Stephan [91] that there is a
low2 r–cohesive set as well as a relativization of a new result of the authors
that if A1, A2, . . . , An are ∆0

2-sets and ∪ni=1Ai = N, then some Ai has an
infinite low2 subset.

4.5 Connections to Proof Theory

We have only considered Ramsey’s Theorem for coloring [N]2. The full the-
orem involves coloring [N]m.

Theorem 4.14 Let m ≥ 1. If c is a k-coloring of [N]m, then there exists a
homogeneous set.

Proof sketch: The proof is by induction on m and uses the technique of
Theorem 4.3.

The above theorem will henceforth be referred to as GRT (General Ram-
sey’s Theorem). Jockusch [87] has shown the following 3 theorems. The
proofs are similar to the proofs of Theorems 4.12, 4.11, and 4.7.

Theorem 4.15 Let m ≥ 1. If c is a recursive k-coloring of [N]m, then there
exists a homogeneous set A such that A′ ≤T ∅(m).

Theorem 4.16 Let m ≥ 1. If c is a recursive k-coloring of [N]m, then there
exists a homogeneous set A ∈ Πm.

23

Theorem 4.17 Let m ≥ 2. There exists a recursive 2-coloring c of [N]m

such that no homogeneous set is Σm.

Several people observed that this last result has implications for proof
theory [168]. We take a short digression into proof theory so that we can
state the observation.

Proof theory deals with the strength required by an axiom system in order
to prove a given theorem. Before discussing axioms, we need a language
strong enough to state the theorem in question.

Definition 4.18 Let L1 be the language that contains the usual logical sym-
bols, variables that we intend to range over N, constant symbols 0,1, and the
usual arithmetic symbols +, <,×. Peano Arithmetic (henceforth PA) is a set
of axioms that establish the usual rules of addition and multiplication (e.g.,
associative) and allow a sentence to be proven by induction. (For details of
the axioms see any elementary logic texts.)

PA suffices for most finite mathematics such as finite combinatorics and
number theory. Gödel ([67], but see any elementary logic text for a proof in
English) showed that there is a sentence ϕ that can be stated in L1 which is
true but is not provable in PA. The sentence ϕ is not ‘natural’, in that it was
explicitly designed to have this property. Using this result Gödel showed that
the sentence ‘PA is consistent’ (which is expressible in L1) is not provable in
PA. While this sentence is natural to a logician, it may not be natural to a
non-logician. Later in this section we will see sentences that are natural (to
a combinatorist) and true, but which are not provable in PA.

Note that GRT cannot be stated in L1. Hence we go to a richer language
and axiom system.

Definition 4.19 Let L2 be L1 together with a second type of variable (for
which we use capital letters) that is intended to range over subsets of N.
Let CA (classical analysis) be the axioms of PA together with the following
axioms:

1. (∀A)[(0 ∈ A ∧ (∀x)(x ∈ A⇒ x+ 1 ∈ A))⇒ (∀x)(x ∈ A)] (induction).

2. For any formula ϕ(x) of L2 that does not contain the symbol ‘A’ we
have the axiom (∃A)(∀x)[x ∈ A⇔ ϕ(x)] (comprehension).

24

3. (∀A)(∀B)[(∀x)(x ∈ A⇔ x ∈ B)⇒ A = B] (extensionality).

The strength of CA can be moderated by restricting the comprehension
axiom to certain types of formulas.

Definition 4.20 PPA is CA with the comprehension axiom weakened to use
only arithmetic formulas (i.e., formulas with no bound set variables) for ϕ.

Notation 4.21 If S is an axiom system (e.g., PA) and ϕ is a sentence, then
S ⊢ ϕ means that there is a proof of ϕ from S, and ¬(S ⊢ ϕ) means that
there is no proof of ϕ from S.

We can now state and prove a theorem about how hard it is to prove
GRT.

Theorem 4.22 ¬(PPA⊢ GRT).

Proof sketch: Let A(m,X, Y) be a formula in L2 with no bound set vari-
ables. If PPA⊢ (∀m)(∀X)(∃Y)A(m,X, Y), then there exists an i such that
PPA⊢ (∀m)(∀X)(∃Y ∈ ΣX

i)A(m,X, Y). (See [168] for proofs of a similar
theorem by Jockusch and Solovay.)

We hope to make (∀m)(∀X)(∃Y)A(m,X, Y) the statement GRT. Let the
notation X ⊆ [N]m mean that X is a subset of N that we are interpreting
via some fixed recursive bijection of N to [N]m to be a subset of [N]m. This
type of bijection can easily be described in PPA (actually in PA). Note that
one can interpret X ⊆ [N]m to mean that X represents a 2-coloring of [N]m

in which all elements of X are RED and all elements not in X are BLUE.
Let A(m,X, Y) be the statement

X ⊆ [N]m ⇒ Y is homogeneous for the coloring X.

Note that (∀m)(∀X)(∃Y)A(m,X, Y) is GRT. Assume, by way of contra-
diction, that PPA⊢GRT. Then there exists i such that

PPA⊢ (∀m)(∀X)(∃Y ∈ ΣX
i)A(m,X, Y),

hence (∀m)(∀X)(∃Y ∈ ΣX
i)A(m,X, Y) is true. If X is recursive then ΣX

i =
Σi. Hence we obtain

(∗) (∀m)(∀X,X recursive)(∃Y ∈ Σi)A(m,X, Y).

25

Let m > i. By Theorem 4.17 there exists a recursive 2-coloring of [N]m that
has no Σm homogeneous sets. This coloring will have no Σi homogeneous
sets.

(∃m)(∃Xrecursive)(∀Y ∈ Σi)[¬A(m,X, Y)].

This contradicts ∗. Hence ¬(PPA⊢GRT).

Recall that Gödel showed there is a true sentence ϕ that is independent
of a natural system (PA) but is unnatural (to a non-logician). By contrast,
Theorem 4.22 exhibits a sentence (GRT) that is natural to some mathemati-
cians (combinatorists) but is independent of an unnatural system (PPA).
The question arises as to whether there are natural true sentences that are
independent of natural systems. The answer is yes!

Paris and Harrington [133] proved the following variant of the finite Ram-
sey theorem to be independent of PA. Ketonen and Solovay [93] gave a dif-
ferent proof. A scaled down version of the proof is in Graham, Roth and
Spencer’s book on Ramsey theory [68].

Theorem 4.23 Let p, k,m ∈ N. There exists an n = n(p, k,m) such that
for all k-colorings of [1, 2, . . . , n]m there exists a homogeneous set A such that
|A| ≥ p and |A| is larger than the least element of A. (Homogeneous is the
usual definition except that the set is not infinite.)

The independence proof of Paris and Harrington used model theory, while
the proof of Ketonen and Solovay showed that the function n(p, k,m) grows
too fast to be proven to exist in PA. Both proofs are somewhat difficult.
For an easier independence proof of a natural Ramsey-type theorem see
Kanamori and McAloon [92]. For more on undecidability of Ramsey-type
theorems see [20]. For other examples of natural theorems that are indepen-
dent of natural systems see [155].

While it might be nice to say ‘The independence results obtained by
Jockusch were to foreshadow the later ones of Paris-Harrington and others’,
such a statement would be false. The observation that Jockusch’s work on
Ramsey theory leads to results on independence of true sentences from PPA
happened after, and was inspired by, the Paris-Harrington results.

26

4.6 Miscellaneous

4.6.1 2-colorings of [N]ω

There are versions of Ramsey’s theorem that involve well-behaved colorings
of [N]ω, instead of arbitrary colorings of [N]k. Note that [N]ω is the set of all
infinite subsets of N. View every element of [N]ω as an element of {0, 1}ω, the
characteristic string of the set represented by that element. View [N]ω as a
topological space where X is a basic open set iff there exists σ ∈ {0, 1}∗ such
that X = {f ∈ [N]ω | σ ≺ f}. A coloring c : [N]ω → {1, . . . ,m} is clopen
(Borel, analytic) if there is an i such that c-1i) is clopen (Borel, analytic).
Recall that clopen (in topology) means that both a set and its complement
are the union of basic open sets.

We call a 2-coloring of [N]ω Ramsey if it induces a homogeneous set.
Galvin and Prikry [60] showed that all Borel colorings are Ramsey. Sil-
ver [150] and Mathias [121] improved this by showing that all Σ1

1 colorings
are Ramsey. This result is essentially optimal, since there are models of set
theory which have Σ1

2∩Π1
2 colorings that are not Ramsey (this happens when

V = L); and there are models of set theory where all Π1
2 colorings are Ramsey

(this happens when there is a measurable cardinal [150]). An easier proof of
the Silver-Mathias result was given by Ellentuck [50]. A game-theoretic proof
that uses determinancy was given by Tanaka [163]. See [25] for a summary
of this area.

A special case of the Galvin-Prikry theorem is that clopen colorings are
Ramsey. A 2-coloring c : [N]ω → {1, 2} is recursively clopen if both c-11) and
c-12) can be described as the set of extensions of some recursive subset of
[N]<ω. Simpson [151] showed that the recursive version of the clopen-Galvin-
Prikry theorem is false in a strong way. He showed that for every recursive
ordinal α there exists a recursively clopen 2-coloring such that if A is a
homogeneous set then ∅α ≤T A. Solovay [160] showed that every recursively
clopen 2-coloring induces a hyperarithmetic homogeneous set. Clote [40]
refined these results by looking at the order type of colorings.

4.6.2 Almost Homogeneous Sets

If c is a 2-coloring of [N]2, then an infinite set A ⊆ N is almost homogeneous
if there exists a finite set F such that A − F is homogeneous. A 2-coloring
c of [N]2 is r.e. if either c-1RED) or c-1BLUE) is r.e. An infinite set A

27

is m-cohesive if for every r.e. coloring of [N]m, A is almost homogeneous
(1-cohesive is the same as cohesive).

From the definition it is not obvious that there are sets that are m-
cohesive. We show, in a purely combinatorial way (no recursion theory),
that 2-cohesive sets exist (m-cohesive is similar). Let c1, c2, . . . be the list
of all r.e. 2-colorings (for this proof they could be any countable class of
2-colorings that is closed under finite variations). Let A0 = N and, for all
i > 0, Ai is a subset of Ai−1 which is homogeneous with respect to ci. Let ai
be the least element of Ai−{a0, . . . , ai−1}. The set {a0, a1, . . .} is 2-cohesive.

From the above proof it is not obvious that r.e. colorings have arith-
metic 2-cohesive sets. Slaman [157] showed that there are Π3 2-cohesive sets.
Jockusch [88] showed that there are Π2 2-cohesive sets. His proof combined
the Friedberg-Yates technique used to construct a maximal set (see [159]
Theorem X.3.3) with Jockusch’s technique used to prove Theorem 4.11 (of
this paper). This result is optimal in the sense that there is no Σ2 2-cohesive
set (by Theorem 4.7).

Hummel [85] is investigating, in her thesis, properties of k-cohesive sets.
She has shown that there exists an r.e. 2-coloring c of [N]2 (i.e., one of
c-1RED) or c-1BLUE) is r.e.) such that if B is a homogeneous set then
∅′ ≤T B; hence, if A is a 2-cohesive set then ∅′ ≤T A. She has also shown that
there exists a recursive 2-coloring of [N]2 such that if B is a Π0

2 homogeneous
set then ∅′′ ≤T B ⊕ ∅′; hence, if A is a 2-cohesive Π0

2 set then A ≡T ∅′′.
The construction is the same as that in Theorem 4.7 used to obtain a 2-
coloring such that if A is homogeneous then A ̸≤T K. The proof that this
construction yields this stronger result uses a result of Hummel which is
analogous to Martin’s result [120] that effectively simple sets are complete.

4.6.3 Degrees of Homogeneous Sets

By Theorem 4.7 there are 2-colorings of [N]2 that induce no recursive-in-K
homogeneous sets. The question arises as to whether there are 2-colorings
of [N]2 such that for all homogeneous sets A, K ≤T A. There is such a 2-
coloring of [N]3: color {a < b < c} RED if (∃x < a)[x ∈ Kc−Kb], and BLUE
otherwise (where Kb(Kc) is the set containing the first b (c) elements of K
in some fixed recursive enumeration). This result first appeared in [87] with
a different proof. The proof here was communicated to me by Jockusch.

David Seetapun (reported in [85]) has shown that there is no such coloring

28

of [N]2. Formally, he has shown that for any recursive 2-coloring of [N]2 there
is a homogeneous set in which K is not recursive. The proof uses a forcing
argument.

This problem arose because of possible implications in proof theory. In
Paris’s original paper on theorems unprovable in PA (see [132]) he has a
version of Ramsey’s theorem for 2-colorings of [N]3 that is not provable in
PA. It uses ideas like the ones in the proof above about 2-coloring [N]3. If
the above problem had been solved in the affirmative then there might be a
version of Ramsey’s theorem about 2-colorings of [N]2 that is not provable
in PA. By contrast, Seetapun’s result shows that Ramsey’s theorem for [N]2

is not equivalent to arithmetic comprehension over RCA0. (RCA0 is a weak
fragment of second order arithmetic where (roughly) only recursive sets can
be proven to exist. RCA0 stands for ‘Recursive Comprehension Axiom’. See
[152] for an exposition.)

Seetapun and Slaman [148] have shown that given any sequence of non-
recursive sets C0, C1, . . . and any k-coloring of [N]2 there is an infinite ho-
mogenous set H such that (∀i)[Ci ̸≤T H]. This result has implications for
the proof-theoretic strenght of Ramsey’s Theorem.

4.6.4 Dual Ramsey Theorem

There is a dual version of Ramsey’s theorem that involves coloring the 2-
colorings themselves. The Dual Ramsey Theorem is proven by Carlson and
Simpson [24] and examined recursion-theoretically by Simpson [154].

4.6.5 Ramsey Theory and Peano Arithmetic

Clote [41] has investigated a version of Ramsey’s theorem for coloring initial
segments I of a model of Peano Arithmetic. He has constructed m-colorings
of [I]n that have no Σn weakly-homogeneous subsets (this term is defined in
his paper). From this he derives independence results for Peano Arithmetic.

5 Coloring Infinite Graphs

We consider vertex colorings of infinite graphs. We (1) present the theorem
that a graph is k-colorable iff all of its finite subgraphs are k-colorable (orig-
inally due to de Bruijn and Erdos [45]), (2) show that a recursive analogue is

29

false, (3) show a true combinatorial modification and show that it cannot be
improved, (4) show that there is true recursion-theoretic modification, and
(5) state some miscellaneous results.

5.1 Definitions and Classical Version

Definition 5.1 A graph G = (V,E) is a set V (called vertices) together with
a set E of unordered pairs of vertices (called edges). Edges of the form {v, v}
are not allowed. If v ∈ V then the degree of v in G is |{x ∈ V : {v, x} ∈ E}|.

Definition 5.2 Let G = (V,E) be a graph and k ≥ 1. A k-coloring of G is
a function c from V to {1, 2, . . . , k} such that no two adjacent vertices are
assigned the same value. The values {1, 2, . . . , k} are commonly called colors.
The chromatic number of G, denoted χ(G), is the minimal k such that G is
k-colorable. If no such k exists, then by convention χ(G) =∞. If G = (∅, ∅),
then by convention χ(G) = 0. This is the only graph that is 0-colorable. A
graph is colorable if there exists a k ∈ N such that χ(G) = k.

We show that G is k-colorable iff every finite subgraph of G is k-colorable.
We give a direct proof of the theorem; it can also be proven by König’s Lemma
(Theorem 3.3).

Theorem 5.3 Let G = (V,E) be a countable graph. G is k-colorable iff
every finite subgraph of G is k-colorable.

Proof: Assume every finite subgraph of G is k-colorable. Assume V = N.
Let Gi = (Vi, Ei) be the finite graph defined by Vi = {0, 1, . . . , i} and Ei =
[{0, 1. . . . , i}]2 ∩E. Since Gi is a finite subgraph of G, Gi is k-colorable. Let
ci be a k-coloring of Gi that uses {1, 2, . . . , k} for its colors. We use the ci to
define a k-coloring c of G. Let

c(0) = µx[(∃∞i)ci(0) = x]
c(n+ 1) = µx[(∃∞i)((

∧n
y=0 ci(y) = c(y)) ∧ (ci(n+ 1) = x))]

It is easy to see that c is a k-coloring of G.
The converse is obvious.

30

The proof of Theorem 5.3 given above is noneffective. To see if the proof
could have been made effective we will look at a potential analogue. In order
to state this analogue we need some definitions.

Definition 5.4 A graph G = (V,E) is recursive if V ⊆ N and E ⊆ [N]2 are
recursive.

Definition 5.5 A graph G = (V,E) is highly recursive if every vertex of G
has finite degree and the function that maps a vertex to an encoding of the
set of its neighbors is recursive.

Definition 5.6 Let G = (V,E) be a graph such that V ⊆ N, and let k ≥ 1
(in practice G will be a recursive or highly recursive graph). G is recursively
k-colorable if there exists a recursive function c that is a k-coloring of G. The
recursive chromatic number of G, denoted by χr(G), is the minimal k such
that G is recursively k-colorable. If no such k exists, then by convention
χr(G) = ∞. If G = (∅, ∅), then by convention χr(G) = 0. This is the only
graph that is recursively 0-colorable. A graph is recursively colorable if there
exists a k ∈ N such that χr(G) = k.

We will represent recursive graphs by the Turing machines that determine
their vertex and edge sets. An index for a recursive graph will be an ordered
pair, the first component of which is an index for a Turing machine which
decides the vertex set, the second the edge set.

Definition 5.7 A number e = ⟨e1, e2⟩ determines a recursive graph if e1, e2 ∈
TOT01. The graph that ⟨e1, e2⟩ determines, denoted by Gr

e, has vertex
set V = {x : {e1}(x) = 1} and edge set E = {{x, y} : x, y ∈ V, x ̸=
y, {e2}(x, y) = {e2}(y, x) = 1}.

Definition 5.8 A number ⟨e1, e2⟩ determines a highly recursive graph if e1 ∈
TOT01, e2 ∈ TOT , and if {e2} is interpreted as mapping numbers to finite
sets of numbers then x ∈ {e2}(y) iff y ∈ {e2}(x). The graph that ⟨e1, e2⟩
determines, denoted by Ghr

e , has vertex set V = {x : {e1}(x) = 1} and edge
set E = {{x, y} : x, y ∈ V, x ̸= y, x ∈ {e2}(y)}.

31

Potential Analogue 5.9 There is a recursive algorithm A that performs
the following. Given (1) an index e for recursive graph Gr

e, and (2) an
index i for a recursive function that will k-color any finite subgraph of Gr

e,
A outputs an index for a recursive k-coloring of Gr

e. A consequence is that
every recursive k-colorable graph would be recursively k-colorable. (A similar
analogue and consequence can be stated for highly recursive graphs.)

We will soon (Theorem 5.15) see that this potential analogue is false.
Hence we will look at modifications of it. There are two parameters to relax:
either we can settle for a recursive f(k)-coloring (f is some function) instead
of a k-coloring, or we can settle for a k-coloring that is not that strong in
terms of Turing degree (the coloring will turn out to be of low Turing degree).

We will show the following.

1. There exists a recursive graph G such that χ(G) = 2 but χr(G) =
∞. Hence Potential Analogue 5.9 is false. Moreover, no modification
allowing more colors is true.

2. There exists a highly recursive graph G such that χ(G) = k but
χr(G) = 2k − 1. Hence Potential Analogue 5.9 is false even for highly
recursive graphs.

3. If G is a highly recursive graph that is k-colorable, then one can effec-
tively produce (given an index for G) a recursive (2k−1)-coloring of G.
Hence a combinatorial modification of Potential Analogue 5.9 is true.

4. If G is a recursive graph that is k-colorable, there is a k-coloring of
low degree. Hence a recursion-theoretic modification of Potential Ana-
logue 5.9 is true.

We will need the following definitions from graph theory.

Definition 5.10 Let G1 = (V1, E1) and G2 = (V2, E2) be graphs such that
V1, V2 ⊆ N (in practice they will be recursive graphs). G1 and G2 are iso-
morphic if there is a map from V1 to V2 that preserves edges. We denote this
by G1

∼= G2.

Notation 5.11 Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. G1 ⊆ G2

means that V1 ⊆ V2 and E1 ⊆ E2. G = G1 ∪G2 is the graph with vertex set
V1 ∪ V2 and edge set E1 ∪ E2.

32

5.2 Recursive Analogue is False for Recursive Graphs

We show that for all a, b such that 2 ≤ a < b ≤ ∞, there exists a recursive
graph G such that χ(G) = a and χr(G) = b. The lemmas we prove are more
general than we need for this application, however they will be used again in
Section 5.3.

Definition 5.12 If {e} is a Turing machine and W is a set such that, for all
x ∈ W , {e}(x) ↓, then {e}(W) = {{e}(x) : x ∈ W}.

The next lemma is implicit in [10], though it was stated and proven in [13].

Lemma 5.13 Let i ≥ 0, {e} be a Turing machine, and X be an infinite
recursive set. There exists a finite sequence of finite graphs L1, . . . , Lr such
that the following conditions hold. (For notation Lj = (Vj, Ej).)

1. L1 is a graph consisting of 2i isolated vertices. For every j, 2 ≤ j ≤ r,
Vj−1 ⊆ Vj and Ej−1 ⊆ Ej. For each j, 1 ≤ j ≤ r, (1) Vj ⊆ X, and
(2) canonical indices for the finite sets Vj and Ej can be effectively
computed given e, i, j and an index for X.

2. For every j, 1 ≤ j < r, (1) for all x ∈ Vj, {e}(x) ↓, and (2) Lj+1

can be obtained recursively from Lj and the values of {e}(x) for every
x ∈ Vj.

3. There exists a nonempty set W ⊆ Vr of vertices such that either

(a) {e} is not total on W (so {e} is not a coloring of Lr), or

(b) there exist v ∈ Vr, w ∈ W such that {v, w} ∈ Er and {e}(v) =
{e}(w) (so {e} is not a coloring of Lr), or

(c) for all x ∈ W , {e}(x) ↓, and |{e}(W)| = i + 1 (so {e} is not an
i-coloring of Lr).

4. There is a 2-coloring of Lr in which W is 1-colored. Hence χ(Lr) ≤ 2.

5. An index for a recursive (i+1)-coloring of Lj can be effectively obtained
from e, i, j and an index for X.

6. Lr is planar.

33

The set W witnesses the fact that {e} is not an i-coloring of Lr. We call W
a witness of type 1, 2, or 3, depending on which subcase of (c) it falls under.
If it falls under more than one, then we take the least such subcase.

Proof:
The Turing machine {e} is fixed throughout this proof.
We prove this lemma by induction on i. Assume i = 0 and x is the first

element of X. Let L1 = Lr = ({x}, ∅) and W = {x}. If {e}(x) ↑, then W
is a witness of type 1. If {e}(x) ↓, then W is a witness of type 3. In either
case conditions i–vi are easily seen to be satisfied.

Assume this lemma is true for i. We show it is true for i + 1. Let
X = Y ∪Z be a recursive partition of X into infinite recursive sets such that
indices for Y and Z can be obtained from indices for X. Apply the induction
hypothesis to the values i, e, Y and also to i, e, Z to obtain the following:

1. a sequence of graphs L11, L21, · · · , Lr11, and a set W1 such that the
sequence together with witness set W1 satisfies i–vi (note that all the
vertices are in Y), and

2. a sequence of graphs L12, L22 · · · , Lr22, and a set W2 such that the
sequence together with witness set W2 satisfies i–vi (note that all the
vertices are in Z).

Assume r1 ≤ r2. We define graphs L1, L2, . . . , Lr′ that satisfy the theorem
(r′ will be either r1, r2 or r2 + 1). For 1 ≤ j ≤ r1 let

Lj = Lj1 ∪ Lj2.

If for all x, x a vertex of Lr11, {e}(x) ↓, then for r1 + 1 ≤ j ≤ r2 let

Lj = Lr11 ∪ Lj2.

(If this does not occur, then Lr1 is the final graph and W1 is the witness set.)
In this case we obtain witness sets as follows. If W1 (W2) is a witness of type
1 or 2, then Lr2 is our final graph and W = W1 (W2). The 2-coloring of the
final graph with the witnesses 1-colored can be obtained by combining such
colorings from Lr11 and Lr22. It is easy to see that the sequence of graphs
and the witness set W all satisfy requirements i–vi.

34

If both W1 and W2 are witnesses of type 3, then there are two cases:
(Case 1) If {e}(W1) ̸= {e}(W2), then either there is some element w ∈ W1

such that {e}(w) /∈ {e}(W2), or there is some element w ∈ W2 such that
{e}(w) /∈ {e}(W1). We examine the latter case, the former is similar. Our
final graph is Lr2 and we let W = W1 ∪ {w}. By the induction hypothesis
and the fact that W1 is of type 3, |{e}(W1)| = i + 1. Since w /∈ W1 and
{e}(w) /∈ {e}(W1), |{e}(W1 ∪{w})| = i+2. Hence W is a witness of type 3.
The 2-coloring of the final graph with the witnesses 1-colored can be obtained
by combining such colorings from Lr11 and Lr22.

(Case 2) If {e}(W1) = {e}(W2), then let w be the least element of X that
is bigger than both any element used so far and the number of steps spent
on this construction so far (this is done to make the graph recursive). Let

Lr2+1 = Lr2 ∪ {{u,w} : u ∈ W1}
W = W2 ∪ {w}.

If {e}(w) ↑, then W is a witness of type 1. If {e}(w) ↓∈ {e}(W1), then
since w is connected to all vertices in W1, W is a witness of type 2. If
{e}(w) ↓/∈ {e}(W1) (and hence {e}(w) /∈ {e}(W2)) then {e}(W) = {e}(W2∪
{w}) = {e}(W2)∪ {e}(w), which has cardinality i+ 2; hence W is a witness
of type 3. Hence W is a witness set. A 2-coloring of Lr2+1 with W 1-colored
can easily be obtained from the 2-coloring of Lr11 (that 1-colors W1) and the
2-coloring of Lr22 (that 1-colors W2).

It is easy to see that the sequence L1, L2, · · · , Lr′ and the set W satisfy
i,ii,iii,iv,v,vi. Given e, i, j and an index for X one can effectively find indices
for Y, Z and then use the induction hypothesis and the construction to obtain
an index for an (i+ 1)-coloring of Lj; hence v holds.

Lemma 5.14 Let a ≥ 2, i ≥ a, {e} be a Turing machine, and X be an
infinite recursive set. There exists a finite sequence of finite graphs L1, . . . , Lr

such that the following conditions hold. (For notation Lj = (Vj, Ej).)

1. Every Lj is the union of an a-clique (A, [A]2) and a 2-colorable graph.
For every j, 2 ≤ j ≤ r, Vj−1 ⊆ Vj and Ej−1 ⊆ Ej. For every j,
1 ≤ j ≤ r, (1) Vj ⊆ X, and (2) canonical indices for the finite sets Vj

and Ej can be effectively computed given e, i, j and an index for X.

35

2. For every j, 1 ≤ j < r, Lj+1 can be obtained recursively from Lj and
the values of {e}(x) for every x ∈ Vj − A.

3. χ(Lr) = a (this is the difference between this lemma and Lemma 5.13).

4. An index for a recursive (i+1)-coloring of Lj can be effectively obtained
from a, e, i, j and an index for X.

5. Every Lj is the union of an a-clique and a planar graph.

Proof: Let x1, . . . , xa be the first a elements of X. Let Ka be the a-clique
on the vertices {x1, . . . , xa}. Let L′

1, . . . , L
′
r be the sequence obtained from

applying Lemma 5.13 to e, i,X − {x1, . . . , xa}. For all j, 1 ≤ j ≤ r, let
Lj = L′

j ∪Ka.

Theorem 5.15 Let a, b be such that 2 ≤ a < b ≤ ∞. Let X be an infinite
recursive set. There exists a recursive graph G = (V,E) such that χ(G) = a,
χr(G) = b, and V ⊆ X. If a ≤ 4 then G can be taken to be planar.

Proof:
Recursively partition X into sets U⟨e,i⟩ such that U⟨e,i⟩ is infinite. Let

G(e, i) be the graph constructed in Lemma 5.14 using parameters a, e, i, U⟨e,i⟩
(i.e., G(e, i) is the graph called ‘Lr’). Let G =

⋃∞
e=0

⋃
0≤i<b G(e, i). Clearly

G is recursive and χ(G) = a. Since (∀e)(∀i < b), {e} is not an i-coloring
of G(e, i), we have χr(G) ≥ b. Since (∀e)(∀i < b), χr(G(e, i)) ≤ i + 1 in a
uniform way, χr(G) ≤ b. Combining these inequalities yields χr(G) = b.

Corollary 5.16 There exists a recursive graph G such that χ(G) = 2, χr(G) =
∞, and G is planar.

Note 5.17 The corollary (and its proof) are essentially due to Bean, who
actually showed that there exists a connected recursive graph G such that
χ(G) = 3 and χr(G) =∞. Both Bean’s result and ours are optimal since

1. for connected recursive graphs G, χ(G) = 2⇒ χr(G) = 2, and

2. for recursive graphs G, χ(G) ≤ 1⇒ χr(G) = χ(G).

In addition, both the graph in Bean’s proof and the graph in Corollary 5.16
are planar.

36

5.3 How Hard is it to Determine χr(G)?

Theorem 5.15 says that there are recursive graphs G such that χ(G) and
χr(G) are very different. Given a graph, how hard is it to tell if it is of
this type? In this section we show that, even if χ(G) is known and χr(G)
is narrowed down to two values, it is Σ3-complete to determine χr(G). By
contrast the following promise problem is Π1-complete: (D,A), where

D = {e | e is the index of a recursive graph}
and

A = {e ∈ D | the graph represented by e is k-colorable}.

Lemma 5.18 Let a ≥ 2, i ≥ a, {e} a Turing machine, and X an infinite
recursive set. There exists an infinite sequence of (not necessarily distinct)
finite graphs H1, H2, . . . such that the following hold. (For notation Hs =
(Vs, Es).)

1. V1 ⊆ V2 · · ·.

2. For all s, Vs ⊆ X and χ(Hs) = a.

3. Given a, e, i, s and an index for X one can effectively find canonical
indices for the finite sets Vs and Es.

4. There exists a finite graph H and a number t such that (∀s ≥ t)Hs = H.
We call this graph lims→∞Hs.

5. H is not i-colored by {e}.

6. χ(H) = a.

7. Given a, e, i, s and an index for X one can effectively find an index for
a recursive (i+ 1)-coloring of Hs.

Proof:
Apply Lemma 5.14 to the parameters a, e, i,X. View the construction of

Lr as proceeding in stages where, at each stage, only one more step in the
construction is executed. Let Hs be the graph produced at the end of stage
s. It is easy to see that i–vii are satisfied.

37

Lemma 5.19 Let a ≥ 2, i ≥ a, {e} be a Turing machine, and X be an
infinite recursive set. Let y ∈ N. There exists a recursive graph G = (V,E),
which depends on y, such that the following hold.

1. V ⊆ X.

2. Given a, e, i, y and an index for X, one can effectively find an index for
G.

3. Every component of G is finite.

4. χ(G) = a.

5. If y /∈ TOT then

(a) G consists of a finite number of finite components, and

(b) G is not i-colored by {e}.

6. If y ∈ TOT then

(a) G consists of an infinite number of finite components,

(b) given a, e, i, y and an index for X, and v ∈ V , one can effectively
find the finite component containing v, and

(c) given a, e, i, y and an index for X one can find an index for a
recursive a-coloring of G (this follows from χ(G) = a and items
vi.a and vi.b).

Proof:
We consider a, e, i, y and X fixed throughout this proof. Let X =

⋃∞
j=0 Xj

be a recursive partition of X into an infinite number of infinite recursive
sets. Let H1(j), H2(j), . . . be the sequence of graphs obtained by applying
Lemma 5.18 to parameters a, e, i,Xj. We use these graphs to construct G in
stages.

CONSTRUCTION

Stage 0: G0 = (∅, ∅).
Stage s+1: Let js be the least element that is not in Wy,s. Let Gs+1 be
Gs ∪Hs(js). Note that if js ̸= js−1 then a new component is started.

38

END OF CONSTRUCTION
Let G =

⋃
sGs. It is clear that G satisfies i and ii. Since for every j

both Hs(j) and H = lims→∞ Hs(j) are finite, iii holds. By Lemma 5.18 each
component of G is a-colorable, therefore G is a-colorable. Hence iv holds.

Assume y /∈ TOT . Let j be the least element of W y. Let t be the least
stage such that 0, 1, . . . , j − 1 ∈ Wy,t. For all s ≥ t, js = j; therefore G
consists of a finite number of graphs of the form Hs′(j

′) (where s′ < t and
j′ < j) along with H = lims→∞ Hs(j). Hence v.a holds. By Lemma 5.18, H
is not i-colored by {e}, hence v.b holds.

Assume y ∈ TOT . Since Wy = N, lims→∞ js = ∞. During every stage s
such that js ̸= js+1 a new component is created; therefore G consists of an
infinite number of components. Hence vi.a holds.

To establish vi.b we show, given v ∈ V , how to find all the vertices
and edges in the finite component containing v. Run the construction until
j, s ∈ N are found such that v is a vertex of Hs(j) (this will happen since
v ∈ V). Run the construction further until t is found such that j < jt (this
will happen since y ∈ TOT). The finite component of Ht(j) that contains v
is the finite component of G that contains v.

Theorem 5.20 Let a, b ∈ {2, 3, . . .}∪ {∞} where a < b. Let D be the set of
indices of recursive graphs with chromatic number a and recursive chromatic
number either a or b. Let RECCOLa,b be the 0-1 valued partial function
defined by

RECCOLa,b(e) =


1 if e ∈ D and χr(Gr

e) = a;
0 if e ∈ D and χr(Gr

e) = b;
undefined if e /∈ D .

The promise problem (D,RECCOLa,b) is Σ3-complete.

Proof:
Let TOTa be the set of indices for total Turing machines whose image is

contained in {1, . . . , a}. Note that TOTa is Π2. The set A defined below is a
Σ3 solution of (D,RECCOLa,b).

A is the set of ordered pairs ⟨e1, e2⟩ such that e1 ∈ TOT01∧ e2 ∈ TOT01
and there exists i such that

1. i ∈ TOTa, and

39

2. (∀x, y)[(x ̸= y∧{e1}(x) = {e1}(y) = 1∧{i}(x) = {i}(y))⇒ {e2}(x, y) =
0]

This definition of A can easily be put into Σ3 form.
We show that (D,RECCOLa,b) is Σ3-hard by showing that if A is a

solution to (D,RECCOLa,b) then COF ≤m A. Given x, we construct a
recursive graph G(x) = G such that

x ∈ COF ⇒ χr(G) = a, and
x /∈ COF ⇒ χr(G) = b.
We use a modification of the construction in Theorem 5.15 of a recursive

graph G such that χ(G) = a but χr(G) = b. In this modification we weave
the set Wx into the construction in such a way that if Wx is cofinite, then
the construction fails and χr(G) = a; and if Wx is not cofinite then the
construction succeeds and χr(G) = b.

Let N =
⋃

e,i X
i
e be a recursive partition of N into an infinite number of

infinite recursive sets. Let y⟨e,i⟩ be defined such that

y⟨e,i⟩ ∈ TOT iff {⟨e, i⟩, ⟨e, i⟩+ 1, . . .} ⊆ Wx.

Let G(e, i) = (V (e, i), E(e, i)) be the recursive graph obtained by applying
Lemma 5.19 to a, e, i,X i

e, y⟨e,i⟩. Let G =
⋃

e

⋃
0≤i<b G(e, i) and G = (V,E).

Clearly G is recursive and χ(G) = a.
If x /∈ COF then for all e, i we have y⟨e,i⟩ /∈ TOT . Hence, by Lemma 5.19,

for all e and all i < b, G(e, i) is not i-colored by {e}. Therefore χr(G) ≥ b.
By Lemma 5.19 (item vi.c), the graphs G(e, i) are recursively (i+1)-colorable
in a uniform way, hence χr(G) ≤ b. Combining these two yields χr(G) = b.
(Note that this argument holds when b =∞.)

If x ∈ COF then S ′ = {⟨e, i⟩ | y⟨e,i⟩ /∈ TOT ∧ 0 ≤ i < b ∧ e ∈ N} is finite.
Let S ′′ = {⟨e, i⟩ | y⟨e,i⟩ ∈ TOT ∧ 0 ≤ i < b ∧ e ∈ N}, G′ =

⋃
⟨e,i⟩∈S′ G(e, i)

and G′′ =
⋃

⟨e,i⟩∈S′′ G(e, i). Note that G = G′ ∪G′′. We show that G′ ∪G′′ is
recursively a-colorable by showing that G′ and G′′ are recursively a-colorable
(and using that G = G′ ∪G′′ is a recursive partition of G).

If ⟨e, i⟩ ∈ S ′ then y⟨e,i⟩ /∈ TOT so, by Lemma 5.19, G(e, i) is finite and
χ(G(e, i)) = a. Since S ′ is finite, G′ is a finite a-colorable graph. Hence
χr(G′) = a.

If ⟨e, i⟩ ∈ S ′′ then y⟨e,i⟩ ∈ TOT so, by Lemma 5.19, one can effectively
find the finite component of G(e, i) in which a given v ∈ V (e, i) is contained.
We use this to recursively a-color G′′. Let G′′ = (V ′′, E ′′).

40

Given a number v, first check if it is in V ′′. If it is not then output 1 and
halt (we need not color it). If v ∈ V ′′ then run the construction until you
find e, i such that v ∈ G(e, i). Then find the finite component of G(e, i) that
contains v. Let c be the least lexicographic coloring of this component.

5.4 Combinatorial Modification

Theorem 5.15 shows that there are recursive graphs G such that, even though
χ(G) = 2, no finite number of colors will suffice to color it recursively. If G is
highly recursive, then more colors do help. The following theorem was first
proven in [145] but also appears in [30] (independently).

Theorem 5.21 If G is highly recursive and n-colorable, then G is recursively
(2n − 1)-colorable. Moreover, given an index for G (as a highly recursive
graph), one can recursively find an index for a (2n− 1)-coloring of G.

Proof: Assume, without loss of generality, that V = N. Color vertex 1
with color 1. Assume the following inductively

1. The vertices {1, . . . ,m} are colored with {1, . . . , 2n − 1} (additional
vertices may also be colored with {1, . . . , 2n − 1}, but not with any
other colors).

2. Let Bm = {v | v is colored and v is adjacent to a vertex that is not
colored}. The vertices of Bm are colored with either {1, . . . , n− 1} or
{n+ 1, . . . , 2n− 1}.

We color the vertexm+1 (and possibly some additional vertices). Ifm+1
is already colored, then note that (1) and (2) hold for m + 1, so proceed to
color m+ 2. Otherwise we color m+ 1 as follows. Let H be the set

{v | v is not colored, ∃u that is colored such that d(u, v) ≤ 2} ∪ {m+ 1}.

(d(u, v) is the length of the shortest path from u to v.) Assume Bm is colored
with {1, . . . , n− 1} (the case where Bm is colored with {n+1, . . . , 2n− 1} is
similar). Color H with {n, . . . , 2n−1} such that vertexm+1 does not receive

41

color n. We now want to ensure that Bm+1 is colored with {n+1, . . . , 2n−1},
i.e., does not use color n. This will involve uncoloring some vertices. Let

B′ = {v | v is colored n and v is adjacent to a non-colored vertex}.

We uncolor all the vertices in B′. Note that B′ ∩ {1, . . . ,m+ 1} = ∅, so (1)
holds. Note that all colored neighbors of B′ use colors {n+ 1, . . . , 2n− 1},
hence all vertices in Bm+1 use only these colors, so (2) holds.

We will see later (Theorem 5.30) that the upper bound cannot be im-
proved for general highly recursive graphs. However, if G is connected and
χ(G) = 2 then it is easy to see that χr(G) = 2. This holds for both G
recursive and G highly recursive.

5.5 Recursive Analogue is False for Highly Recursive
Graphs

Theorem 5.21 gives an upper bound on the number of colors required to
color an n-colorable highly recursive graph. The question arises ‘Can we do
better?’ We cannot! That is, there exists a highly recursive graph G such
that χ(G) = n and χr(G) = 2n − 1. The proof requires several definitions
and lemmas. It was first proven in [145] but our exposition is based on a
modification which was presented in [13].

Definition 5.22 Let n ≥ 3. Let Gn = (V,E) where

V = {(i, j) : 1 ≤ i, j ≤ n}
E = {{(i, j), (r, s)} : i ̸= r and j ̸= s}.

If 1 ≤ i ≤ n, then the set of vertices {(i, j) : 1 ≤ j ≤ n} is called the ith

column of Gn. The jth row of Gn is defined similarly. The basic row coloring
of Gn assigns color i to every vertex in the ith row. The basic column coloring
of Gn assigns color i to every vertex in the ith column. Note that both are
valid vertex colorings of Gn using only n colors.

Definition 5.23 If χ is a coloring of Gn, then χ induces a colorful column
(row) if χ assigns to each vertex in a particular column (row) a different
color. If the coloring being referred to is obvious, we may say ‘G has a
colorful column (row)’ to mean that the coloring induces a colorful column
(row).

42

Lemma 5.24 Let χ be a coloring of Gn. Let 1 ≤ i, j ≤ n with i ̸= j.

1. If color a appears more than once in row i (column i), then a can not
appear in row j (column j).

2. If color a appears more than once in row i, and color b appears more
than once in column j, then a ̸= b.

Proof:

1. Assume χ((x, i)) = χ((y, i)) = a. Every vertex (z, j) is connected to
either (x, i), or (y, i), or both, hence χ((z, j)) ̸= a. Similar for the
column version.

2. Assume χ((x, i)) = χ((y, i)) = a and χ((j, w)) = χ((j, z)) = b. Since
x ̸= y, one of {x, y} is not j; assume x ̸= j. Since w ̸= z, one of {w, z}
is not i. If z ̸= i, then (x, i) and (j, z) are connected, so a ̸= b. If w ̸= i,
then (x, i) and (j, w) are connected, so a ̸= b.

Lemma 5.25 If χ is a (2n − 2)-coloring of Gn, then χ either induces a
colorful row or induces a colorful column, but not both.

Proof: Assume, by way of contradiction, that χ is a (2n− 2)-coloring of
Gn that induces neither a colorful row nor column. For 1 ≤ i ≤ n let ai (bi)
be a color that appears more than once in row i (column i).

By Lemma 5.24, (1) for all i, j with i ̸= j , ai ̸= aj and bi ̸= bj, and (2)
for all i, j ai ̸= bj. Hence the set {a1, . . . , an, b1, . . . , bn} has 2n colors, which
contradicts χ being a (2n − 2)-coloring. Hence χ induces a colorful row or
column.

Assume, by way of contradiction, that χ induces a colorful row and a
colorful column. Let row i and column j be colorful. The only way a vertex
(k, i) in the ith row could have the same color as a vertex (j,m) in the jth
column is if they are not connected, i.e., k = j or i = m. If only one of these
holds, then (k, i) and (j,m) are in the same row or column, and are colored
differently; hence we must have k = j and i = m. This means they are the
same vertex. This happens exactly once, so the colorful row and column use
a total of 2n− 1 colors. This contradicts χ being a (2n− 2)-coloring.

43

We now define a way to connect two graphs such that if in some coloring
one of them has a colorful row (column) the other will have a colorful column
(row).

Definition 5.26 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such
that G1

∼= G2
∼= Gn. Assume the vertices of Gk are of the form (k, i, j) in

such a way that (k, i, j) corresponds to (i, j). The following graph is the
2-element chain of G1 and G2, denoted CH(G1, G2).

V = V1 ∪ V2

E = E1 ∪ E2 ∪ E12

E12 = {{(1, i, j), (2, r, s)} : i ̸= s and r ̸= j}.

The edges in E12 are said to link together G1 and G2. Let G1, . . . , Gs be
graphs of type Gn. The s-element chain of G1, . . . , Gs, denoted by the ex-
pression CH(G1, . . . , Gs), can be defined by linking G1 to G2, G2 to G3, . . .,
Gs−1 to Gs.

In CH(G1, G2) the rth row of G2 acts like the rth column of G1 in terms
of which vertices of G1 it is connected to. This intuition underlies the next
lemma.

Lemma 5.27 Let χ be a 2n− 2 partial coloring of CH(G1, G2) that induces
a colorful row (column) of the G1 part. Any extension of χ to a (2n − 2)-
coloring of CH(G1, G2) must induce a colorful column (row) in the G2 part.

Proof: Let χ and i be such that χ is a 2n−2 partial coloring of CH(G1, G2)
that induces the ith column ofG1 to be colorful. Assume, by way of contradic-
tion, that there exists χ0 such that χ0 is a (2n− 2)-coloring of CH(G1, G2)
which is an extension of χ but does not induce a colorful row of G2. Ev-
ery row of G2 has some color repeated at least twice. For 1 ≤ j ≤ n let
cj = χ0((1, i, j)). For 1 ≤ s ≤ n let ds be the color that, using χ, appears
twice in the sth row of G2.

We show that |{c1, . . . , cn, d1, . . . , dn}| > 2n − 2. Since the ith row was
colorful, all the cj’s are distinct. By Lemma 5.24 all the ds’s are distinct. To
show |{c1, . . . , cn, d1, . . . , dn}| > 2n− 2, we show that the only element that
may be in {c1, . . . , cn} ∩ {d1, . . . , dn} is di.

44

Assume cj = ds. Let r1 and r2 be such that χ((2, r1, s)) = χ((2, r2, s)) =
ds. By definition χ((1, i, j)) = cj. Since cj = ds there is no edge between
(2, r1, s) and (1, i, j); hence either r1 = j or s = i. Similarly, there is no edge
between (2, r2, s) and (1, i, j); hence either r2 = j or s = i. If s ̸= i then
r1 = j and r2 = j, so r1 = r2, which is false. Hence s = i. Therefore the only
element of {c1, . . . , cn} ∩ {d1, . . . , dn} is di.

Lemma 5.28 Let χ be a 2n− 2 partial coloring of CH(G1, . . . , Gs) that in-
duces a colorful row (column) of the G1 part. If s is even, then any extension
χ0 of χ to a (2n− 2)-coloring of CH(G1, . . . , Gs) must induce a colorful col-
umn (row) of the Gs part; if s is odd, then χ0 must induce a colorful row
(column).

Proof: This follows from the previous lemma and induction.

Lemma 5.29 The graph CH(G1, . . . , Gs) is n-colorable.

Proof: For i even, color Gi by coloring every vertex in row j with color j.
For i odd, color Gi by coloring every vertex in column j with color j. This
is easily seen to be an n-coloring of CH(G1, . . . , Gs).

Theorem 5.30 Let n ≥ 3. There exists a highly recursive graph G̃ such that
χ(G̃) = n and χr(G̃) = 2n− 1.

Proof: We construct a highly recursive graph G̃ to satisfy the following
requirements:

Re : If {e} is total, then {e} is not a (2n− 2)-coloring of G̃.
Recursively partition N into infinite sets X0, X1, X2, We satisfy Re

using vertices from Xe. Fix e. We show how to construct a highly recursive
graph G = G(e) such that (1) χ(G) = n, and (2) {e} is not a (2n−2)-coloring
of G.

The graph G̃ is then simply
⋃∞

e=0 G(e).
We construct G = G(e) in stages. To avoid confusion we DO NOT use

‘Gs’, we merely speak of ‘G at stage s.’

45

CONSTRUCTION of G = G(e).

Stage 0: At this stage G consists of two graphs G1 and G2 such that G1
∼=

G2
∼= Gn.

Stage s+1: (At the end of stage s, G consists of CH(G1, G3, . . . , G2s+1) and
CH(G2, G4, . . . , G2s+2), where each Gi is isomorphic to Gn.) Run {e}s on all
the vertices of G1 and G2. There are several cases.

Case 1: There exists a vertex in G1 or G2 where {e}s does not converge. Let
G2s+3 and G2s+4 be graphs isomorphic to Gn that use the least numbers from
Xe that are larger than s, but are not already in G, for vertices. Extend the
(s+ 1)-chains to (s+ 2)-chains using G2s+3 for the odd chain, and G2s+4 for
the even chain.

Case 2: {e}s converges on all the vertices of G1 and G2, and either uses more
than 2n− 2 colors, or is not a coloring. Stop the construction of G since Re

is satisfied.

Case 3: {e}s converges on all the vertices in G1 and G2, uses at most 2n− 2
colors, is a coloring, and both G1 and G2 have colorful rows (columns). By
Lemma 5.28 any extension of {e}s to a coloring of G will induce G2s+1 and
G2s+2 to either both have a colorful column or both have a colorful row. We
link G2s+1 to a (new) graph H ∼= Gn, and then link G2s+2 to H (all new
vertices are the least unused vertices of Xe). By Lemma 5.27, any extension
of the coloring must induce both a colorful row and a colorful column in
H. By Lemma 5.25, H cannot be 2n − 2 colored in this manner. Stop the
construction, as Re is satisfied.

Case 4: {e}s converges on all the vertices in G1 and G2, and is a (2n − 2)-
coloring of both G1 and G2; and this coloring induces G1 to have a colorful
row (column), and G2 to have a colorful column (row). Link both G2s+1 and
G2s+2 to a graph isomorphic to Gn. The coloring {e}s cannot be extended
to a (2n− 2)-coloring of G, since in such a coloring the new Gn graph would
have to have both a colorful row and a colorful column.

END OF CONSTRUCTION
We show that the graph G(e) is highly recursive. The vertex set is recur-

sive since v is a vertex iff v ∈ Xe and v was placed into the graph at some
stage s ≤ v. To determine the neighbors of a vertex v note that if v enters
the graph at stage s then all the neighbors of v will enter by stage s+ 1.

Since G(e) is highly recursive, it follows from Theorem 5.21 that χr(G) ≤

46

2n− 1 (this can also be proven directly). By the comments made before and
during the construction it is easy to see that G̃ (the union of all the G’s) is
not recursively (2n− 2)-colorable. Hence χr(G̃) = 2n− 1.

By Lemma 5.29 χ(G̃) = n.

5.6 Recursion-Theoretic Modification

By Theorems 5.15 and 5.30, n-colorable recursive and highly recursive graphs
need not be recursively n-colorable. But such graphs do have n-colorings of
low degree.

The following theorem is due to Bean [10].

Theorem 5.31 If G is a recursive graph that is n-colorable, then there exists
an n-coloring c that is of low degree.

Proof: Let G be as in the hypothesis. Consider the following recursive n-
ary tree T . The vertex σ = (a1, . . . , am) (where for all i, 1 ≤ ai ≤ n) is on the
tree T iff it represents a non-contradictory coloring (i.e., the partial coloring
of G that colors vertex i with ai does not label two adjacent vertices with the
same color). We have (1) T is recursive, (2) T is recursively bounded by the
function f(m) = ⟨n, . . . , n⟩ (the n’s appear m times), (3) any infinite branch
of T is an n-coloring of G, and (4) every n-coloring of G is represented by
some infinite branch of T (note that the set of infinite branches is nonempty
since G is n-colorable). Since the infinite branches of T form a nonempty
recursively bounded Π0

1 class, by Theorem 3.12 there exists an infinite low
branch. Since every infinite branch is an n-coloring, the theorem follows.

The proof of the above theorem actually shows that the set of n-colorings
of G is a recursively bounded Π0

1 class. Remmel [139] has shown the converse:
for any recursively bounded Π0

1 class C and any constant n ≥ 3, there exists
a highly recursive graph G such that (up to a permutation of colors) there is
an effective 1:1 degree-preserving correspondence between n-colorings of G
and elements of C.

5.7 Miscellaneous

We state several results about recursive-graph colorings without proof.

47

5.7.1 Bounding the Genus

If the genus of a (finite or infinite) graph G is bounded by g, then χ(G)
is bounded by a function of g which we denote c(g). In 1890 Heawood[79]

showed that, for g ≥ 1, c(g) ≤ ⌊7+
√
48g+1
2

⌋. In 1967 Ringel and Young [140]
proved that this bound is tight. (See Chapter 5 of [69] for proofs of both the
upper and lower bound). Appel and Haken [4, 5] showed that c(0) = 4 (e.g.,
planar graphs are 4-colorable) using very different techniques which involved
a rather long computer search.

We wonder if an analogue of c(g) exists for recursive or highly recursive
graphs (i.e., perhaps every recursive graph of genus g is c′(g)-colorable for
some c′). Since the graph G constructed in Corollary 5.16 is planar (i.e., its
genus is 0) and χr(G) =∞, no analogue of c(g) exists for recursive colorings
of recursive graphs. However, for highly recursive graphs G, Bean[10] showed
that χr(G) ≤ 2(c(g) − 1). Using the 4-color Theorem this yields that if G
is planar then χr(G) ≤ 6 (Bean[10] obtained this result without using the 4-
color Theorem). Using the 4-color Theorem Carstens [26, 28] claims to have
shown1 that if G is a highly recursive planar graph then χr(G) ≤ 5. It is an
open problem to obtain χr(G) ≤ 4. More generally, it is an open problem to
improve Bean’s bound for general genus g, or show it cannot be improved. It
may be of interest to impose additional recursion-theoretic constraints such
as having a recursive embedding on a surface of genus g.

5.7.2 Bounding the degree

The degree of a graph is the maximal degree of a vertex. A graph G satisfies
∆d if it has degree d and does not have a subgraph isomorphic to Kd+1 (the
complete graph on d+ 1 vertices).

Brooks[21, 22] showed that if a (finite or infinite) graph G satisfies ∆d

then χ(G) ≤ d. By a variation of Theorem 5.15, for every d there exists a
recursive graph G that satisfies ∆d but χr(G) = d + 1; hence the recursive
analogue of Brooks’s theorem fails for recursive graphs. Schmerl[146] showed
that the recursive analogue does hold for highly recursive graphs. Carstens
and Pappinghaus[30] discovered the result independently, and Tverberg[164]

1The paper sketches the proof and promises further work with details that, to our
knowledge, has not appeared.

48

has given a simpler proof. It is an open question as to just how wide the gap
between χ(G) and χr(G) may be for recursive graphs with property ∆d.

5.7.3 Regular Graphs

A graph is d-regular if every vertex has degree d. Note that a recursive d-
regular graph is highly recursive. Schmerl[145] posed the following question:
if 2 ≤ n ≤ m ≤ 2n − 2, what is the least d for which there is a recursive d-
regular graph which is not recursively m-colorable? We denote this quantity
by d(n,m).

Schmerl [145] notes that if there exists a highly recursive G with degree
bound d then there exists a highly recursive d-regular G′ such that χ(G) =
χ(G′) and χr(G) = χr(G′). Bean constructed, for every k ≥ 2, a highly
recursive G with χ(G) = k, χr(G) = k + 1, and degree bound 2k − 2.
Hence d(n, n + 1) ≤ 2n − 2 (Manaster and Rosenstein [119] obtained the
same result with different methods). Schmerl showed how to modify Bean’s

construction to obtain d(n, n + 1) ≤
⌊
3n−1

2

⌋
. Since the degree bound of the

graph constructed in Theorem 5.30 (of this survey) is 3(n−1)2, d(n, 2n−2) ≤
3(n− 1)2.

5.7.4 Perfect Graphs

It is of interest to impose graph-theoretic conditions on a highly recursive
graph G such that if G satisfies the condition then χr(G) is not too far from
χ(G). A graph is perfect if for every induced subgraph H, ω(H) = χ(H)
(where ω(H) is the size of the largest clique in H). Kierstead[95] proved that
if G is a highly recursive perfect graph then χr(G) ≤ χ(G)+1. It is a (vague)
open question to find other graph-theoretic conditions that narrow the gap
between χ(G) and χr(G).

5.7.5 On-line colorings

Informally, an on-line algorithm to color an (infinite) graph is an algorithm
that is given the graph a vertex at a time, and has to color a vertex as
soon as it sees it. For general graphs it is hopeless to try to bound the
number of colors such an algorithm will need to use, but we can bound the
number of colors it uses on the first n vertices. It is trivial to color the first

49

n vertices with n colors. Lovász, Saks, and Trotter [117] have improved this
by showing (1) if χ(G) ≤ 2 then G can be colored on-line via an algorithm
that uses 2 log n colors on the first n vertices; (2) if χ(G) ≤ k then G can

be colored on-line via an algorithm that uses O(n log(2k−3) n

log(2k−4) n
) on the first n

vertices (log(m) n is iterated log). There are limits on the extent to which
these bounds can be improved: Vishwanathan [166] showed that for every
on-line algorithm, and every k and n, there exists a graph G on n vertices
(and an order to present it) so that χ(G) ≤ k and the algorithm must use
at least (logn

4k
)k−1 colors. Irani [86] has shown that certain classes of graphs

(which include planar graphs) have a presentation with which they are on-line
colorable with O(log n) colors. For a survey of this area see [98, 103].

There are connections between on-line coloring algorithms and combina-
torial analogues of Dilworth’s Theorem. See Section 7.4.2 for an overview.

5.7.6 Coloring Directed Graphs

More complex conditions can be imposed on directed graphs than on undi-
rected graphs. Kierstead [97] has found one such condition that affects the
recursive chromatic number. He has shown that if G is a recursive directed
graph that does not have an induced subgraph of the form (1) directed 3 cycle,
or (2) ◦ −→ ◦ −→ ◦ ←− ◦, or (3) ◦ ←− ◦ −→ ◦ −→ ◦, then χr(G) ≤ 2ω(G)

where ω(G) is the size of the largest clique.

5.7.7 Coloring Interval Graphs

An interval graph is the comparison graph for an interval order (see Sec-
tion 7.7.1 for the definition of an interval order). Kierstead and Trotter [102]
have shown that recursive interval graphs are (3ω(G) − 2)-colorable, where
ω(G) is the size of the largest clique in G.

5.7.8 Decidable Graphs

Bean[10] considered imposing stronger recursive conditions on a graph than
highly recursive

Definition 5.32 A graph G is decidable if there is a decision procedure to
determine if a given first order sentence about it is true. The language in

50

which the sentences are expressed has (1) the usual logic symbols including
quantifiers that range over vertices, (2) the symbol E(x, y) (tests if x and y
are connected by an edge), and the symbol ‘=’ for equality.

Bean showed that all negative results that he obtained for highly recursive
graphs also hold for decidable graphs. Combining his technique with Theo-
rem 5.30 yields that for every k ≥ 2 there exists a decidable graph G such
that χ(G) = k and χr(G) = 2k − 1. That construction can be combined
with the recursion-theoretic techniques of Theorem 5.20 to obtain that the
set of indices of decidable graphs G such that χ(G) = k and χr(G) = 2k− 1
is Σ3-complete.

It is an open question to find a reasonable recursive condition for graphs G
that implies χ(G) = χr(G). Expanding the language in which the sentences
are expressed may help. A comprehensive study of types of decidable graphs
has not been undertaken.

Dekker[46] examined graphs where one can decide whether 2 vertices are
connected by a path, but he did not examine coloring.

5.7.9 A-recursive Graphs

Gasarch and Lee [65] considered graphs that were intermediary between re-
cursive and highly recursive. Let nbdG be the function that, on input x (a
vertex of G) outputs all the neighbors of G. Note that if G is recursive then
nbdG ≤T K and if G is highly recursive then nbdG ≤T A.

Definition 5.33 Let A be any set. A graph G = (V,E) is A-recursive if G
is recursive and nbd(G) ≤T A.

A natural question is to see, for various sets A with G being A-recursive
implies any finite bound on χr(G). The answer is no:

Theorem 5.34 Let A be a non-recursive r.e. set. There exists an A-
recursive graph G such that G is 2-colorable but not recursively k-colorable
for any natural number k.

The proof is a variant of Bean’s original construction with a permitting
argument. The former enables us to show that the graph is 2-colorable but
not recursively k-colorable for any k. The latter allows us to show that the

51

neighbor function is recursive in the r.e. set A. For a discussion of the
permitting method, see [159]. It is an open question to extend the theorem
to all A such that ∅ <T A <T K. Even the case where A is 2-r.e. is open.

The proof technique can be extended to show the following generalization
of Theorem 5.15.

Theorem 5.35 Let A be a non-recursive r.e. set. Let a, b be such that
2 ≤ a < b ≤ ∞. Let X be an infinite recursive set. There exists an A-
recursive graph G = (V,E) such that χ(G) = a, χr(G) = b, and V ⊆ X. If
a ≤ 4 then G can be taken to be planar.

5.7.10 Complexity of Finding χ(G) and χr(G)

Theorem 5.20 says that determining χr(G) will require a ∅′′′ oracle. A com-
prehensive study of how many queries are required to determine χ(G) and
χr(G) was undertaken by Beigel and Gasarch [13, 14]. In those papers 64
questions were raised (six 2-valued parameters were varied), of which 58 were
solved exactly. We present two theorems that encompass four of these ques-
tions.

Theorem 5.36 Let c ≥ 2. Let Dc (Dr
c) be the set of indices of recursive

graphs G such that χ(G) ≤ c (χr(G) ≤ c). Let χc and χr
c be the partial

functions

χc(e) =
{
χ(Gr

e) if e ∈ Dc;
↑ if e /∈ Dc.

χr
c(e) =

{
χr(Gr

e) if e ∈ Dr
c ;

↑ if e /∈ Dr
c .

There is a solution to the promise problem (Dc, χc) that can be computed
with ⌈log(c+ 1)⌉ queries to K. For every set X, no solution to (Dc, χc) can
be computed with ⌈log(c+ 1)⌉ − 1 queries to X. If X is any set such that
K ̸≤T X then (Dc, χc) cannot be computed with X. Similar theorems hold for
computing (Dr

c , χ
r
c) with oracle ∅′′′. Similar theorems hold for highly recursive

graphs.

Theorem 5.37 Let f and g be recursive functions such that (1)
∑∞

i=0 2
−f(i) ≤

1 and is an effectively computable real r (i.e., there exists a recursive func-
tion h : Q → Q such that |h(ϵ) − r| < ϵ), and (2)

∑∞
i=0 2

−g(i) > 1. Let D

52

be the set of valid indices for recursive graphs. There is a solution for the
promise problem (D,χ) that, on input e, takes f(χ(Ge)) queries to K. For
every set X, no solution to (D,χ) can be computed with g(χ(Ge)) queries
to X. Similar results hold for χr with a ∅′′′ oracle. Similar results hold for
highly recursive graphs.

5.7.11 Actually finding a coloring

None of the results looked at so far involve actually coloring the graph. Beigel
and Gasarch[16] examined this issue in terms of the number of times a re-
cursive procedure will have to change its mind while coloring a graph. They
constructed graphs where a recursive mapmaker has to recolor the map many
times.

Definition 5.38 Let G = (V,E) be a k-colorable recursive graph. A local
k-coloring of G is a function that takes a finite set H ⊆ V and outputs a
k-coloring of H that is extendible to a k-coloring of all of G.

We examine the complexity of local k-colorings. Our measure of complex-
ity is ‘mind-changes.’ In particular we study algorithms for local k-colorings
that are allowed to change their mind g(n) times on inputs consisting of
n vertices. The function g is the complexity of the algorithm. There are
recursive graphs for which every local coloring changes its mind many times.

In what follows we will interpret the input to a Turing machine as an
ordered pair (H, s) where H is a finite set of vertices and s is a parameter;
and the output as a coloring of those vertices.

Definition 5.39 Let f be a function from [N]<ω to N, and let g be a function
from N to N. The function f is computable by a g-mind-change algorithm
if there exists a total Turing machine M such that, for every H ∈ [N]n (1)
lims→∞M(H, s) = f(H) (i.e., (∃s0)(∀s ≥ s0)M(H, s) = f(H)), and (2)
|{s : M(H, s) ̸= M(H, s+ 1)}| ≤ g(n).

Carstens and Pappinghaus[30] showed that one can color any recursive
graph with a mind-change algorithm that changes its mind an exponential
number of times. We sharpen their result and put it in our terminology.
Let NI(n, k) be the number of nonisomorphic colorings of n vertices with k

colors. It can be shown that NI(n, k) =
∑k

t=0
tn

t!

∑k−t
r=0

(−1)r

r!
. For large n and

fixed k this is approximately kn/k!.

53

Theorem 5.40 Let k ≥ 3. Let G = (V,E) be a k-colorable recursive graph.
There exists a local k-coloring of G that is computable by a g-mind-change
algorithm where g(n) = NI(n, k) − 1. There exists a k-colorable recursive
graph G such that every mind-change algorithm that computes a local k-
coloring of G requires NI(n, k) − 1 mind-changes on an infinite number of
inputs H of arbitrarily large cardinality.

5.7.12 Polynomial Graphs

Cenzer and Remmel [36] have considered graphs with labels in {0, 1}∗ such
that testing for an edge can be done in polynomial time. They have shown
the following.

Theorem 5.41

1. If G is a recursive graph and k ∈ N then there exists a poly graph
G′ such that there is an effective degree-preserving map from the k-
colorings of G to the k-colorings of G. Hence, using Theorem 5.15,
there exists a poly graph that is 3-colorable but not recursively k-colorable
for any k.

2. There exists a poly graph G that is 2-colorable, connected, but not
primitive-recursively 2-colorable. This is of interest since it shows that
the natural analog of Note 5.17.2 is false.

6 Hall’s Theorem on Bipartite Graphs

We consider the infinite version of Hall’s Theorem on solutions to bipartite
graphs. We (1) present the finite and infinite versions (due to Phillip Hall [75,
76] and Marshall Hall [74] respectively), (2) show that a recursive analogue
of Hall’s Theorem is false, (3) show that a recursion-theoretic modification
is true, (4) show that there is a modification that is both recursion-theoretic
and combinatorial which is true, and, (5) state some miscellaneous results.

Hall’s theorem for finite graphs also yields an algorithm for testing if a
bipartite graph has a solution, and, if so, finding it. These algorithms are
not efficient. See [131] or [58] for efficient algorithms for these problems.

54

6.1 Definitions and Classical Version

Definition 6.1 A bipartite graph G is a 3-tuple (A,B,E) where A and B
are disjoint sets of vertices and E ⊆ [A∪B]2 − ([A]2 ∪ [B]2) (i.e., E consists
of unordered pairs of vertices, one from A and one from B). If ∀x ∈ A ∪ B,
degree(x) < ∞, then we say G has finite degree. Henceforth G has finite
degree. The neighbors of a finite set of vertices X ⊆ A are denoted nbG(X).
Formally we define nbG : P<ω(A) → P<ω(B) as follows: for each finite
X ⊆ A, nbG(X) = {b ∈ B | (∃a ∈ X){a, b} ∈ E}. Note that from the
function nbG one can obtain all the edges of G. When G is clear from context
we abbreviate nbG by nb.

Definition 6.2 Let G = (A,B,E) be a bipartite graph. A function f : A→
B is a solution for G if f is one to one and ∀a ∈ A {a, f(a)} ∈ E. Given
X ⊆ A and Y ⊆ B, we will sometimes call f : X → Y a solution from X to
Y. If f is onto then the solution is symmetric.

We will be considering the infinite version of Hall’s Theorem. We present
the finite and infinite versions. The proof we give for the finite case does not
lead to a computationally efficient algorithm to find a solution. The most
efficient algorithm known for this problem runs in time O(|V | 12 |E|2) (see [131,
p. 226]).

Definition 6.3 Let G = (A,B,E) be a (finite or infinite) bipartite graph.
G satisfies Hall’s condition if for all finite X ⊆ A, |nbG(X)| ≥ |X|.

Theorem 6.4 (Finite Hall’s Theorem) Suppose G = (A,B,E) is a fi-
nite bipartite graph. Then G has a solution iff G satisfies Hall’s condition.

Proof: If G does not satisfy Hall’s condition, then there is an X ⊆ A such
that |nbG(X)| < |X|. Obviously, there is no solution for X, so there can be
no solution for G.

Now suppose G satisfies ∀X ⊆ A, |X| ≤ |nbG(X)|. Let n = |A|. We will
prove by induction on n that there is a solution for G.

If n = 1, let A = {a}. Since |nbG({a})| ≥ 1, there is b ∈ B such that
{a, b} ∈ E. Then M = {(a, b)} is a solution for G.

55

If n > 1, assume the theorem holds for bipartite graphs (A,B,E) with
|A| < n. We will consider two cases:
Case 1: Suppose for all k with 1 ≤ k < n for all X ⊆ A with |X| = k,
|nbG(X)| ≥ k + 1. Then choose any {a, b} ∈ E with a ∈ A. Let G′ be
⟨A− {a}, B − {b}, E ′⟩ where E ′ is E restricted to edges that do not involve
a or b. Note that for all finite subsets X ⊆ A − {a} with |X| = k we have
|nbG′(X)| ≥ k. By our induction hypothesis G′ has a solution M . Then
M ∪ (a, b) is a solution for G.
Case 2: Suppose there is an X ⊂ A and k < n such that |X| = |nbG(X)| = k.
Let G′ = ⟨X,B,E ′⟩ where E ′ is the set of edges between elements of X and
elements of B. By our induction hypothesis, G′ has a solution M . Since
|X| = |nbG(X)| and solutions are one to one, image(M) = nbG(X).

Now we need to show there is a solution from A−X to B−nbG(X). Let
G′′ = ⟨A − X,B − nbG(X), E ′′⟩ where E ′′ is the subset of E consisting of
pairs of elements {x, y} such that x ∈ A−X, y ∈ B − nbG(X). Assume, by
way of contradiction, that there exists C ⊆ A−X such that |nbG′′(C)| < |C|.
Then

nbG(C) = (nbG(C) ∩ nbG(X)) ∪ (nbG(C) ∩ nbG(X))
= (nbG(C) ∩ nbG(X)) ∪ nbG′′(C).

Hence

nbG(C ∪X) = nbG(C) ∪ nbG(X) = nbG′′(C) ∪ nbG(X).

We can now show that |nbG(C ∪ X)| < |C ∪ X|, which contradicts that G
satisfies Hall’s condition.

|nbG(C∪X)| = |nbG′′(C)|+|nbG(X)| = |nbG′′(C)|+|X| < |C|+|X| = |C∪X|,

which contradicts our hypothesis.
Then by our induction hypothesis, there is a solution M ′ from A−X to

B − nbG(X). Then M ∪M ′ is a solution for G.

We now prove the infinite Hall’s Theorem. We give a direct proof; it can
also be proven by König’s Lemma (Theorem 3.3).

Theorem 6.5 (Infinite Hall’s Theorem) Suppose G = (A,B,E) is a count-
able bipartite graph with finite degree. Then G has a solution iff G satisfies
Hall’s condition.

56

Proof: If G does not satisfy Hall’s condition then there is some finite
X ⊆ A such that |nbG(X)| < |X|. Obviously, there is no solution for X, so
there can be no solution for G.

Now suppose G satisfies Hall’s condition. Since A is countable, let A =
{a1 < a2 < · · ·}. Given n ∈ N, let An = {a0, . . . , an}, Bn = nbG(A

n),
En = E ∩ {{a, b} | a ∈ An, b ∈ Bn}, and Gn = (An, Bn, En). For n ∈ N, Gn

satisfies Hall’s condition, so by the finite Hall’s Theorem, there is a solution
Mn for Gn. We will build a solution for G from the Mn. Let

M(a1) = µx[(∃∞s)M s(a1) = x]
M(an+1) = µx[(∃∞s)(

∧n
j=1(M

s(aj) = M(aj)) ∧M s(an+1) = x)]
It is easy to see that M is a solution.

The proof of Theorem 6.5 given above is noneffective. To see if the proof
could have been made effective we will look at a potential analogue. In order
to state this analogue we need some definitions.

Definition 6.6 Let G = (A,B,E) be a bipartite graph with A,B ⊆ N. G
is a recursive bipartite graph if A, B and E are recursive, and G has finite
degree. Note that a recursive bipartite graph is different from a bipartite
recursive graph. G is a highly recursive bipartite graph if G is recursive and
the function nbG is recursive. Note that a highly recursive bipartite graph is
different from a bipartite highly recursive graph.

We will use the recursive tripling function to represent recursive and
highly recursive bipartite graphs.

Definition 6.7 A number e = ⟨e1, e2, e3⟩ determines a recursive bipartite
graph if e1, e2 ∈ TOT01, e3 ∈ TOT , and the sets A = {a | {e1}(a) = 1} and
B = {b | {e2}(b) = 1} are disjoint. The recursive bipartite graph determined
by e is (A,B,E) where E = {{a, b} | a ∈ A, b ∈ B, {e3}(a, b) = {e3}(b, a) =
1}.

Definition 6.8 A number e = ⟨e1, e2, e3⟩ determines a highly recursive bi-
partite graph if e1, e2 ∈ TOT01 e3 ∈ TOT , and the sets A = {a | {e1}(a) = 1}
and B = {b | {e2}(b) = 1} are disjoint. The recursive bipartite graph deter-
mined by e is (A,B,E) where E is determined by the fact that {e3} computes
nbG. (Here, {e3} is interpreted as a function from N to finite subsets of N.)

57

Definition 6.9 Let G = (A,B,E) be a bipartite graph such that A,B ⊆ N
(in practice G will be a recursive or highly recursive bipartite graph). A
function f : N→ B is a recursive solution for G if f is total recursive and f ,
when restricted to A, is a solution for G.

Potential Analogue 6.10 There is a recursive algorithm A that performs
the following. Given an index e for a highly recursive bipartite graph that
satisfies Hall’s condition, A outputs an index for a recursive solution. A
consequence is that if a highly recursive bipartite graph G has a solution,
then G has a recursive solution.

We will soon see (Theorem 6.13) that this potential analogue is false. We
will then have a recursion-theoretic modification which is true. No combina-
torial analogue appears to be true; however, we will then impose combinato-
rial and recursion-theoretic conditions that will yield a true analogue.

6.2 Recursive Analogue is False

The following theorem is due to Manaster and Rosenstein [118].

Definition 6.11 If v1, v2, . . . , vn ∈ N, and all the vi are distinct, then the
line graph of (v1, . . . , vn) is the graph G = (V,E) where V = {v1, . . . , vn}
and E = {{vi, vi+1} : 1 ≤ i ≤ n− 1}. The vertices {v1, . . . , vi} are strictly to
the left of vi+1. The vertex v1 is the left endpoint of G. Terms using ‘right’
instead of ‘left’ can be defined similarly.

We would like to interpret line graphs as bipartite graphs. To do this we
need to specify one vertex as being in A (or B), which will determine the
status of the other vertices.

The following lemma is easy to prove, hence we leave it to the reader.

Lemma 6.12 Let G[i, j] be the line graph on

(vi, vi−1, . . . , v1, x, y, z, w1, w2, . . . , wj).

Interpret G[i, j] as being bipartite by assuming y ∈ A.

1. If i is odd then (y, x) cannot be in any solution of A to B in G.

58

2. If j is odd then (y, z) cannot be in any solution of A to B in G.

Proof:
We prove a; the proof for b is similar. We use induction on i.
Let i = 1. Note that v1 ∈ A. If M is any solution of G[1, j] then M must

use (v1, x), else v1 (which is in A) will be unmatched. Hence M cannot use
(y, x).

We assume the statement true for odd i and we prove it for i + 2. Note
that vi+2 ∈ A. Let M be a solution of G[i + 2, j]. M must use (vi+2, vi+1),
else vi+2 will be unmatched. Hence M cannot use (vi, vi+1). Therefore
M − {(vi+2, vi+1)} is a solution of G[i, j]. By the induction hypothesis, M
does not contain (y, x).

Theorem 6.13 (Manaster and Rosenstein [118]) There exists a highly
recursive bipartite graph G = (A,B,E) that satisfies Hall’s condition but has
no recursive solution.

Proof:
We construct a highly recursive bipartite graph G = (A,B,E) that has a

solution (hence satisfies Hall’s condition) and satisfies the following require-
ments.

Re : {e} total ⇒ {e} is not a solution of G.

Recursively partition N into infinite recursive sets X0, X1, We con-
struct a highly recursive bipartite graph G(e) = (A(e), B(e), E(e)) such that
the following hold.

1. A(e) ∪B(e) = Xe.

2. G(e) has a solution.

3. {e} is not a solution of G(e).

The union G =
⋃

e≥0G(e) is the desired graph.
In our description of G(e), whenever we need a vertex we take the least

unused vertex of Xe. We denote the bipartite graph constructed by the end
of stage e by G(e, s) = (A(e, s), B(e, s), E(e, s)).

59

CONSTRUCTION

Stage 0: Let G(e, 0) be the line graph on (a, b, c) (three new vertices—the
least three elements of Xe), interpreted as a bipartite graph by specifying
b ∈ A(e, 0).

Stage s+ 1: (Assume inductively that G(e, s) is a line graph.) Run {e}s(b).
There are 4 cases.

1. If {e}s(b) ↑ or {e}s(b) ↓/∈ {a, c}, then form G(e, s + 1) by adding one
vertex to each end of G(e, s).

2. If {e}s−1(b) ↑ and {e}s(b) ↓= a, then perform whichever of the following
two cases applies. In all future stages t never place a vertex on the left
end of G(e, t) again.

a) if there is an even number of vertices strictly to the left of a in
G(e, s), then G(e, s + 1) is formed by placing one vertex on each
end of G(e, s);

b) if there is an odd number of vertices strictly to the left of a in
G(e, s), then G(e, s + 1) is formed by placing one vertex on the
right end of G(e, s) .

3. If {e}s−1(b) ↑ and {e}s(b) ↓= c, then this is similar to case 2 except
that we are concerned with the right side of G(e, s) and G(e, t).

4. If {e}s−1(b) ↓∈ {a, c}, then at a previous stage case 2 or 3 must have
taken place. G(e, s+1) is formed by adding a vertex to whichever end
of G(e, s) is permitted.

END OF CONSTRUCTION
A(e) and B(e) are both recursive: to determine if p ∈ A(e) or p ∈ B(e)

either (1) p /∈ Xe, so p /∈ A(e) and p /∈ B(e), or (2) p ∈ Xe, in which case
run the construction until p appears in the graph, and note whether p enters
in the A or B side.

G(e) is highly recursive: if p ∈ A(e) ∪ B(e), then all the neighbors of p
appear the stage after p itself appears.

Since G(e) is just the 2-way or 1-way infinite line graph, it obviously has
a solution.

60

We show that {e} is not a solution of G(e). If {e}(b) ↑ or {e}(b) ↓/∈ {a, c},
then {e} is clearly not a solution. If {e}(b) ↓, then case 2 or 3 will occur, at
which point {e} will be forced not to be a solution of G(e), by Lemma 6.12.

For recursive bipartite graphs the situation is even worse. Manaster and
Rosenstein [118] have shown that there exist recursive bipartite graphs that
satisfy Hall’s condition but do not have any solution recursive in K. If we
allow our bipartite graphs to have infinite degree then the situations is far
worse. Misercque [126] has shown that for every recursive tree T there exists
a recursive bipartite graph G such that there is a degree preserving bijection
between the infinite branches of T and the solutions of G. Since there exists
recursive trees T where every infinite branch is not hyperarithmetic [142,
Page 419, Corollary XLI(b)], there is a recursive bipartite graph where every
solution is not hyperarithmetic.

6.3 How Hard is it to Determine if there is a Recursive
Solution?

By Theorem 6.13 there are highly recursive bipartite graphs that satisfy
Hall’s condition, but no recursive solution. We investigate how hard it is
to determine if a particular highly recursive bipartite graph is of that type.
By contrast the following promise problem is Π1-complete: (D,A), where
D = {e | e is the index of a highly recursive bipartite graph} and A = {e ∈
D | the graph represented by e has a solution}.

Notation 6.14 Let HRB be the set of valid indices of highly recursive bi-
partite graphs.

Theorem 6.15 The set

RECSOL = {e : e ∈ HRB ∧Ge has a recursive solution}

is Σ3-complete.

61

Proof:
For this proof, if e = ⟨e1, e2, e3⟩ is an index that determines a highly

recursive bipartite graph, then we denote the graph that it determines by
Ge = (Ae, Be, Ee). We abbreviate (∃t){e1}t(x) = 1 by x ∈ Ae, and adopt
similar conventions for Be, Ee.

RECSOL is the set of all triples e = ⟨e1, e2, e3⟩ of numbers in TOT such
that there exists an i such that

1. i ∈ TOT , and

2. (∀x, y)[(x ∈ Ae ∧ {i}(x) = y)⇒ {x, y} ∈ Ee], and

3. (∀x, z)[(x, z ∈ Ae ∧ x ̸= z)⇒ {i}(x) ̸= {i}(z)]

Clearly RECSOL is Σ3. To show RECSOL is Σ3-hard we show that
COF ≤m RECSOL. Given x, we ‘try’ to construct a highly recursive bi-
partite graph G that satisfies Hall’s condition but does not have a recursive
solution. We will always succeed in making G satisfy Hall’s condition. If
x ∈ COF then our attempt will fail in that G will have a recursive solution.
If x /∈ COF then our attempt will succeed in that G will not have a recursive
solution.

We try to construct a highly recursive bipartite graph G = (A,B,E) that
satisfies the following requirements.

Re : {e} total ⇒ {e} is not a solution of G.
Recursively partition N into infinite recursive sets X0, X1, We con-

struct a highly recursive bipartite graph G(e) = (A(e), B(e), E(e)) such that
the following hold.

1. A(e) ∪B(e) = Xe.

2. G(e) has a solution.

3. If W x ∩ {e, e+ 1, . . .} ≠ ∅, then {e} is not a solution of G(e).

4. If W x ∩ {e, e+ 1, . . .} = ∅, then G(e) has a recursive solution.

The union G =
⋃

e≥0G(e) is the desired graph. If there is an e0 such that
W x ∩ {e0, e0 + 1, . . .} = ∅ then, for all e ≥ e0, W x ∩ {e, e+ 1, . . .} = ∅, hence

62

G(e) will have a recursive solution. From this we will be able to deduce that
G has a recursive solution.

In our description of G(e), whenever we need a vertex we take the least
unused number of Xe. We denote the bipartite graph constructed by the
end of stage e by G(e, s) = (A(e, s), B(e, s), E(e, s)). G(e) is itself a union
of disjoint line graphs. During each stage of the construction we are adding
vertices to one of those line graphs, which we refer to as ‘the current compo-
nent’.

CONSTRUCTION

Stage 0: Let G(e, 0) be the line graph on (a, b, c) (the least three elements of
Xe), interpreted as a bipartite graph by specifying b ∈ A(e, 0). This will be
the current component until it is explicitly changed. Set Γe,0 = e.

Stage s+1: If Γe,s /∈ Wx,s, then set Γe,s+1 = Γe,s and proceed to work on
Re using the current component and current values of a, b, and c, as in the
construction in Theorem 6.13. If Γe,s ∈ Wx,s, then

1. Set Γe,s+1 = µz[z > Γe,s ∧ z /∈ Wx,s].

2. If the number of vertices in the current component is odd then add a
vertex to it (respecting whatever restraints there may be on which side
you can add to).

3. Let a, b, c be three new vertices (the least unused numbers in Xe) and
start a new current component with the line graph on (a, b, c), inter-
preted as a bipartite graph by taking b ∈ A(e, s+ 1).

END OF CONSTRUCTION
Let G =

⋃
e≥0G(e). For each e the graph G(e) is highly recursive by

reasoning similar to that used in the proof of Theorem 6.13. It has a solution
since it consists of some number (possibly infinite) of finite graphs with an
even number of vertices, and at most one infinite graph which is either the
infinite two-way line graph or the infinite one-way line graph. Since all the
algorithms for all the G(e) are uniform, G is a highly recursive graph with a
solution.

If x /∈ COF then, for all e, W x ∩ {e, e + 1, . . .} ≠ ∅. Let ye be the least
element of W x ∩ {e, e + 1, . . .}. Then lims→∞ Γe,s = ye, and in particular it
exists. Eventually the attempt to make sure {e} is not a solution of G(e)

63

will be acting on one component. In this case such efforts will succeed, as
in the proof of Theorem 6.13. Now consider G. This graph has no recursive
solution since, for all e, {e} is not a solution of G(e).

If x ∈ COF , then we show that G has a recursive solution. For almost
all e, W x ∩ {e, e + 1, . . .} = ∅. Hence, for almost all e, lims→∞ Γe,s = ∞.
Hence, for almost all e, all the components of G(e) are finite and have an
even number of vertices. Let S be the finite set of e such that G(e) has
an infinite component. For every e ∈ S G(e) has a finite number of finite
components which have an even number of vertices, and one component
that is either the two-way or one-way infinite line graph. Hence G(e) has a
recursive solution; let Me be a machine that computes that solution. The set
S and the indices of the machines Me for all e ∈ S are all finite information
that can be incorporated into the following algorithm for a recursive solution
of G. Given a number v first find out if v ∈ ⋃

e≥0A(e). If v /∈ ⋃
e≥0A(e) then

we need not match v, so output 0 and stop. If v ∈ ⋃
e≥0A(e) then we find

out if v ∈ ⋃
e∈S A(e), then find e such that v ∈ A(e), and then output Me(v).

If v /∈ ⋃
e∈S A(e) then run the construction until all the vertices in the same

component as v are in the graph (this will happen since every component of
G(e) is finite). Since the component is a line graph with an even number of
vertices, there is a unique solution on it. Output the vertex to which v is
matched.

6.4 Recursion-Theoretic Modification

Manaster and Rosenstein [118] showed that highly recursive bipartite graphs
have solutions of low Turing degree.

Theorem 6.16 If G = (A,B,E) is a highly recursive bipartite graph that
satisfies Hall’s condition, then G has a solution M of low Turing degree.

Proof:
Let A = {a1 < a2 < · · ·}. Consider the following recursive tree: The

vertex σ = (b1, . . . , bn) is on T iff

1. for all i (1 ≤ i ≤ n) we have bi ∈ nbG({ai}).

64

2. all the bi’s are distinct (so the vertex σ represents a solution of the first
n vertices of A into B, namely ai maps to bi).

We have (1) T is recursive, (2) T is recursively bounded by the function
f(n) = max1≤i≤n nbG({ai}), (3) any infinite branch of T is a solution of G,
(4) every solution of G is represented by some infinite branch of T , and (5)
the set of infinite branches of T is nonempty (by the classical Hall’s theorem
and the previous item). Since the branches of T form a nonempty Π0

1 class,
by Theorem 3.12 there exists an infinite low branch. This branch represents
a solution of low degree.

Theorem 6.17 If G = (A,B,E) is a recursive bipartite graph that satisfies
Hall’s condition, then G has a solution M such that M ′ ≤T ∅′′.

Proof: If G = (A,B,E), then the function nb is recursive in K. Define a
tree T as in the previous theorem. Note that this tree is recursive in K and
is K-recursively bounded. By Theorem 3.13 there exists an infinite branch
B such that B′ ≤T ∅′′. This branch represents the desired solution.

6.5 Recursion-Combinatorial Modification

We now consider an effective version of Hall’s theorem which is true. The
modification is both recursion-theoretic and combinatorial.

Recall that by Theorem 6.5 a bipartite graph G = (A,B,E) has a solution
iff for all finite X ⊆ A, |nbG(X)| − |X| ≥ 0. A stronger condition would be
to demand that |nbG(X)| − |X| is large for large |X|. In particular, if you
want |nbG(X)| − |X| ≥ n then there should be some n′ such that |X| ≥ n′

guarantees this. We formalize this:

Definition 6.18 A bipartite graph G = (A,B,E) satisfies the extended
Hall’s Condition (e.H.c.) if there exists a function h such that h(0) = 0
and, for every finite X ⊆ A, |X| ≥ h(n)⇒ |nbG(X)| − |X| ≥ n. That is, to
guarantee an ‘expansion’ of size n, take |X| ≥ h(n). Since h(0) = 0, e.H.c.
implies Hall’s condition.

Kierstead [96] proved the following effective version of Hall’s theorem.

65

Theorem 6.19 If G = (A,B,E) is a highly recursive bipartite graph that
satisfies e.H.c. with a recursive h, then G has a recursive solution. Moreover,
given indices for G and h, one can effectively produce an index for a recursive
solution.

Proof:
Let a0 be the first element of A. We plan to match a0 with some

b0, define a function h′, show that G′ = (A − {a0}, B − {b0}, E ′), where
E ′ = {{x, y} : {x, y} ∈ E, x ∈ A− {a0}, y ∈ B − {b0}}, together with h′, sat-
isfies the hypothesis of the theorem, and iterate. This will easily produce a
recursive solution.

Let

A0 = {x ∈ A : there is a path from x to a0 of length ≤ 2h(1)},
B0 = nbG(A0),
E0 = {{x, y} ∈ E : x ∈ A0, y ∈ B0}.

Note that the vertices in B are of distance at most 2h(1) + 1 from a0.
Let G0 be the finite bipartite graph (A0, B0, E0). Clearly G0 satisfies

Hall’s condition, so it has a solution. Let b0 be the vertex to which a0 is
matched. Let h′ be defined by (1) h′(0) = 0, (2) (∀n ≥ 1)h′(n) = h(n + 1).
Let G′ be as indicated above. We show that G′ satisfies e.H.c. via h′.

Let n ∈ N, X ⊆ A − {a0}, X finite, and |X| ≥ h′(n). We show that
|nbG′(X)| − |X| ≥ n. We need only consider X such that (X,nbG′(X), E ′′)
(where E ′′ ⊆ E ′ is the set of edges between X and nbG′(X)) is connected.
There are several cases, depending on n and X.
Case 1: n ≥ 1. Then |X| ≥ h′(n) = h(n+1). Hence |nbG(X)| − |X| ≥ n+1.
Hence |nbG′(X)| − |X| ≥ n.
Case 2: n = 0 and b0 /∈ nbG(X). Then nbG′(X) = nbG(X). Hence |nbG′(X)|−
|X| = |nbG(X)| − |X| ≥ 0.
Case 3: n = 0 and X ⊆ A0. Since (A0, B0, E0) has a solution where a0 maps
to b0, |nbG′(X)| − |X| ≥ 0.
Case 4: n = 0, b0 ∈ nbG(X), and there exists a ∈ X − A0 (this is negation
of Cases 1,2, and 3). Since b0 ∈ nbG(X) there exists a vertex a′ ∈ X such
that {a′, b0} ∈ E. Since (X,nbG′(X), E ′′) is connected there exists a path
⟨a = x0, x1, . . . , x2k = a′⟩ in G′. Since G′ is bipartite xi ∈ X iff i is even,
hence there are at least k elements of X. Since {a′, b0} ∈ E and {a0, b0} ∈ E
there is a path of length 2k + 1 from a to a0. The shortest path from a to

66

a0 is of length ≥ 2h(1) + 1, hence 2k + 1 ≥ 2h(1) + 1, so k ≥ h(1). Thus
|X| ≥ h(1).

Kierstead formulated the recursive e.H.c to prove the following corollary.

Corollary 6.20 Let G = (A,B,E) be a highly recursive bipartite graph.
Assume there exists d such that (1) for all x ∈ A, deg(x) > d, and (2) for
all x ∈ B, deg(x) ≤ d. Then G has a recursive solution.

Proof: We show that G together with the function h(n) = dn satisfies the
hypothesis of Theorem 6.19. Let X be a finite subset of A such that |X| ≥
dn. We claim |nbG(X)| − |X| ≥ n. Consider the induced bipartite graph
(X,nbG(X), E ′) where E ′ = E ∩{{a, b} | a ∈ X ∧ b ∈ nbG(X)}. The number
of edges is

∑
x∈X deg(x) ≥ (d + 1)|X|. But it is also

∑
y∈nbG(X) deg(y) ≤

d|nbG(X)|. Simple algebra yields |nbG(X)| − |X| ≥ n.

Kierstead [96] has also shown that the assumption that h is recursive
cannot be dropped.

6.6 Miscellaneous

We state several results about recursive solutions without proof.
Manaster and Rosenstein [118] investigated whether some other condi-

tions on G yield recursive solutions. They showed that (1) if a highly re-
cursive bipartite graph G has a finite number of solutions, then all those
solutions are recursive , and (2) if a recursive bipartite graph G has a finite
number of solutions, then all those solutions are recursive in K. However
other conditions do not help: (1) there are highly recursive bipartite graphs
where every vertex has degree 2 (this implies Hall’s condition) which have
no recursive solutions (this was extended to degree k in [119]), (2) there are
decidable bipartite graphs (similar to decidable graphs, see Section 5.7.8)
that satisfy Hall’s condition but do not have recursive solutions.

McAloon [122] showed how to control the Turing degrees of solutions in
graphs. He showed that there exists a recursive bipartite graph which satisfies
Hall’s condition and such that K is recursive in every solution. Along these
lines, Manaster and Rosenstein (reported in [118]) showed that for every n,
1 ≤ n ≤ ℵ0, there exists a recursive bipartite graph with exactly n different
solutions, and the n solutions are of n different Turing degrees. Manaster

67

and Rosenstein also showed that for any Turing degree a ≤T 0′ there exists
a recursive bipartite graph that has a unique solution M , and M is of Turing
degree a. This yields a contrast to highly recursive graphs since any highly
recursive bipartite graph with a unique solution has a recursive solution.

Manaster and Rosenstein [118] examined symmetric solutions in highly re-
cursive bipartite graphs. A symmetric solution is a solution in G = (A,B,E)
which is a solution of B to A as well as A to B. The results are similar to
those for solutions, and thus we do not state them.

Manaster and Rosenstein also showed that for any Turing degree a there
exists a recursive bipartite graph that has a unique solution M , and M is of
Turing degree a.

Misercque [126] has refined the above theorems by showing the following:
(1) given a (highly) recursive bipartite graph G, there exists a (recursively
bounded) recursive tree T such that there is a bijection between the infinite
paths through T and the solutions of G which preserves degree of unsolvabil-
ity, (2) the analogue of (1) also holds for symmetric solutions, (3) for every
(recursively bounded) recursive tree T there exists a (symmetric highly) re-
cursive bipartite graph G such that there is a bijection between the infinite
paths of T and the (symmetric) solutions of G, and (4) the analogue of (3)
for arbitrary solutions is false (this disproved a conjecture of Jockusch and
Soare from [90]).

Hirst [82] has proven several theorems about the proof-theoretic strength
of Hall’s Theorem. Several results in recursive solution theory can be derived
as corollaries of his work.

7 Dilworth’s Theorem for Partial Orders

We consider the infinite version of Dilworth’s Theorem on partial orders. We
(1) present the finite and infinite versions, which are both due to Dilworth [47,
48], (2) show that a recursive analogue of Dilworth’s Theorem is false, (3)
show that there is a recursion-theoretic modification that is true, (4) show
that there is a combinatorial modification that is true, (5) show that there
is a modification that is both recursion-theoretic and combinatorial which is
true, and (6) state some miscellaneous results.

68

7.1 Definitions and Classical Version

Definition 7.1 A partial order P is a set P (called the base set) together
with a relation ≤ that is transitive, reflexive, and anti-symmetric. The rela-
tion < is defined by x < y iff x ≤ y and x ̸= y. If either x ≤ y or y ≤ x, then
x and y are comparable. If two elements x, y are not comparable, we denote
this by x|y. A chain of P = ⟨P,≤⟩ is a set C ⊆ P such that every pair of
elements in C is comparable. A w-chain is a chain of size w. An antichain
of ⟨P,≤⟩ is a set C ⊆ P such that every pair of elements in C is incompara-
ble. A w-antichain is an antichain of size w. The height of ⟨P,≤⟩ is the size
of the largest chain. The width of ⟨P,≤⟩, denoted w(P), is the size of the
largest antichain. If w ∈ N, then a w-cover of ⟨P,≤⟩ is a set of w disjoint
chains such that every element of P is in some chain. We formally represent
a w-cover as a function c from P to {1, . . . , w} such that if c(x) = c(y) then
x is comparable to y.

Dilworth’s theorem states that if the largest antichain of a partial order is
of size w, then it can be covered with w chains. The first published proof is by
Dilworth [47, 48] is by induction on the width and is somewhat complicated
2 Other proofs have been given by Dantzig and Hoffman [44], Fulkerson [57],
Gallai and Milgram [59], and Perles [134]. The most efficient algorithm to find
a covering of a finite partial order ⟨P,≤⟩ uses the computational equivalence
of finding a maximum matching in a bipartite graph to finding a minimal
covering (see [43] or [38, p. 339-341]) and runs in time O(|P |2.5).

We present a simple proof of Dilworth’s theorem due to Perles [134].

Theorem 7.2 (Finite Dilworth’s Theorem) If P = ⟨P,≤⟩ is a finite
partial order of width w, then P has a w-cover.

Proof:
We prove this by induction on |P | (the size of P) for all w simultaneously.

If |P | = 1 then the theorem is clear. Assume the theorem holds for all partial
orders of size ≤ n− 1. Let P = ⟨P,≤⟩ be a partial order such that |P | = n
and w(P) = w. Let

Pmax = {x ∈ P : (∀y ∈ P)[x comparable to y ⇒ y ≤ x]},
2Erdos [51] claims that Galai and Milgram had a complete proof of this in 1947, and

that Galai did not want this known in his lifetime since he was modest and did not want
to seem like he was bickering about priority.

69

Pmin = {x ∈ P : (∀y ∈ P)[x comparable to y ⇒ y ≥ x]},
There are two cases.

Case 1: There exists a w-antichain A = {a1, . . . , aw} such that A ̸= Pmax and
A ̸= Pmin. Let P+ = ⟨P+,≤⟩ and P− = ⟨P−,≤⟩ where

P+ = {x ∈ P : (∃i)[ai ≤ x]}
P− = {x ∈ P : (∃i)[ai ≥ x]}
Clearly P = P+ ∪ P− (since w(P) = w), A = P+ ∩ P− (since A is an

antichain), |P+| < n (since A ̸= Pmin), |P−| < n (since A ̸= Pmax), and
w(P+) = w(P−) = w. Apply the induction hypothesis to P+ and P− to
obtain w-coverings COV + of P+ and COV − of P−. Assume, without loss
of generality, that for all i, 1 ≤ i ≤ w, COV +(ai) = COV −(ai) = i. Then
COV + ∪ COV − is a w-covering of P .
Case 2: For all w-antichains A either A = Pmax or A = Pmin. Let C be a
chain that has one endpoint in Pmax and one in Pmin (such easily exists—
take an element of Pmax and work your way down). Note that C intersects
every w-antichain of P (i.e., intersects Pmax and Pmin), hence the width of
P ′ = ⟨P − C,≤⟩ is ≤ w − 1. Since |P − C| < n we can apply the induction
hypothesis to P ′ to yield a (w − 1)-covering of P ′. This covering, together
with C, yields a w-covering of P .

We now prove the infinite Dilworth’s Theorem. We give a direct proof;
it can also be proven by König’s Lemma (Theorem 3.3).

Theorem 7.3 (Infinite Dilworth’s Theorem) If P = ⟨P,≤⟩ is a count-
able partial order of width w, then P has a w-cover.

Proof: Assume, without loss of generality, that P = N (though of course
≤ need not have any relation to the ordering of N). Let Ps = ⟨{0, 1, . . . , s},≤⟩.
Let cs be a w-covering of Ps (such exists by Theorem 7.2). We use cs to define
c, a w-covering of P . Let

c(0) = µi[(∃∞s)cs(0) = i]
c(n+ 1) = µi[(∃∞s)cs(n+ 1) = i ∧ ∧n

j=0 cs(j) = c(j)]
It is easy to see that c is a w-covering.

The proof of Theorem 7.3 given above is noneffective. To see if the proof
could have been made effective we will look at a potential analogue. In order
to state this analogue we need some definitions.

70

Definition 7.4 A partial order ⟨P,≤⟩ is recursive if both the set P and the
relation ≤ are recursive.

We will represent recursive partial orders ⟨P,≤⟩ by the Turing machines
that determine their base set and relation. An index for a recursive partial
order will be an ordered pair ⟨e1, e2⟩, such that e1 is an index for a Turing
machine that decides P , and e2 is an index for a Turing machine that decides
≤.

Definition 7.5 An index e is a valid index for a recursive partial order if
e = ⟨e1, e2⟩ and the following hold.

1. e1 ∈ TOT01. Let P denote {x : {e1}(x) = 1}.

2. e2 ∈ TOT01.

3. The relation defined by x ≤ y iff {e2}(x, y) = 1, when restricted to
P × P , is a partial order on P .

The partial order represented by e is ⟨P,≤⟩. We denote this partial order Pe.
Note that if {e2}(x, y) = 0 and {e2}(y, x) = 0 then x and y are incomparable.

Definition 7.6 If P is a recursive partial order, then the recursive width of P
is the least w such that P can be recursively covered with w recursive chains.
(Theorems 7.2 and 7.3 justify this definition.) We denote the recursive width
of P by wr(P).

Potential Analogue 7.7 There is a recursive algorithm A that performs
the following. Given an index e for a recursive partial order P = ⟨P,≤P ⟩ of
width w, A outputs an index for a recursive w-covering of P . A consequence
is that all recursive partial orderings P have w(P) = wr(P).

Kierstead [94] showed that this Potential Analogue is false, but that a
combinatorial modification is true. We have a recursion-theoretic modifica-
tion which is true. Schmerl (reported in [94]) has a modification that is
both recursion-theoretic and combinatorial which is true. In summary, the
following are true:

71

1. For every w ≥ 2, there exists a recursive partial order P such that
w(P) = w but wr(P) =

(
w+1
2

)
(proved by Szeméredi and Trotter,

reported in [97]). For the case of w = 2 closer bounds are known:
every recursive partial order of width 2 can be recursively 6-covered;
however, there exists a recursive partial order of width 2 that cannot
be recursively 4-covered.

2. There is a recursive algorithm A that performs the following. Given
an index e for a recursive partial order P = ⟨P,≤P ⟩ of width w, A
outputs an index for a recursive 5w−1

4
-covering of P [94].

3. Every recursive partial order of width w has a w-covering that is low.

4. If P is a recursive locally finite partial order (defined in Section 7.6)
then w(P) = wr(P) (proven by Schmerl, reported in [94]). The proof
does not yield an effective procedure to pass from indices of partial
orders to indices of coverings.

We will prove subcases of i and iii to give the reader the ideas involved.
The full proofs use the same recursion-theoretic ideas, but are more compli-
cated combinatorially. Items ii and iv will be proven completely.

We will need the following definitions.

Definition 7.8 A partial order Q = ⟨Q,≤Q⟩ extends a partial order P =
⟨P,≤P ⟩ if P ⊆ Q and, for all x, y ∈ P , if x ≤P y then x ≤Q y. (Note that
elements that are incomparable in ⟨P,≤P ⟩ might be comparable in ⟨Q,≤Q⟩.)

Definition 7.9 Let P0,P1, . . . be a (possibly finite) sequence of partial or-
ders such that, for all i, Pi+1 extends Pi. Let Pj = ⟨Pj,≤j⟩. Then the union
partial order of P0,P1, . . . is ⟨

⋃∞
j=0 Pj,≤⟩ where x ≤ y iff (∃j)[x, y ∈ Pj∧x ≤j

y]. We denote this partial order by
⋃

j Pj.

7.2 Recursive Analogue is False

We show that there exists a recursive partial order of width w and recursive
width

(
w+1
2

)
. Actually we prove something more general: for every u such

that w ≤ u ≤
(
w+1
2

)
there is a recursive partial order P such that w(P) = w

72

and wr(P) = u. The proof requires two lemmas; the first one is used in the
second, and the second is similar in spirit to Lemma 5.13. The proof of the
main theorem is similar in spirit to the proof of Theorem 5.15. The lemmas
are more general then is needed for this section, but will be used again in
Section 7.3.

Definition 7.10 Let {e} be a Turing machine and let W be a set. If
(∀x ∈ W)[{e}(x) ↓] then {e}(W) is defined to be {{e}(x) : x ∈ W}.

In the following lemma we show that given a width w ≥ 1 and a Turing
machine {e} we can construct a recursive partial order P = ⟨P,≤⟩ such
that w(P) ≤ w, wr(P) = w, but {e} will have a hard time covering P .
Formally either (1) there is an x ∈ P such that {e}(x) ↑, (2) there are
x, y ∈ P that are incomparable and {e}(x) = {e}(y), or (3) there is a chain
A = {aw < aw−1 < · · · < a1} such that |{e}(A)| = w. If (1) or (2) occurs
then {e} is not a covering. If (3) happens then {e} may still cover P but it
has foolishly covered a single chain with w different chains.

Lemma 7.11 Let w ≥ 1, {e} be a Turing machine, and X be an infinite
recursive set. There exists a finite sequence of finite partial orders P1, . . . ,Pr

such that r ≤ w and the following hold. (For notation Pj = ⟨Pj,≤j⟩.)

1. For every j, 1 ≤ j ≤ r, Pj is a tree with one branch of length j, denoted
Aj = {aj < · · · < a1}, and leaves consisting of Bj ∪ {aj}, where Bj

is an anti-chain, Bj = {b1, . . . , bk} (k ≤ j − 1), and Aj ∩ Bj = ∅.
Every element of Bj is placed directly below some element of Aj, but
no element of Bj is above any element of Aj. Since any antichain
contains at most one element from Aj, w(Pj) ≤ k + 1 ≤ j ≤ w.

2. For every j, 1 ≤ j ≤ r − 1, (1) for all x ∈ Pj {e}(x) ↓, (2) Pj+1 can
be obtained recursively from Pj (and the values of {e}(x) for every x ∈
Pj), (3) |{e}(Aj)| = |Aj| = j, and |{e}(Bj)| = |Bj|. Also, |{e}(Br)| =
|Br|.

3. For every j, 1 ≤ j ≤ r, (1) Pj ⊆ X, and (2) canonical indices for
the finite sets Pj and ≤j can be effectively obtained from e, j, w and an
index for X. Note that r is not needed.

73

4. For every j, 2 ≤ j ≤ r, (1) Pj is an extension of Pj−1, (2) Aj−1 ⊆ Aj,
(3) Bj−1 ⊆ Bj, (4) aj ∈ Aj −Aj−1, (5) the only elements in Pj − Pj−1

are below and adjacent to aj−1, and (6) {e}(Bj) ⊆ {e}(Aj−1).

5. At least one of the following occurs.

(a) {e}(ar) ↑ (so {e} cannot recursively cover Pr).

(b) (∃x, y ∈ Ar ∪ Br) such that x|y and {e}(x) ↓= {e}(y) ↓ (so {e}
cannot recursively cover Pr).

(c) r = w and {e}(aw) ↓/∈ {e}(Aw−1). By b, |{e}(Aw−1)| = w − 1,
hence |{e}(Aw)| = w (so if {e} is trying to cover a partial order
that includes Pr, then it has just foolishly covered a single chain
with w different chains).

6. Pr is a recursive partial order. Moreover, an index for both Pr and ≤r

can be obtained from e, w and an index for X (note that we do not need
r). The algorithm for Pr is as follows: given x, wait until x steps in
the construction have gone by; if x has not entered the partial order by
that step, it never will. The algorithm for ≤r is as follows: given x, y
wait until max{x, y} steps in the construction have gone by; if x, y are
both in the partial order then x ≤ y iff x ≤ y at that stage. (When
an element enters the partial order, its relation to all the elements
numerically less than it that are already in the partial order is known.)

7. The following algorithm produces a recursive covering of Pr that uses
|Br|+ 1 ≤ w covers. Map a1 to 1; whenever p enters the partial order
map p to the least number that is not being used to cover some element
incomparable to p (note that all elements already in the partial order
will already be covered). This algorithm will map bi to i. We will refer
to this algorithm for covering as the greedy algorithm. It is easy to see
that an index for the greedy algorithm can be effectively obtained from
e, w and an index for X. (What needs to be proved is that the greedy
algorithm yields a w-covering.)

Proof:
The Turing machine {e} is fixed throughout this proof.
We prove this lemma by induction on w. Assume w = 1 and x is the

least element of X. Let P1 = Pr = ({x}, ∅). If {e}(x) ↑, then v.a is satisfied.

74

If {e}(x) ↓, then v.c is satisfied (vacuously). In either case conditions i–vii
are easily seen to be satisfied. Note that a1 = x.

Assume the lemma is true for w. We show it is true for w + 1. Let
P1, . . . ,Pr be the sequence of partial orders that exists via the induction
hypothesis with parameter w.

If v.a (v.b) holds for Pr with parameter w, then v.a (v.b) holds for Pr

with parameter w+1. Hence the sequence P1, . . . ,Pr is easily seen to satisfy
i–vii.

If v.c holds for Pr, then note that r = w and let Aw = {a1, . . . , aw}
and Bw = {b1, . . . , bk} be as in condition i. Note that {e} converges on
all elements of Aw and |{e}(Aw)| = w. We construct an extension of Pr.
Initialize as follows.

1. Set p to be a new number chosen to be the least element of X that
is bigger than both any element used so far, and the number of steps
spent on this construction so far (this is done to make the partial order
recursive).

2. Set Z to be Bw. Place p under aw and incomparable to all elements in
Z (we do not yet say if this new element is in Aw+1 or Bw+1).

3. Set k′ to be k.

Be aware that p, Z, and k′ may change in the course of the construction.
Note that all the elements in Z are pairwise incomparable. This will be true
throughout the construction and easily provable inductively. Run {e}(p).
There are several cases; in all cases the only elements in Aw+1 − Aw or
Bw+1 −Bw are those which we place there as follows.

1. {e}(p) ↓/∈ {e}(Aw). Set aw+1 to p, Aw+1 to Aw ∪ {aw+1}, and Bw+1 to
Z. Since |{e}(Aw+1)| = |{e}(Aw)|+1 = w+1, condition v.c is satisfied.

2. {e}(p) ↓∈ {e}(Z)∩ {e}(Aw). Set aw+1 to p, Aw+1 to Aw ∪ {aw+1}, and
Bw+1 to Z. Since p is incomparable to all elements in Z, condition v.b
is satisfied. (Setting aw+1 to p is only a technicality to make condition
i true.)

3. {e}(p) ↓∈ {e}(Aw) − {e}(Z). Set k′ to k′ + 1. Let bk′ be p and place
p into Z. Designate a new number to be p, chosen to be the least

75

element of X that is bigger than both any element used so far, and the
number of steps spent on this construction so far (this is done to make
the partial order recursive). Place p under aw and incomparable to all
elements of Z. Run {e}(p) considering these cases 1, 2, 3, and 4. Note
that every time case 3 occurs, |Z| grows by one and |{e}(Z)| = |Z|.
Since |Aw| = w (inductively using condition i), case 3 can occur at
most w − k times.

4. {e}(p) ↑. We (nonconstructively) set aw+1 to p, Aw+1 to Aw ∪ {aw+1},
and Bw+1 to Z. Condition v.a is satisfied. (The w + 2 case is unaf-
fected by this nonconstructiveness since {e}(p) diverging yields a trivial
induction step.)

In any case it is obvious how to define Pr+1. It is easy to see that in
any case conditions i–vi hold. We need to show that vii holds, namely that
the greedy algorithm will (w + 1)-cover Pr+1. By the induction hypothesis
the greedy algorithm (k + 1)-covers Pr and covers bi with i. Let Bw+1 =
{b1, . . . , bk, bk+1, . . . , bk′}. We prove, by induction on i ≥ k + 1, that the
greedy algorithm will cover bi with i. Let i ≥ k + 1. When bi enters the
partial order the greedy algorithm will cover it with i since b1, . . . , bi−1 are
covered with {1, . . . , i− 1} and are the only elements that are incomparable
to bi. Note that there are k

′ ≤ w elements of Br+1 and exactly one element in
Ar+1−Ar (namely aw+1). The element aw+1 will be covered with k′+1 ≤ w+1
when it enters. Hence the greedy algorithm provides a (k′+1)-covering with
bi getting covered with i.

In the following lemma we show that given a width w ≥ 1, a number u
such that w ≤ u ≤

(
w+1
2

)
, and a Turing machine {e} we can construct a

recursive partial order Q = ⟨Q,≤⟩ such that w(Q) ≤ w, wr(Q) ≤ u and {e}
is not a u− 1-covering of Q. Formally either (1) there is an x ∈ Q such that
{e}(x) ↑, (2) there are x, y ∈ Q that are incomparable and {e}(x) = {e}(y),
or (3) there is a set W ⊆ Q such that |{e}(W)| = u. If (1) or (2) occurs then
{e} is not a covering. If (3) happens then {e} may still cover Q but it has
to use at least u different chains.

Lemma 7.12 Let w ≥ 1, {e} be a Turing machine, and X be an infinite

recursive set. Let u be any number such that w ≤ u ≤
(
w+1
2

)
. There exists

a finite sequence of finite partial orders Q1, . . . ,Qr such that the following
hold. (For notation Qj = ⟨Qj,≤j⟩.)

76

1. For every j, 2 ≤ j ≤ r, Qj is an extension of Qj−1. For each j,
1 ≤ j ≤ r (1) Qj ⊆ X, and (2) canonical indices for the finite sets Qj

and ≤j can be effectively computed given e, j, u, w and an index for X.

2. For every j, 1 ≤ j < r, (1) for all x ∈ Qj {e}(x) ↓, (2) Qj+1 can
be obtained recursively from Qj (and the values of {e}(x) for every
x ∈ Qj).

3. One of the following holds.

(a) (∃x ∈ Qr)[{e}(x) ↑] (so {e} cannot be a cover of Qr).

(b) (∃x, y ∈ Qr)[{e}(x) ↓= {e}(y) ↓ and x|y] (so {e} cannot be a
cover of Qr).

(c) (∃W ⊆ Qr)[|W | = |{e}(W)| = u] (so {e} cannot be a (u − 1)-
covering of Qr).

4. Qr is a recursive partial order. Moreover, an index for both Qr and ≤r

can be obtained from e, u, w and an index for X (note that we do not
need r). The algorithm is similar to that in Lemma 7.11.vi.

5. w(Qr) ≤ w.

6. wr(Qr) ≤ u. Moreover, an index for a u-covering of Qr can be effec-
tively obtained from e, u, w and an index for X.

Proof:
The Turing machine {e} is fixed throughout this proof.
We prove this lemma by induction on w. If w = 1, then let Q1 = Qr =

({x}, ∅) where x is the least element of X. If {e}(x) ↑, then iii.a holds. If
{e}(x) ↓, then iii.c holds with W = {x}. In either case conditions i–vi are
easily seen to be satisfied.

Assume the lemma is true for w (and for all u with w ≤ u ≤
(
w+1
2

)
). We

show it for w + 1 and any u such that w + 1 ≤ u ≤
(
w+2
2

)
). Recursively

partition X into two infinite recursive sets Y and Z.
Let P1, . . . ,Pr1 be the sequence that exists via Lemma 7.11 with param-

eters w + 1, Y . For 1 ≤ j ≤ r1 let Qj = Pj. If v.a (v.b) of Lemma 7.11
holds for Pr1 then iii.a (iii.b) holds for Qr1 . Since conditions i–v (of this

77

lemma) are easily seen to be satisfied, we are almost done (we did not use
the induction hypothesis). We will later see why vi is true.

We now assume that v.c of Lemma 7.11 holds for Pr1 . Let A denote Ar1 ,
B denote Br1 , and A = {aw+1 < · · · < a1} (‘<’ is the order on Pr1). Recall
that for 1 ≤ j ≤ r1 we have set Qj = Pj.

Note that u ≤
(
w+2
2

)
=

(
w+1
2

)
+ w + 1. Let i be the least number

such that u − i ≤
(
w+1
2

)
. Note that 0 ≤ i ≤ w + 1. It is easy to see that

w ≤ u−i ≤
(
w+1
2

)
(this uses w+1 ≤ u). Apply the induction hypothesis with

parameters w, u− i, and Z to obtain the sequence Q′
1, . . . ,Q′

r2
. If i = 0 then

this sequence satisfies i–v and we are done. For the rest of the proof assume
i ≥ 1. We now construct Qr1+1, . . . ,Qr1+r2 . For j, r1 + 1 ≤ j ≤ r1 + r2, set
Qj = ⟨Q′

j−r1
∪ Pr1 ,≤j⟩ where ≤j is defined as follows.

1. If x, y ∈ Q′
j−r1

(Pr1) then order as in Q′
j−r1

(Pr1).

2. If x ∈ {a1, . . . , ai} and y ∈ Q′
j−r1

, then set x|y.

3. If x ∈ {ai+1, . . . , aw+1} ∪B and y ∈ Q′
j−r1

then x <j y.

(Note that we needed 1 ≤ i ≤ w+1.) We examine the width of Qr1+r2 . If
C is an antichain of Qr1+r2 , then one of the following occurs. (a) C ∩B ̸= ∅,
so C ∩ Q′

r2
= ∅. Hence C ⊆ Pr1 and since Pr1 has width at most w + 1,

|C| ≤ w+1, (b) C ∩B = ∅, so C ∩Pr1 ⊆ A. Since A is a chain, |C ∩Pr1| ≤ 1.
Since Q′

r2
has width at most w, |C ∩ Qr′2

| ≤ w. Hence |C| ≤ w + 1. Since
both cases lead to |C| ≤ w + 1, Qr1+r2 has width ≤ w + 1.

We now prove that condition iii holds for Qr1+r2 . If iii.a (iii.b) holds
for Q′

r2
then iii.a (iii.b) holds for Qr1+r2 . If iii.c holds for Q′

r2
then let

W ′ ⊆ Q′
r2
be such that |{e}(W ′)| = u− i. If {e}(W ′)∩{e}({a1, . . . , ai}) ̸= ∅,

then there exist x, y such that x|y and {e}(x) = {e}(y), so iii.b holds. If
{e}(W ′) ∩ {e}({a1, . . . , ai}) = ∅ then set W to be W ′ ∪ {a1, . . . , ai}. Note
that |{e}(W)| = |{e}(W ′)|+ i = u− i+ i = u. Hence iii.c holds.

By Lemma 7.11 we can effectively obtain, from e, w and an index for Y ,
an index for a (w + 1)-covering COV1 of Pr1 . Inductively, we can effectively
obtain, from e, u − i, w and an index for Z, an index for a recursive u − i-
covering COV2 of Q′

r2
. (Since we can obtain i from u,w we can also obtain

the index for COV2 from e, u, w and an index for Z.) Recall that, by the
definition of a cover, COV2 has range {1, . . . , u− i}. We define a u-covering

78

COV of Qr1+r2 via

COV (x) =

{
COV1(x) if x ∈ Pr1 ;
COV2(x) + i if x ∈ Q′

r2
.

To compute COV (x) do the following. Given x, first find if x ∈ Y or x ∈ Z
(if it is in neither then stop and output 1). If it is in Y (Z) then run the
construction of the sequence of Pj (sequence of Q′

j) until either x appears,
or the number of steps used is larger than x (in which case x never will
appear, so output 1). If x does appear then compute and output COV1(x)
(COV2(x) + i). Note that to construct an index for this function we only
needed indices for COV1 and COV2, we did not need to know the manner in
which the sequence of Pj or Q′

j succeeded in meeting its requirements. Hence
we can effectively obtain this index even if the sequence of P ’s satisfies v.c
of Lemma 7.11.

It is clear that the range of COV is a subset of {1, . . . , u}. We show
that COV is a covering. If COV (x) = COV (y) then either (1) x, y ∈ Pr1

(x, y ∈ Q′
r2
), in which case x and y are comparable since COV1(x) = COV1(y)

(COV2(x) = COV2(y)), (2) x ∈ Pr1 − {a1, . . . ai} and y ∈ Q′
r2

(or vice versa)
in which case x <r1+r2 y by definition of <r1+r2 . (The case x ∈ {a1, . . . , ai}
and y ∈ Q′

r2
cannot occur since then COV (x) ∈ {1, . . . , i} and COV (y) ∈

{i+ 1, . . . , u}.) Hence COV is a u-cover.

The following lemma is similar to Lemma 7.12 except that we make
w(Q) = w instead of w(Q) ≤ w.

Lemma 7.13 Let w ≥ 1, {e} be a Turing machine, and X be an infinite

recursive set. Let u be any number such that w ≤ u ≤
(
w+1
2

)
. There exists

a finite sequence of finite partial orders Q1, . . . ,Qr such that the following
hold. (For notation Qj = ⟨Qj,≤j⟩.)

1. There exists a w-antichain A such that, for all j, A ⊆ Qj, and all
elements of A are less than all elements of Qj − A. For each j, 1 ≤
j ≤ r, (1) Qj ⊆ X, and (2) canonical indices for the finite sets Qj and
≤j can be effectively computed given e, i, j, and an index for X.

2. For every j, 1 ≤ j ≤ r − 1, Qj+1 can be effectively obtained from Qj

and the values of {e}(x) for every x ∈ Qj − A.

79

3. {e} is not a u− 1 covering of Qr.

4. w(Qr) = w (this is the difference between this Lemma and Lemma 7.12).

5. Qr is a recursive partial order. Moreover, an index for both Qr and ≤r

can be obtained from e, u, w and an index for X (note that we do not
need r). The algorithm is similar to that in Lemma 7.11.vi.

6. wr(Qr) ≤ u. Moreover an index for a u-covering of Qr can be effectively
obtained from e, u, w and an index for X.

Proof:
Let A = {x1, . . . , xw}, the first w elements of X. Let Q′

1, . . . ,Q′
r be

the sequence obtained by applying Lemma 7.12 to parameters e, u, w, and
X − {x1, . . . , xw}. For notation Q′

j = ⟨Q′
j,≤

′
j⟩. For all j, 1 ≤ j ≤ r, let

Qj = ⟨Q′
j ∪A,≤j⟩ where ≤j is defined by the following: (1) if x, y ∈ A then

x|y, (2) if x, y ∈ Q′
j then x ≤j y iff x ≤′

j y, and (3) if x ∈ A and y ∈ Q′
j then

x ≤j y.

In Lemma 7.13 we showed, given e, u, w, how to create a recursive partial
order P such that w(P) = w, wr(P) ≤ u, and {e} does not u − 1-cover P .
We now combine all these partial orders to get a partial order that has width
w, recursive width ≤ u, and cannot be u− 1-covered by any {e}. Hence its
recursive width is exactly u.

Theorem 7.14 Let w ≥ 2 and u be such that w ≤ u ≤
(
w+1
2

)
. Let X be an

infinite recursive set. There exists a recursive partial order P = ⟨P,≤P ⟩ such
that w(P) = w, wr(P) = u, and P ⊆ X. (Note that if w ∈ {0, 1} then for
all recursive partial orders P such that w(P) = w we have wr(P) = w(P).)

Proof:
Let X =

⋃
e≥0Xe be a recursive partition of X into infinite sets. Let

Q(e) = ⟨Qe,≤e⟩ be the partial order constructed in Lemma 7.13 using pa-
rameters e, u, w and Xe. Let P = ⟨⋃e≥0Q(e),≤⟩ where ≤ is defined by (1)
if (∃e)[x, y ∈ Q(e)] then x ≤ y iff x ≤e y, (2) if x ∈ Q(e1) and y ∈ Q(e2)
then x ≤ y iff x is bigger than y numerically. Clearly Q is a recursive partial
order and w(Q) = w. Since for all e {e} is not a u − 1 covering of Q(e),
wr(Q) ≥ u. Since for all e Q(e) is recursively u-coverable in a uniform way,
wr(Q) ≤ u. Combining the two inequalities yields wr(Q) = u.

80

7.3 How Hard is it to Determine wr(P)?
In this section we show that, even if w(P) is known, and wr(P) is nar-
rowed down to two prespecified values, it is Σ3-complete to determine wr(P).
By contrast the following promise problem is Π1-complete: (D,A), where
D = {e | e is the index of a recursive partial order} and A = {e ∈ D |
the partial order represented by e has width ≤ w}.

The next lemma ‘slows down’ the construction of Lemma 7.12.

Lemma 7.15 Let w ≥ 1. Let {e} be a a Turing machine, and X an infinite

recursive set. Let u be any number such that w ≤ u ≤
(
w+1
2

)
. There exists an

infinite sequence of (not necessarily distinct) partial orders R1,R2, . . . such
that the following hold. (For notation Rs = ⟨Rs,≤s⟩.)

1. Rs+1 is an extension of Rs.

2. For all s, Rs ⊆ X and w(Rs) = w.

3. Given e, u, w and an index for X one can effectively find canonical
indices for the finite sets Rs and ≤s.

4. There exists a finite partial order R = ⟨R,≤⟩ and a number t such that
R = Rt, and (∀s ≥ t)Rs = R. We call this partial order lims→∞Rs.

5. R is not (u− 1)-covered by {e}.

6. R is a recursive partial order. Moreover, an index for both R and ≤ can
be obtained from e, u, w and an index for X. The algorithm is similar
to that in Lemma 7.11.vi.

7. Let x, y, s be such that x, y ∈ Rs and s is the least such number. Then
for all t ≥ s, x ≤s y iff x ≤t y, i.e., if elements are initially incompa-
rable then they remain incomparable.

8. w(R) = w.

9. wr(R) ≤ u. Moreover, given e, u, w and an index for X one can effec-
tively find an index for a recursive u-covering of R.

81

Proof:
Apply Lemma 7.13 to the parameters e, u, w,X. Break the construction

of Qr into stages such that at each stage either nothing is added to the partial
order (e.g., one more step of the relevant Turing machine was run and did
not converge), or an element is added and its relation with everything that
is already in the partial order is established. Let Rs be the partial order
produced at the end of stage s. It is easy to see that i–ix are satisfied.

The next lemma is a ‘parameterized version’ of Lemma 7.13. Given e, u, w
and a parameter y we construct a partial order P such that (1) w(P) = w,
(2) wr(P) ≤ u, and (3) if y /∈ TOT then P is not u− 1-covered by {e}, and
if y ∈ TOT then P will be recursively w-covered (in this case we do not care
about what {e} does).

Lemma 7.16 Let w ≥ 1. Let {e} be a a Turing machine, and X an infinite

recursive set. Let u be any number such that w ≤ u ≤
(
w+1
2

)
. Let y ∈ N.

There exists a recursive partial order P = (P,≤), which depends on y, such
that the following hold.

1. P ⊆ X.

2. Given e, u, w, y and an index for X, one can effectively find an index
for P. The algorithm is similar to the one used in Lemma 7.11.vi.

3. P consists of a (possibly finite) set of finite partial orders P1 = ⟨P 1,≤1⟩,
P2 = ⟨P 2,≤2⟩, P3 = ⟨P 3,≤3⟩ . . . such that for all i ̸= j P i ∩ P j = ∅
and all elements of P j are less than (using the order ≤ of P) all el-
ements of P j+1. The Pj’s are called constituents. The function that
takes ⟨j, x⟩ and tells whether x ∈ P j is recursive.

4. If y /∈ TOT then

(a) P consists of a finite number of constituents, and

(b) P is not (u− 1)-covered by {e}.

5. If y ∈ TOT then

(a) P consists of an infinite number of constituents, and

82

(b) given e, u, w, y and an index for X, and p ∈ P , one can effectively
find the constituent containing p (i.e. find all the elements in the
constituent and how they relate to p).

(c) wr(P) = w. This will follows from a,b, the finiteness of the con-
stituents, and w(P) = w (the next item).

6. w(P) = w.

7. wr(P) ≤ u. Moreover, given e, u, w, y and an index for X one can
effectively find an index for a recursive u-covering of P.

Proof:
We consider e, u, w, y and X fixed throughout this proof. Let X =⋃∞

j=0Xj be a recursive partition of X into an infinite number of infinite
recursive sets. Let R1(j),R2(j) . . . be the sequence of partial orders ob-
tained by applying Lemma 7.15 to parameters e, u, w,Xj. (For notation
Rs(j) = ⟨Rs(j),≤s,j⟩.) We use these partial orders to construct P in stages.
We denote the partial order at the end of stage s by Ps = ⟨Ps,≤s⟩.
CONSTRUCTION

Stage 0: P0 = R1(0), j0 = 0, and k0 = 0.

Stage s+1: Assume inductively that Ps = ⟨
⋃js

j=0 P
j
s ,≤s⟩, Pjs

s = Rs(js), and
that for all j, 0 ≤ j ≤ js − 1, all the elements of Pj

s are ≤s-less than all
the elements of Pj+1

s . Let ks+1 be the least element that is not in Wy,s. If
ks = ks+1 then set js+1 = js, else set js+1 = js + 1. In either case set (1) for
all j < js+1, Pj

s+1 = Pj
s and (2) Pjs+1

s+1 = Rs+1(js+1). (We refer to Rs+1(js+1)
as the current partial suborder.) Define ≤s+1 as follows.

1. x1, x2 ∈
⋃js

j=0 P
j
s . So x1, x2 have been placed into the partial order in a

previous stage. Set x1 ≤s+1 x2 iff x1 ≤s x2.

2. x1, x2 ∈ Rs+1(js+1). Set x1 ≤s+1 x2 iff x1 ≤s+1,js+1 x2. (If x1, x2 ∈⋃js

j=0 P
j
s then this is not in conflict with case i. The relationship between

x1 and x2 would have been set at a previous stage s′ ≤ s via x1 ≤s′ x2

iff x1 ≤s′,js′
x2 where js+1 = js′ . Note that by vii of Lemma 7.15 the

relationship between x1 and x2 cannot change.)

3. x1 /∈ Rs+1(js+1) and x2 ∈ Rs+1(js+1). So x1 is not in the current partial
suborder, but x2 is. Set x1 ≤s+1 x2. (If x1, x2 ∈

⋃js
j=0 P

j
s then this is

83

not in conflict with i since x1 would have been set less than x2 when
x2 enters the partial order, and via case iii.)

Note that if ks+1 = ks then we do not add any more constituents, we just add
to the most recent one; and if ks ̸= ks+1 then we create a new constituent
and will never add to the previous constituents.

Set Ps+1 = ⟨
⋃js+1

j=0 P j
s+1,≤s+1⟩.

END OF CONSTRUCTION
Let P =

⋃
sPs. It is clear that P satisfies i and ii. Since for every j

both Rs(j) and R = lims→∞ Rs(j) are finite, iii holds. By Lemma 7.15 each
constituent of P is w-coverable therefore P has width w. Hence vi holds.

Assume y /∈ TOT . Let k be the least element of W y. Let t be the least
stage such that 0, 1, . . . , k − 1 ∈ Wy,t. For all s > t, js = jt+1; therefore P
consists of a finite number of finite partial orders of the form Rs′(j

′) (where
s′ < t and j′ < jt+1) along with R = lims→∞Rs(jt+1). Hence iv.a holds. By
Lemma 7.15, R is not (u− 1)-covered by {e}, hence iv.b holds.

Assume y ∈ TOT . Since Wy = N, lims→∞ js = ∞. During every stage s
such that js ̸= js+1 a new constituent is created; therefore P consists of an
infinite number of constituents. Hence v.a holds.

To establish v.b we show, given p ∈ P , how to find all the elements in
the constituent containing p. Run the construction until j, s ∈ N are found
such that p is an element of Rs(j) (this will happen since p ∈ P). Run the
construction further until t is found such that j < jt (this will happen since
y ∈ TOT). The constituent of Pt that contains p is the constituent of P that
contains p.

To establish v.c we show that wr(P) = w. Given a number p, first test
if p ∈ P . If p /∈ P then output 1 and halt (we need not cover it). If p ∈ P
then, using v.b, find all the elements of the constituent containing p. By vi
this constituent has width w. Let c be the least lexicographical w-covering
of this constituent. Output c(p).

To establish vii we have to effectively find an index for a u-covering of P
from e, u, w, y, and and index for X. Since X =

⋃∞
j=0 is a recursive partition,

we need only find, for each j, an index for the construction restricted to Xj,
which we denote P [j]. Let R[j] be the recursive partial order obtained by
applying Lemma 7.15 with parameters e, u, w,Xj. Note that (1) P [j] is a
suborder of R[j] and (2) we can effectively find an index ej for a u-covering
of R[j] from e, u, w, and an index for Xj. The index ej restricted to the

84

subset of Xj that is actually used, is an index for a u-covering of P [j]. Note
that this index is obtained without knowing if y ∈ TOT .

Theorem 7.17 Let w ≥ 2. Let u be such that w < u ≤
(
w+1
2

)
. Let D be

the set of all indices of recursive partial orders P such that w(P) = w and
wr(P) ∈ {u,w}. Let RWIDTHu,w be the 0-1 valued partial function defined
by

RWIDTHu,w(e) =


1 if e ∈ D and wr(Pe) = w;
0 if e ∈ D and wr(Pe) = u;
undefined if e /∈ D .

The promise problem (D,RWIDTHu,w) is Σ3-complete.

Proof: The following is a Σ3 solution for (D,RWIDTHu,w).
Aw is the set of ordered pairs ⟨e1, e2⟩ ∈ TOT01 such that there exists an

i such that

1. i ∈ TOTw, and

2. (∀x, y)[({i}(x) = {i}(y) ∧ {e1}(x) = {e1}(y) = 1) ⇒ ({e2}(x, y) =
1 ∨ {e2}(y, x) = 1)]

(Recall that x, y are comparable iff either {e2}(x, y) = 1 or {e2}(y, x) = 1.)
We show that (D,RWIDTHu,w) is Σ3-hard by showing that if A is a

solution to (D,RWIDTHu,w) then COF ≤m A. Given x, we construct a
recursive partial order P(x) = P such that w(P) = w and

x ∈ COF ⇒ wr(P) = w, and
x /∈ COF ⇒ wr(P) = u.
We use a modification of the construction in Theorem 7.14 of a recursive

partial order which has width w but recursive width u. In this modification
we weave the set Wx into the construction in such a way that if Wx is cofinite
then the construction fails and wr(P) = w ; and if Wx is not cofinite then
the construction succeeds and wr(P) = u.

Let N =
⋃∞

e=0 Xe be a recursive partition of N into an infinite number of
infinite recursive sets. Let ye be defined such that

ye ∈ TOT iff {e, e+ 1, . . .} ⊆ Wx

85

(it is easy to construct ye from e). Let P(e) = ⟨P (e),≤e⟩ be the recursive
partial order obtained by applying Lemma 7.16 to e, u, w,Xe, ye. Let P =
⟨⋃∞

e=0 P (e),≤⟩ where ≤ is defined as follows: (1) if x1, x2 ∈ P (e) then x1 ≤ x2

iff x1 ≤e x2, (2) if x1 ∈ P (e1), x2 ∈ P (e2) then x1 ≤ x2 iff e1 is numerically
less than e2. Clearly P is recursive and w(P) = w.

If x /∈ COF then for all e we have ye /∈ TOT . Hence, by Lemma 7.16,
for all e, P(e) is not (u − 1)-covered by {e}. Therefore wr(P) ≥ u. By
Lemma 7.16, the partial orders P(e) are recursively u-coverable, and an index
for a recursive u-covering can be obtained from e, u, w, ye and an index for
Xe. Hence wr(P) ≤ u. Combining these two inequalities yields wr(P) = u.

If x ∈ COF then S = {e | ye /∈ TOT} is finite. Let P ′ =
⋃

e∈S P (e)
and P ′′ =

⋃
e/∈S P (e). Let P ′ = ⟨P ′,≤′⟩ (P ′′ = ⟨P ′′,≤′′⟩) where ≤′ (≤′′) is

the restriction of ≤ to P ′ (P ′′). We show that P is recursively w-coverable
by showing that P ′ and P ′′ are recursively w-coverable (and using that P =
P ′ ∪ P ′′ is a recursive partition of P).

If e ∈ S then ye /∈ TOT so, by Lemma 7.16, P(e) is finite and w(P(e)) =
w. Since S is finite, P ′ is a finite w-coverable partial order. Hence wr(P ′) =
w. If e /∈ S then ye ∈ TOT so, by Lemma 7.16, wr(P ′′) = w.

7.4 Combinatorial Modifications

Kierstead [94] proved that every recursive partial order of width w has re-
cursive width ≤ 5w−1

4
. In Section 7.4.1 We present the w = 2 case of this

theorem in detail, i.e., we show that every recursive partial order of width
2 can be recursively 6-covered. We then make remarks about how the proof
for general w goes. We do not claim that from this one could reconstruct the
proof for general w. In Section 7.4.2 we examine a modification where less
information about the partial order is given; we provide no proofs.

By Theorem 7.14 there exist a recursive partial order of width 2 that can-
not be covered by 3 recursive chains. Kierstead has shown that there exists
a recursive partial order of width 2 that cannot be covered by 4 recursive
chains

Also note that the lower bound of
(
w+1
2

)
given in Theorem 7.14 cannot

be tight since it fails for w = 2. The exact bound is unknown. It is open to
find a w such that one can always recursively cover a partial order of width
w with <5w−1

4
chains.

86

7.4.1 Bounding the Recursive Width

Notation 7.18 We often deal with several partial orders at the same time.
In this case each partial order we deal with will have a superscript on the ‘≤’
symbol. Hence we use ⟨P,≤P ⟩ for a partial order, ≤N for the numerical order
on the natural numbers, and≤∗ for an order that we define. To indicate which
order we are using, we use terms like ‘N-greater than’ or ‘∗-comparable.’

Theorem 7.19 If P = ⟨P,≤P ⟩ is a recursive partial order of width 2, then
P has recursive width ≤ 6. Moreover, given an index for ⟨P,≤P ⟩, one can
recursively find an index for a recursive 6-covering of P.

Proof:
We define a recursive chain B and then show that A = P − B can be

recursively 5-covered. Let
b0 = the N-least element of P .
bi+1 = the N-least x such that bi <

N x and x is P -comparable to b1, . . . , bi
(if no such x exists, then bi+1 = bi).

B = {bi | i ∈ N}
The set B might be finite, but note that B is recursive and that an

algorithm for it can be obtained effectively from an index for ⟨P,≤P ⟩.
Note that B is a recursive chain and that for all p ∈ A there exists p′ ∈ B

such that p′ <N p and p|p′ (we will use this later).
By convention, elements of A will be denoted by small letters (e.g., p),

elements of B will be denoted by small letters with primes (e.g. p′). Usually
p and p′ will be P -incomparable elements.

To show that A is recursively 5-coverable we will define a total ordering
≤∗ and an equivalence relation ∼ such that the following hold (the class that
p is in is denoted [p]).

0a) Every equivalence class of ∼ is a ≤P -chain.

0b) If p <∗ q <∗ r and p ∼ r, then p ∼ q ∼ r.

0c) If x1 ∼ x2 , y1 ∼ y2, and x1 ̸∼ y1, then x1 <
∗ y1 iff x2 <

∗ y2. Hence we
can define <∗ and ≤∗ on equivalence classes via [p] <∗ [q] iff [p] ̸= [q]
and p <∗ q; [p] ≤∗ [q] iff [p] = [q] or [p] <∗ [q]. Both these definitions
are independent of the representatives from [p] or [q] that are chosen.

87

0d) If [p] <∗ [q] <∗ [r] <∗ [s], then p <P s.

0e) Both ≤∗ and ∼ are recursive.

We postpone the definitions of ≤∗ and ∼.

Notation 7.20 If A ⊆ N, n ∈ N, then An is the set containing the first n
elements of A numerically.

Claim 0: If ≤∗ and ∼ can be defined to satisfy 0a, 0b, 0c, 0d and 0e, then
there is a recursive 5-covering of A.

Proof of Claim 0:
We describe a recursive 5-covering of A. Inductively assume that the

elements of An have been distributed among 5 disjoint sets C1, . . . , C5 such
that

1. if p ∼ q, then p and q are in the same Ci (hence we may speak of the
set that [p] is in),

2. if p ̸∼ s and p, s ∈ Ci, then there exist q and r such that either
[p] <∗ [q] <∗ [r] <∗ [s] or [s] <∗ [r] <∗ [q] <∗ [p], and

3. each Ci is a ≤P -chain (this follows from (2) and condition 0d).

Let a be the numerically (n+ 1)st element of A. We determine which set
to place a into by going through the following cases in order. (All elements
referred to below, except a, are in An.)
Case 1: There exists p ∈ Ci such that p ∼ a. Then place a into Ci. It is easy
to see that the inductive conditions still hold.
Case 2: There exists an i such that Ci = ∅. Let i0 be the least such i. Place
a into Ci0 . It is easy to see that the inductive conditions still hold.
Case 3: There exist r, s, t such that [a] <∗ [r] <∗ [s] <∗ [t], t ∈ Ci, and for
no t′ ∈ Ci is [t′] <∗ [t]. Then place a into set Ci. It is easy to see that the
inductive conditions still hold.
Case 4: There exist o, p, q such that [o] <∗ [p] <∗ [q] <∗ [a], o ∈ Ci, and for
no o′ ∈ Ci is [o] <

∗ [o′]. Similar to Case 3.
Case 5: There exist elements o, p, q, r, s, t such that [o] <∗ [p] <∗ [q] <∗ [a] <∗

[r] <∗ [s] <∗ [t], and there exists i such that o, t ∈ Ci, and for all u with

88

[o] <∗ [u] <∗ [t], u /∈ Ci. Place a into Ci. By 0d and the induction hypothesis,
the inductive conditions still hold.

We show that at least one of these cases occurs. In particular, we assume
that none of Cases 1,2,3, or 4 occur, and show that Case 5 holds. Let k (m)
be the number of sets containing elements that are ∗-smaller (∗-larger) than
a. Let Ci1 , . . . , Cik (Cj1 , . . . , Cjm) be all the sets containing elements that
are ∗-smaller (∗-larger) than a. Let bi1 , . . . , bik (bj1 , . . . , bjm) be the ∗-largest
(∗-smallest) element of Ci1 , . . . , Cik (Cj1 , . . . , Cjm) that is ∗-smaller than a
(∗-larger than a). Without loss of generality assume the following holds:

[bik] <
∗ · · · <∗ [bi1] <

∗ [a] <∗ [bj1] <
∗ · · · <∗ [bjm].

We show that k ≥ 2 (a similar proof shows m ≥ 2). Assume, by way
of contradiction, that k ≤ 1. Since Case 2 does not hold, m ≥ 4. Hence
there exist three elements r, s, t ∈ {bj1 , bj2 , bj3 , bj4} such that r <∗ s <∗ t and,
if k = 1, r, s, t /∈ [bi1]. Case 3 holds with these values of r, s, t, which is a
contradiction.

Let p = bi2 , q = bi1 , r = bj1 , s = bj2 . Let o be some element that has
been placed into a set, but o /∈ Ci1 ∪Ci2 ∪Cj1 ∪Cj2 (such exists since by the
negation of Case 2 all five sets are used). Assume o <∗ a (the case a <∗ o
is similar, though there we would call the element t instead of o). Since
o /∈ [p]∪ [q] we have [o] <∗ [p] <∗ [q] <∗ [a]. Let C be the set that o is in. We
can assume that o is the ∗-largest such element of C that is <∗ a. C must
also contain some element t, a <∗ t, else Case 4 holds. Let t be the ∗-least
such element. Since t ∈ C, t /∈ [r] ∪ [s]. Hence [a] <∗ [r] <∗ [s] <∗ [t]. Since
o is the ∗-largest element of C that is ≤∗ a, and t is the ∗-smallest element
of C that is ≥∗ a, the elements o, p, q, r, s, t satisfy Case 5.

End of Proof of Claim 0

We describe a relation ≤∗ on A and then prove that it is a recursive linear
ordering.

Definition 7.21 If p ∈ A then inc(p) = {p′ : p′ ∈ B and p′|p}. If p, q ∈ A
then inc(p) <P inc(q) means that ∀p′ ∈ inc(p) ∀q′ ∈ inc(q) p′ <P q′. Let
inc(p) ≤P inc(q) mean that either inc(p) <P inc(q) or inc(p) = inc(q).
If inc(p) ≤P inc(q) or inc(q) ≤P inc(p) then inc(p) and inc(q) are P-
comparable.

89

Definition 7.22 We define a relation ≤∗ on A. We later show that ≤∗ is a
recursive linear ordering. Given p, q ∈ A apply the least case below that is
satisfied by p and q.

1. if p ≤P q then p ≤∗ q,

2. if q ≤P p then q ≤∗ p,

3. if inc(p) <P inc(q) then p ≤∗ q,

4. if inc(q) <P inc(p) then q ≤∗ p.

5. if none of the above cases apply then p, q are ∗-incomparable (we later
show this never occurs).

Claim 1:

1a) For every p, q ∈ A either p ≤∗ q or q ≤∗ p.

1b) ≤∗ is reflexive and transitive.

1c) ≤∗ is a recursive linear ordering.

1d) If p, q, r ∈ A, p ≤∗ q ≤∗ r, and s′ ∈ inc(p) ∩ inc(r) then s′ ∈ inc(q).

1e) If p <∗ q, inc(p) ∩ inc(q) ̸= ∅, then p <P q.

Proof of Claim 1:

(1a): We show that if p|q then either inc(p) <P inc(q) or inc(q) <P inc(p)
(which implies that p and q are ∗-comparable). If not then there exist
p′, p′′ ∈ inc(p) and q′ ∈ inc(q) such that p′ <P q′ <P p′′ (or the analogue
with q′, p′, q′′). Since P has width 2 and p|q, q′|q, we have that p is compara-
ble to q′. However, p <P q′ yields p <P p′′, and q′ <P p yields p′ <P p, both
of which contradict p′, p′′ ∈ inc(p).

(1b): ≤∗ is clearly reflexive. We show that ≤∗ is transitive. Assume p ≤∗ q
and q ≤∗ r and that p, q, and r are distinct. There are several cases to
consider. (i) If p ≤P q and q ≤P r then p ≤P r, hence p ≤∗ r. (ii) If
inc(p) <P inc(q) and inc(q) <P inc(r) then inc(p) <P inc(r), hence p ≤∗ r.
(iii) Assume p ≤P q and inc(q) ≤P inc(r). By 1a either p ≤∗ r or r ≤∗ p.
Assume, by way of contradiction, that r ≤∗ p. If r ≤P p then r ≤P p ≤P q,

90

contradicting q ≤∗ r. If inc(r) <P inc(p) then inc(q) <P inc(p). Hence we
have p <P q, q′ <P p′ (for all p′ ∈ inc(p) and q′ ∈ inc(q)). The elements
p and q′ must be P -comparable since otherwise q′ ∈ inc(p) which violates
inc(q) <P inc(p). But p ≤P q′ implies p ≤P p′, and q′ ≤P p implies q′ ≤P q,
both of which are contradictions. Hence p ≤∗ r. (iv) Assume inc(p) < inc(q)
and q ≤P r. Similar to iii.

(1c): From 1a and 1b ≤∗ is a linear ordering. We describe an algorithm that
determines how p and q ∗-compare. First determine how p and q P -compare.
If p ≤P q then p ≤∗ q, and if q ≤P p then q ≤∗ p. If p|q, then by 1a inc(p)
and inc(q) P -compare. Find p′ ∈ inc(p) and q′ ∈ inc(q). Now p <∗ q iff
p′ <P q′.

(1d): Assume by way of contradiction that s′ <P q. Then q ̸≤P r (else
s′ <P r). Since q <∗ r and q ̸≤P r, we have inc(q) <P inc(r). Since
s′ ∈ inc(r), we have inc(q) <P s′ <P q, which is a contradiction. Hence
s′ ̸≤P q. Similar reasoning yields q ̸≤P s′, so s′ ∈ inc(q).

(1e): Let x ∈ inc(p) ∩ inc(q). Since P has width 2 and p|x, q|x we know p
and q are P -comparable. If q <P p then q ≤∗ p, hence p <P q.

End of Proof of Claim 1
We describe a recursive equivalence relation ∼ on A inductively. Assume

that the elements of An have been put into equivalence classes. Given q, the
numerically (n+ 1)st element of A, we proceed as follows. Find q−, q+ ∈ An

(if they exist) such that
q− is the ∗-max element such that q− <∗ q.
q+ is the ∗-min element such that q <∗ q+.
(Note that q− <∗ q <∗ q+.)
If there exists q′ ∈ B, q′ <N q, q′|q and q′|q−, then place q in the same

class as q−. If not, but if there exists q′ <N q, q′|q and q′|q+ then place q
in the same class as q+. If neither of these occurs, then q becomes the first
element of a new class.

We can now prove 0a, 0b, and 0c, the first three properties that were
required of ≤∗ and ∼. We restate them because we need a slightly stronger
version (strengthening the induction hypothesis).

Claim 2: For every n, when only the elements of An are put into classes, the
following hold.

2a) If p, q are two ∗-adjacent elements such that [p] = [q] then (1) ∃x ∈

91

inc(p)∩inc(q) with x <N N-max{p, q} and (2) p and q are P -comparable.
Every class is a ≤P -chain.

2b) If p <∗ q <∗ r and p ∼ r then p ∼ q ∼ r.

2c) If p1 ∼ p2, q1 ∼ q2, and p1 ̸∼ q1, then p1 <
∗ q1 iff p2 <

∗ q2.

Proof of Claim 2
By induction on n. Assume all three items are true for An and consider

what may happen when q, the numerically (n + 1)st element of A, is con-
sidered. Let q−, q+ be as in the definition of ∼. Note that q− and q+ are
∗-adjacent elements in An.

Case 1: If q− ∼ q+ then q− and q+ are ∗-adjacent elements and [q−] = [q+].
By the induction hypothesis there exists x ∈ inc(q−)∩ inc(q+) with x <N N-
max{q−, q+}. By Claim 1d, x ∈ inc(q). Since x <N N-max{q−, q+} <N q,
the element q is placed in [q−]. By Claim 1e, q− ≤P q ≤P q+. Hence 2a
holds. It is easy to see that 2b, 2c hold as well.

Case 2: q− ̸∼ q+ and q− ∼ q. Since q was placed in [q−], (∃x <N q)[x ∈
inc(q)∩ inc(q−)]. By Claim 1e, q− ≤P q. Hence, since q = N-max{q, q−}, 2a
holds. It is easy to see that 2b, 2c hold as well.

Case 3: q− ̸∼ q+ and q+ ∼ q. Similar to Case 2.

Case 4: q becomes the first element of a new class. In this case 2a, 2b, and
2c hold trivially.

End of proof of Claim 2

Definition 7.23 We define <∗ and ≤∗ on classes via [p] <∗ [q] iff [p] ̸= [q]
and p <∗ q; and [p] ≤∗ [q] iff [p] = [q] or [p] <∗ [q]. Claim 2c shows that these
definitions are independent of representation.

We need one more claim before we can prove item 0d about ∼.
Claim 3: Let a be the N-least element of [a]. Let b be such that a <∗ b.

1. If there exists c′ such that c′|a, c′|b, c′ <N a and c′ ∈ B, then a ∼ b.

2. If a ̸∼ b then for all c′ <N a such that c′ ∈ B and c′|a we have c′ <P b.

3. If a ̸∼ b then there exists d such that a ̸∼ d, [a] <∗ [d] ≤∗ [b], d is the
N-least element of [d], and for all c′ such that c′ <N d, c′ ∈ B, and c′|d,
we have a <P c′.

92

Proof of Claim 3:
i. We first show that a <N b. Let S = {d ∈ A : d <N a, a <∗ d ≤∗ b}. We
show S = ∅ which easily implies a <N b. Assume, by way of contradiction,
that S ̸= ∅. Let d be the ∗-smallest element of S. Note that (1) since
a <∗ d ≤∗ b, c′|a, and c′|b, by Claim 1d, c′|d, and (2) when a is placed into
an equivalence class, d is the value of a+ (i.e., the ∗-least element that is
∗-larger than a and N-less than a). Consider what happens when a is placed
into an equivalence class. If a is placed into [a−] then a will not be the N-least
element of [a]. If a is not placed into [a−] then, since c′|a, c′|d, c′ <N a, and
d = a+, a is placed into [d]. In either case a is not the N-least element of its
class, contrary to hypothesis. Hence S = ∅.

We now know that when b is placed into a class a has already been so
placed. We show b ∼ a by induction on n, the number of elements N-smaller
than b and ∗-between a and b when b is considered. If n = 0, then when b
is considered a <∗ b (adjacent), c′|a, c′|b, and c′ <N a <N b. Hence, b will
be placed in [a]. If n > 0, then let b− be the ∗-largest element that is ∗-less
than b when b is placed. (so a <∗ · · · <∗ b− <∗ b). Since c′|a and c′|b, by
Claim 1d c′|b−. Since there are ≤N n− 1 elements ∗-between a and b− when
b− is placed, and since c′ <N a <N b− (by the above argument) we may apply
the induction hypothesis to a and b−, hence a ∼ b−. Thus b will be placed
into [b−] = [a], so a ∼ b.
ii. By the contrapositive of i. we know that c′ is comparable to b. Since
a <∗ b, either a <P b or inc(a) <P inc(b). Either case leads to b ̸≤P c′, hence
c′ <P b.
iii. If b <N a, let d be the N-least element of [b] (we prove later that this
choice of d works). If a <N b, let S = {d ∈ A : d ≤N b, a <∗ d ≤∗ b}. Let
d∗ be the ∗-least element of S such that a ̸∼ d∗. (Note that d∗ exists, since
b ∈ S and a ̸∼ b.). Let d be the N-least element of [d∗].

The remainder of this proof is valid for either choice of d. Since a ∼ a,
d ∼ d∗, a ̸∼ d∗, and a <∗ d, by Claim 2c [a] <∗ [d]. Since d ≤∗ b, by definition
[d] ≤∗ [b]. Hence [a] <∗ [d] ≤∗ [b].

Let c′|d, c′ <N d, and c′ ∈ B. We first show that c′ and a are P -
comparable, and second that a <P c′. There are two cases.
Case 1: c′ <N a. Note that c′|d, c′ <N a, and c′ ∈ B. If c′|a then, by i (of
this claim), a ∼ d. Hence c′ and a are P -comparable.
Case 2: a <N c′ <N d. Note that a <N d. Hence when d is placed into a class
a has already been so placed. Let d− be as in the definition of classes. Note

93

that, since d is the N-least element of [d], we have [a] ≤∗ [d−] <∗ [d]. Note
that c′|d. If c′|a then, by Claim 1d, c′|d−. But then d will be placed into
[d−], which is a contradiction.

We show that a <P c′. Since a <∗ d either a ≤P d or inc(a) <P inc(d).
Either case implies c′ ̸≤P a. Since a, c′ are P -comparable we have a <P c′.
End of Proof of Claim 3

We can now prove 0d.
Claim 4: If [p] <∗ [q] <∗ [r] <∗ [s] then p <P s.
Proof of Claim 4: We can take q to be the N-least element of [q]. Let d
be as in Claim 3.iii with a = q, b = r, and let q′, d′ ∈ B be such that q|q′,
q′ <N q, d|d′, and d′ <N d. Then [p] <∗ [q] <∗ [d] ≤∗ [r] <∗ [s], d is the N-least
element of [d], and q <P d′. By Claim 3.ii with a = d, b = s, c′ = d′ we obtain
d′ <P s. Since q <P d′, and q′, d′ are comparable (as all elements of B are),
q′ <P d′ (else q <P d′ ≤P q′). If p <P q then we have p <P q <P d′ <P s so
we are done. If p|q then since q|q′ and ⟨P,≤P ⟩ has width 2, p is comparable
to q′. Assume, by way of contradiction, that q′ <P p. Since p <∗ q either
(1) p <P q so q′ <P p <P q, or (2) inc(p) <∗ inc(q) so p′ <P q′ <P p for
p′ ∈ inc(p). Hence we have p <P q′, so p <P q′ <P d′ <P s.
End of Proof of Claim 4

Theorem 7.24 If ⟨P,≤P ⟩ is a recursive partial order of width w then P
has recursive width ≤ 5w−1

4
. Moreover, given an index for ⟨P,≤P ⟩ one can

recursively find an index for a recursive 5w−1
4

-covering.

Proof sketch: This is a proof by induction. The base case of w = 2 is
Theorem 7.19. Let ⟨P,≤P ⟩ be a partial order of width w ≥ 3. First, a linear
suborder is defined similar to B in Theorem 7.19. Second, a recursive partial
order ≤∗ on A = P − B is defined which is somewhat similar to the ≤∗ in
Theorem 7.19. Third, prove that ⟨A,≤∗⟩ is a recursive partial order of width
w − 1. By induction ⟨A ≤∗⟩ has recursive width ≤ 5w−1−1

4
. We then show

that every recursive ∗-chain of A can be covered by 5 P -chains. Thus P can
be recursively covered by 1 + 5(5

w−1−1
4

) = 5w−1
4

recursive chains.

7.4.2 Bounding the Recursive Width Given Partial Information

In the algorithms in Theorems 7.19 and 7.24 we needed the ability to tell
how elements compared. What happens if we only have the ability to tell if

94

elements compare?

Definition 7.25 If P = ⟨P,≤⟩ is a partial order then the co-comparability
graph of P is GP = (P,E) where E = {{x, y} : x, y are incomparable}. The
set of all co-comparability graphs of finite or countable partial orders is de-
noted Γco.

Notation 7.26 If G is a graph then ω(G) is the size of the largest clique in
G.

A (recursive) a-coloring of GP yields a (recursive) a-covering of P ; and
w(P) = ω(GP). Hence we examine recursive colorings of recursive graphs in
G ∈ Γco with fixed ω(G).

Schmerl asked if there exists a function f such that, for every recursive
G ∈ Γco, χ

r(G) ≤ f(ω(G)). Kierstead, Penrice, and Trotter [101] answered
this affirmatively. Their result is a corollary of a theorem in combinatorics
and is part of a fascinating line of research. We sketch that line of research
and their theorem. For a fuller account of this area see [98].

Definition 7.27 A class of graphs G is χ-bounded if there exists a function
f such that, for all G ∈ G, χ(G) ≤ f(ω(G)). (The function f need not be
computable.)

Notation 7.28 If H is a graph then Forb(H) is the set of graphs that do
not contain H as an induced subgraph. (‘Forb’ stands for ‘Forbidden’.)

The question arises as to which classes of graphs are χ-bounded. If
Forb(H) is χ-bounded then, by a result of Erdos and Hajnal [52], H is acyclic.
Gyárfás [70] and Sumner [162] conjectured the converse, i.e., if T is a tree
then the class Forb(T) is χ-bounded. Gyárfás [71] showed that if P is a path
(i.e., a graph with V = {v1, . . . , vk} and E = {{vi, vi+1} : i = 1, . . . , k − 1})
then Forb(P) is χ-bounded. Kierstead and Penrice [100] showed that if T is
a tree of radius 2 (i.e., there is a vertex v such that for all vertices x there
is a path of length ≤ 2 from v to x) then Forb(T) is χ-bounded. More is
known if we restrict attention to on-line colorings.

95

Definition 7.29 An on-line graph is a structure G< = (V,E,<) where G =
(V,E) is a graph and < is a linear ordering of V (if V is infinite then < has
the order type of the natural numbers). G< is an on-line presentation of G.

Definition 7.30 Let G< = (V,E,<) and V = {v1 < v2 < · · ·}. An on-line
algorithm to color G< is an algorithm that colors v1, v2, . . . in order so that
the color assigned to vi depends only on G restricted to {v1, . . . , vi}.

Definition 7.31 A class of graphs G is on-line χ-bounded if there exists a
function f such that for all G ∈ G, for all on-line presentations G< of G,
there exists an on-line algorithm to color G< with ≤ f(ω(G)) colors.

The question arises as to which classes of graphs are on-line χ-bounded.
Chvat́al [39] showed that Forb(P4) is on-line χ-bounded where Pn is the
path on n vertices. Gyárfás and Lehel [72] showed that Forb(P5) is on-line
χ-bounded, but that Forb(P6) is not. Hence if Forb(T) is on-line χ-bounded
for some tree T then T has radius 2. Kierstead, Penrice, and Trotter [101]
proved this condition is not only necessary by also sufficient. Combining the
results we have mentioned of Erdos-Hajnal, Gyárfás-Lehlel (that Forb(P6) is
not χ-bounded), and Kierstead-Penrice-Trotter, one obtains the following.

Theorem 7.32 Let G be a connected graph. Forb(G) is on-line χ-bounded
iff G is a tree of radius 2.

Theorem 7.32 can be applied to Γco.

Corollary 7.33 Γco is on-line χ-bounded.

Proof: Let T be the tree formed by subdividing each edge of K1,3 (i.e.,
place a new vertex on every edge of K1,3). By a case analysis one can verify
that Γco ⊆ Forb(T). Since T has radius 2, by Theorem 7.32, Forb(T) is
on-line χ-bounded.

Every recursive G ∈ Γco has a recursive on-line presentation. Hence the
on-line coloring algorithm in Corollary 7.33 yields a recursive coloring of all
recursive graphs in Γco. Hence we have the following corollaries

96

Corollary 7.34 There exists a function f such that

1. for every recursive G ∈ Γco, χ
r(G) ≤ f(ω(G)), and

2. for every partial order P, wr(P) ≤ f(w(P)) via an algorithm that only
uses the information in GP .

If we did not already have Theorem 7.24 then we could have used Corol-
lary 7.34 to obtain some bound on wr(P) in terms of w(P). The function
f(w) obtained in the proof of Corollary 7.34 is rather complicated and grows
faster than 5w−1

4
, though it is bounded by an exponential. Hence it does

not offer an improvement to the bound in Theorem 7.24. However, since the
recursive covering uses less information, it is an improvement in that sense.

7.5 Recursion-Theoretic Modification

By Theorem 7.14 there are recursive partial orders of width w that are not
recursively w-coverable. We prove that there is always a w-covering of low
degree.

Theorem 7.35 If ⟨P,≤⟩ is a recursive partial order of width w, then there
exists a w-covering of low degree.

Proof:
Assume, without loss of generality, that P = N (but of course ≤ has

no relation to ≤N). Consider the following recursive w-ary tree: The vertex
σ = (a1, . . . , an) is on T iff

1. For all i, 1 ≤ i ≤ n we have 1 ≤ ai ≤ w.

2. the map that sends i to ai is a w-covering of ⟨P,≤⟩ restricted to
{1, . . . , n}.

We have (1) T is recursive, (2) T is recursively bounded by the function
f(n) = ⟨w, . . . , w⟩ (w appears n times), (3) any infinite branch T is a w-
covering of ⟨P,≤⟩, (4) every w-covering of ⟨P,≤⟩ is represented by some
infinite branch of T , and (5) the set of infinite branches of T is nonempty (by
the classical Dilworth’s Theorem and the previous item). Since the branches
of T form a nonempty Π0

1 class, by Theorem 3.12 there exists an infinite low
branch. This branch represents a covering of low degree.

97

7.6 Recursion-Combinatorial Modification

We now consider an ‘effective version’ of Dilworth’s theorem which is true.
The modification is both recursion-theoretic and combinatorial. It is not
quite as effective as we might like: while it shows that (under certain condi-
tions) a partial order of width w has a recursive w-covering, the proof is not
uniform. Schmerl [147] showed that the proof cannot be made uniform.

This effective version is reported without proof in [94] and credited to
Schmerl. This is the first published account.

Definition 7.36 Let ⟨P,≤⟩ be a partial order. Define I : P × P → 2P via
I(x, y) = {z ∈ P | x ≤ z ≤ y}. (I stands for In between.)

Definition 7.37 Let ⟨P,≤⟩ be a partial order. ⟨P,≤⟩ is locally finite if for
all x, y the set I(x, y) is finite. ⟨P,≤⟩ is recursively locally finite if it is
a locally finite recursive partial order, and the function I is recursive. We
abbreviate ‘recursive locally finite partial order’ by ‘r.l.f.p.o’, and ‘recursively
locally finite’ by ‘r.l.f.’ Indices for r.l.f.p.o’s can easily be defined.

Note that the above definition is equivalent to being able to recursively
find |I(x, y)|.

Theorem 7.38 If P = ⟨P,≤⟩ is a r.l.f.p.o then w(P) = wr(P).

Proof:
We prove this theorem by induction on w = w(P). For w = 1 the theorem

is trivial. Assume it holds for all P such that w(P) ≤ w− 1. Let P = ⟨P,≤⟩
be a recursive locally finite partial order of width w. Let {a1, . . . , aw} be a
w-antichain in P . (One cause of the proof being nonuniform is that we need
to find a w-antichain. If one allows w as a parameter to an alleged uniform
algorithm then w then this step would not cause non-uniformity.) Let

P1 = P ∩ {x | (∃i)x ≥ ai}
P2 = P ∩ {x | (∃i)x ≤ ai}

Let P1 = ⟨P1,≤⟩ and P2 = ⟨P2,≤⟩. We will recursively w-cover P1 and
P2, and then combine these w-coverings into a recursive w-covering of P
(this combining is easy and hence omitted). The advantage of working with

98

P1 (P2) instead of P is that P1 (P2) has no infinite descending (ascending)
chains.

We describe how to recursively w-cover P1. The w-covering of P2 is
similar.

Let A be the set of all w-antichains of P1 (note that A, suitably coded, is
recursive). A chain C is saturated if for every A ∈ A, A ∩ C ̸= ∅ (since A is
an antichain and C is a chain, |A∩C| = 1). It is clear that if C is a recursive
chain which is saturated then P ′ = ⟨P1 − C,≤⟩ is r.l.f and w(P ′) = w − 1.
Hence it suffices to construct a recursive chain C which is saturated, and
then use the induction hypothesis on P ′.

We define a recursive partial order on A as follows:

A ≤ B iff (∀a ∈ A)(∃b ∈ B)[a ≤ b]

(as usual A < B means A ≤ B and A ̸= B). We define a binary operation
glb on pairs of elements of A. We will later see that glb(A,B) ≤ A,B and no
antichain that is larger has this property (so glb(A,B) is the greatest lower
bound of {A,B}). If A,B ∈ A then

glb(A,B) = {x ∈ A ∪B : (∀y ∈ A ∪B)[x comparable to y ⇒ x ≤ y]}

We show that glb(A,B) ∈ A, i.e., glb(A,B) is an antichain of size w.
Clearly glb(A,B) is an antichain. Hence |glb(A,B)| ≤ w. We show that
|glb(A,B)| ≥ w. Let glb(A,B) denote (A ∪ B) − glb(A,B). Note that
A ∩ B ⊆ glb(A,B) and that (A ∩ B) ∪ glb(A,B) is an antichain, so it has
≤ w elements. Using this we have the following.

|glb(A,B)|+ |glb(A,B)| = |A ∪B|
|glb(A,B)|+ |glb(A,B)| = 2w − |A ∩B|

|glb(A,B)| = 2w − |A ∩B| − |glb(A,B)|
|glb(A,B)| = 2w − |(A ∩B) ∪ glb(A,B)|

(above line uses A ∩B ⊆ glb(A,B))

|glb(A,B)| ≥ 2w − w = w (use |(A ∩B) ∪ glb(A,B)| ≤ w).

Using that P1 is r.l.f and has no infinite descending chains one can show
the following.

1. Let A,B ∈ A. glb(A,B) ≤ A,B. For all D, if D ≤ A,B then D ≤
glb(A,B). (I.e., glb(A,B) is the greatest lower bound of A,B.)

99

2. Let B ∈ A. Let LESS(B) = {X ∈ A | X ≤ B}. This set is finite.
Moreover, given B ∈ A one can effectively find LESS(B) (suitably
coded).

3. Let B ∈ A. The set LESS(B) has a unique minimal element. That
is, there exists exactly one antichain A ∈ LESS(B) such that for all
D ∈ LESS(B) D ̸< A. (Proof: If A and D are both minimal then note
glb(A,D) ≤ A,D and glb(A,D) ∈ LESS(B).) One can easily find the
minimal antichain by brute force and ii.

4. Let A′ ⊆ A be such that if A,D ∈ A′ then glb(A,D) ∈ A′. There
exists a unique minimal antichain in A′. Moreover, given an index
for A′, one can effectively find that antichain (unless A′ = ∅ in which
case the algorithm diverges). To do this find some B ∈ A′ and then
use iii. (Proof of uniqueness: if A,D are both minimal then note
glb(A,D) ≤ A,D and glb(A,D) ∈ A′.)

Using item iv the following function from 2A to A is well defined and can
be partially computed via indices:

less(A′) =
{
the min. antichain in A′ if A′ is closed under glb and A′ ̸= ∅;
↑ otherwise.

If less(A′) ↓ then we say that less(A′) exists.
We construct a recursive saturated chain in stages. The construction

might get stuck in a stage forever. If so then the chain constructed will
still be saturated, and will be finite (hence recursive). We cannot tell which
case occurs hence we cannot (from this proof) obtain an index for the set of
elements in the chain. This is why the proof is nonuniform.

Let Cs denote the finite chain constructed by the end of stage s. Let
As = {A ∈ A | A ∩ Cs = ∅}. It is easy to see that As is recursive and that,
given Cs and an index for A, we can effectively obtain an index for As. For
all s ≥ 0 Cs and As will satisfy the following

1. (∀A′ ∈ A)[A′ ∩ Cs = ∅ iff A′ ∈ As],

2. less(As−1) /∈ As (for s ≥ 1),

3. (∀a′ ∈ ⋃As)(∀c′ ∈ Cs)[a
′|c′ ∨ a′ > c′],

100

4. A,D ∈ As ⇒ glb(A,D) ∈ As (hence if As ̸= ∅ then less(As) exists),

5. if As ̸= ∅ then less(As) ∈ As.

CONSTRUCTION

Stage 0: C0 = {a1} (recall that a1 was defined when P1,P2 were defined),
A0 = A− {A | a1 ∈ A}. Clearly (1), (2), (3), (4), and (5) hold for s = 0.

Stage s + 1: Find A = less(As). (If As ̸= ∅ then by (4) and (5) less(As)
exists; if As = ∅ then this computation will not halt. This is why the
proof is nonuniform.) Let c be the ≤-largest element of Cs. By (3) we
have (∀a ∈ A)[a|c ∨ a > c]. If (∀a ∈ A)[a|c] then A ∪ {c} would be a
(w + 1)-antichain, so (∃a ∈ A)[a > c]. Let Cs+1 = Cs ∪ {a}, and note that
As+1 = As − {A′ | a ∈ A′}.
END OF CONSTRUCTION

If the construction gets stuck during stage s+ 1 then let C = Cs, else let
C =

⋃
s Cs.

It is clear that (1), (2), (4) and (5) hold at the end of stage s + 1. We
show by induction on s that (3) holds. Clearly (3) holds for s = 0. Assume
(3) is true for s but not for s+ 1. Hence (∃a′ ∈ ⋃As+1)(∃c′ ∈ Cs+1)[a

′ ≤ c′].
Since As+1 ⊆ As, (∃a′ ∈

⋃As)(∃c′ ∈ Cs+1)[a
′ ≤ c′]. Let A, a be as in the

construction during stage s+1. Note that a ̸= a′ by the construction. Since
(3) holds for s, the value of c′ must be in Cs+1 − Cs = {a}, hence c′ = a. So
(∃a′ ∈ ⋃As)[a

′ < a]. Let A1 ∈ As be such that a′ ∈ A1. Let A2 = glb(A,A1).
Note that A2 ∈ As. Since a, a′ ∈ A ∪ A1 and a′ < a, a /∈ A2, so A2 ̸= A.
Hence A2 < A, which contradicts A = less(As).

We show that C is saturated. We need some auxiliary notions. For m ≥ 1
let Fm = {A ∈ A : |LESS(A)| = m}. We show that, for every m ≥ 1, Fm is
finite. For m = 1 note that F1 consists of the unique minimal element of A,
so |F1| = 1 and the claim is true. Let m ≥ 2. For every A ∈ Fm there exists
B ∈ LESS(A) ⊆ ⋃

1≤i<m Fi that is right below A, i.e., there is no D such
that B < D < A (if not then LESS(A) is infinite). Since

⋃
1≤i<m Fi is finite

(by the induction hypothesis) and the number of A that are right below a
particular element of A is finite (by local finiteness), the number of elements
in Fm is finite.

We show, by induction on m, that for every A ∈ Fm, A ∩ C ̸= ∅. For
m = 1 this is clear since the minimal antichain of A is {a1, . . . , aw}, which
intersects C0. Let m > 1, and let A ∈ Fm. Let s be the least stage such that

101

all antichains in
⋃

1≤i<m Fi intersect Cs. (s exists by the induction hypothesis
and the finiteness of

⋃
1≤i<m Fi.) If A /∈ As then A ∩ Cs ̸= ∅ and if A ∈ As

then A = less(As) so A ∩ Cs+1 ̸= ∅. In either case A ∩ Cs ̸= ∅.

The question arises as to whether the proof of Theorem 7.38 can be made
uniform. Schmerl [147] showed that, in a strong sense, it cannot.

Definition 7.39 A partial order P = ⟨P,≤⟩ is a strongly recursively locally
finite partial order (abbreviated s.r.l.f.p.o) if its is a r.l.f.p.o and the following
functions from P to N are recursive.

up(x) =
{
0 if |{y : x ≤ y}| =∞;
|{y : x ≤ y}| otherwise.

down(x) =
{
0 if |{y : y ≤ x}| =∞;
|{y : y ≤ x}| otherwise.

An index for a s.r.l.f.p.o can easily be defined. Pe is the s.r.l.f.p.o that is
associated to index e.

Schmerl showed that even if the index of a s.r.l.f.p.o of width 2 is given,
one cannot uniformly find an index for a recursive 2-covering.

Theorem 7.40 There does not exist an algorithm A that, on input e an
index for a s.r.l.f.p.o. of width 2, will output an index for a 2-covering of Pe.

Proof:
Assume that such an A exists. We construct a s.r.l.f.p.o Pe such that

A(e) is not an index for a recursive 2-covering of Pe.
By the recursion theorem we can assume that the construction may use

e, an index for the s.r.l.f.p.o being constructed. Let i = A(e).
CONSTRUCTION

Stage 0: Initially the base set is {0, 1, 2}. The elements 0 and 1 are incom-
parable, and 2 is greater than both 0 and 1. Set DIAG = FALSE (we have
not diagonalized against {i} yet) and TOP = 2.

Stage s+1: Place the least unused number u directly above TOP and then
set TOP = u. If DIAG = FALSE then run {i}(0), {i}(1) and {i}(2) for
s steps. If all three halt then set DIAG = TRUE and do the following: if

102

{i}(0) = {i}(2) then place the least unused number above 0 and incompara-
ble to everything else, otherwise place the least unused number above 1 and
incomparable to everything else.

END OF CONSTRUCTION.
It is easy to see that the construction yields a s.r.l.f.p.o of width 2 that

has index e, but A(e) is not a recursive 2-covering of it.

7.7 Miscellaneous

We have been concerned with the width of a partial order. Other parameters
of partial orders (and recursive partial orders) have also been examined. We
state several theorems along these lines. No proofs are given.

7.7.1 Recursive Dimension

A realizer of a partial order ⟨P,≤P ⟩ is a set of linear orders L1, . . . , Ld such
that each one uses P as its base set, and x ≤P y iff (∀i)x < y in Li. The
dimension of a partial order is the minimal number of linear orders in a
realizer. (An alternative definition of dimension is the least d such that P
can be embedded in Qd where Q is the rationals.) The notions of recursive
realizer and recursive dimension can be defined easily.

It is known that the dimension of a partial order is ≤ its width. Is this
true for recursive dimension and recursive width? Kierstead, McNulty and
Trotter [99] have shown that this is false, but for low widths, bounds on the
recursive dimension can be obtained. They showed that if P is a recursive
partial order then (1) if wr(P) ≤ 2, the recursive dimension of P is ≤ 5,
(2) if wr(P) ≤ 3, the recursive dimension of P is ≤ 6 (this is tight— there
exists a recursive partial order P with wr(P) = 3 and recursive dimension 6),
(3) there is a partial order P with wr(P) = 4 which has no finite recursive
dimension (P also has width 3).

If we impose conditions on P , then better bounds can be obtained. Let
Q be the order on four elements {a, b, c, d} where a < b, c < d, and no
other pairs of elements are comparable. An interval order 3 is an order that
does not have Q as an induced suborder (alternatively, an interval order is

3Interval Orders were named by Fishburn in [54] but were known to Norbert Weiner.

103

formed by taking the base set to be a set {I1, I2, . . .} of open intervals of
reals and declare Ii < Ij iff every element in Ii is less than every element
in Ij). Hopkins [84] showed that if P is a recursive interval order of width
w then (1) if w = 2, P has recursive dimension ≤ 3, (2) P has recursive
dimension ≤ 4w − 4; however, for all w ≥ 2, there exists a recursive interval
order P of width w that has recursive dimension ⌈4

3
w⌉. If the recursive width

is bounded, then there are different results. Kierstead et al. [99] have shown
that, for recursive interval orders, if the recursive width is ≤ w then the
recursive dimension is ≤ 2w.

A Crown is a partial order on {a1, . . . , an, b1, . . . , bn} (n ≥ 3) such that
(1) for all i ≤ n, ai < bi, (2) for all i ≤ n − 1 ai+1 < bi, (3) a1 < bn,
and (4) no other relation exists between the elements. A partial order is
crown-free if none of its induced suborders are crowns. Kierstead et al. [99]
have shown that (1) every crown-free recursive partially ordered set with
recursive width w has recursive dimension ≤ w!, and (2) For w ≥ 3 there
is a recursive crown-free ordered set with recursive width w, width w, but
recursive dimension at least w

(
w
t

)
where t = ⌊ (w−1)

2
⌋. Combining the former

result with Theorem 7.24 yields that every crown-free recursive partially
ordered set of width w has recursive dimension ≤ (5

w−1
4

)!.

7.7.2 Improving the Recursive Width

Theorem 7.24 states that a recursive partial order of width w has recursive
width ≤ 5w−1

4
. If further restrictions are made on P , then this can be im-

proved. Kierstead and Trotter [102] showed that if P is an interval order of
width w then it has recursive width ≤ 3w−2 (and this covering can be found
from the index of P). They also showed that this bound is tight— there are
recursive interval orders of width w that have recursive width exactly 3w−2.
Kierstead et al. [99] showed that if P has width w and recursive dimension

d, then the recursive width of P is ≤
(
w+1
2

)d−1
.

7.7.3 Height

It is easy to show that if a partial order has height h then it can be covered
by h antichains. Is this true recursively? Schmerl proved (reported in [97])
that it is not, but that a combinatorial modification is true. In particular he
showed that every recursive partial order of height h can be covered by

(
h+1
2

)
104

recursive antichains, but there are recursive partial orders of height h that
cannot be covered by

(
h+1
2

)
− 1 recursive antichains. Bounding the recursive

dimension does not help: Szeméredi and Trotter showed (reported in [97])
that there exist recursive partial orders of height h and recursive dimension
2 which cannot be covered by ≤

(
h+1
2

)
− 1 recursive antichains. The proof

we presented of Theorem 7.14 is based on this proof.
Every height-h recursive partial order has can be covered by h low an-

tichains. The proof uses the Low Basis Theorem (Theorem 3.12).

8 Miscellaneous Results in Recursive Combi-

natorics

We state several results in recursive combinatorics without proof.

8.1 Extending Partial Orders

It is easy to show that any finite partial order ⟨P,≤⟩ has an extension to a
linear ordering. In fact, it can even be done efficiently in O(|P |+ | ≤ |) time
[105]. A compactness argument (similar to Theorems 4.3, 5.3, 6.5, and 7.3)
shows that this is true for countable partial orders. Perhaps surprisingly, a
recursive analogue is true, that is, given an index for a recursive partial order
one can effectively find an index for a linear extension of it.

Case[33] studied r.e. partial orders. He showed that the r.e. analogue is
false, that is, there are r.e. orders ⟨P,≤⟩ (both P and the set of ordered pairs
≤ are r.e.) that have no r.e. linear extensions. Moreover, he showed that,
given any infinite r.e. set A, there is an r.e. partial order ≤ on A such that
there are no r.e. linear extensions of ⟨A,≤⟩. Roy [144] proved that every
recursive partial order has a recursive linear extension and, independent of
Case, also proved that there is an r.e. partial order with no r.e. linear
extension.

8.2 Vizing’s Theorem

An edge k-coloring of a graph G is a k-coloring of the edges such that no
two incident edges have the same color. The edge chromatic number of G,

105

denoted η(G), is the least k such that G is edge k-colorable. Recursive edge-
colorability and ηr(G) are defined in the obvious way.

Vizing [167] ([18] is a more readily available source) showed that if G has
maximal degree d then η(G) ≤ d+1. His proof applied only to finite graphs,
but by the usual compactness arguments (similar to Theorems 4.3, 5.3, 6.5,
and 7.3) it also holds for infinite graphs. There has not been much work done
on recursion-theoretic versions of Vizing’s Theorem, however Kierstead [95]
has shown that if G is a highly recursive graph then ηr(G) ≤ η(G) + 1. This
yields a combinatorial modification of Vizing’s theorem, namely that if G is
highly recursive and has maximum degree d then ηr(G) ≤ d+ 2.

8.3 Graph Isomorphism and Recursive Categoricity

Two graphs are recursively isomorphic if there exists a recursive isomorphism
between them. A recursive graph G is recursively categorical if, for every G′

isomorphic to G, G′ is actually recursively isomorphic to G. The corre-
sponding notions for highly recursive graphs are defined similarly. Recursive
categoricity of models has been extensively studied; see [42].

It is an open problem to determine which (highly) recursive graphs are
recursively categorical. Gasarch, Kueker, and Mount [64] have solved the
problem for connected highly recursive rooted graphs (i.e., graphs with a
distinguished vertex).

Definition 8.1 Let G = (V,E) be a graph such that every vertex has finite
degree. An automorphism of G is a map π : V → V that is an isomorphism
of G onto itself. Aut(G) is the set of automorphisms of G. NUMAUTG

is the function that, on input of a nonempty finite function X ⊆ V × V
and a finite sequence of elements of x1, . . . , xn ∈ V , outputs the number
|{(π(x1), . . . , π(xn)) : π ∈ Aut(G), π extends X}|. Since every vertex of G
has finite degree, and X is nonempty, this number is finite.

Gasarch, Kueker, and Mount [64] showed that if G is a connected highly
recursive rooted graph then G is recursively categorical iff NUMAUTG is
recursive.

8.4 Eulerian and Hamiltonian Paths

106

Definition 8.2 Let G = (V,E) be a graph with V ⊆ N. A path in G is a
sequence v1, v2, . . . such that for every i ≥ 1, {vi, vi+1} ∈ E. An Eulerian
(Hamiltonian) path is a path that uses every edge in E (vertex in V) exactly
once. A recursive Eulerian (Hamiltonian) path is an Eulerian (Hamilto-
nian) path v1, v2, . . . such that there exists a total recursive function f with
f(i) = vi. A graph is called Eulerian (Hamiltonian) if it has an Eulerian
(Hamiltonian) path4.

Bean [11] showed that there exist Eulerian (Hamiltonian) recursive graphs
with no recursive Eulerian (Hamiltonian) paths. For highly recursive graphs
the scenario changes dramatically. Bean[11] showed that every Eulerian
highly recursive graph does have a recursive Eulerian path; moreover, one
can effectively find an index for the path given an index for the graph. How-
ever, Bean also showed that there are Hamiltonian highly recursive graphs
that have no recursive Hamiltonian paths.

Beigel and Gasarch [12], and Harel [77] have studied the complexity of
determining if a recursive or highly recursive graph has a (recursive) Eule-
rian or Hamiltonian path. Beigel and Gasarch showed (1) the problem of
determining if a recursive graph has a recursive Eulerian (Hamiltonian) path
is Σ3-complete , (2) the same holds for highly recursive graphs, and (3) the
problem of determining if a recursive graph has an Eulerian path is Π3-hard
and is in Σ4 (its exact complexity is not known), (4) the problem of de-
termining if a highly recursive graph has an Eulerian path is in Π2 and is
both Σ1-hard and Π1-hard. Harel showed that the problem of determining
if a (highly) recursive graph has a Hamiltonian path is Σ1

1-complete. (This
implies that the problem is not in the arithmetic hierarchy.) This is only
one of two results in recursive combinatorics whose complexity is outside the
arithmetic hierarchy (see Section 8.13 for the other).

The vast difference between determining if a recursive graph has an Eu-
lerian path, and determining if a recursive graph has a Hamiltonian path,
might be related to the fact that the Eulerian path problem is in P, while the
Hamiltonian path problem is NP-complete (see [61] for a discussion of these
concepts). An open problem is to make that analogy rigorous.

4The definition of Eulerian (Hamiltonian) graph is nonstandard. Usually the graph is
finite and is required to have an Eulerian (Hamiltonian) cycle, i.e., a path that starts at
the same vertex where it ends.

107

8.5 Van Der Waerden’s Theorem

Van der Waerden’s theorem [165] states5 that if A ⊆ N then either A or
A has arbitrarily long arithmetic progressions. As an easy corollary either
A or A has, for each k, an infinite number of arithmetic progressions of
length k. Consider the weaker statement that either A has arbitrarily long
arithmetic progressions or A has, for each k, an infinite number of arithmetic
progressions of length k. Jockusch and Kalantari [89] considered the following
‘r.e. version’ of the statement: “if A is r.e. then either A has arbitrarily long
arithmetic progressions, or there is an r.e. subset of A that has, for each
k, an infinite number of arithmetic progressions of length k.” They showed
that this statement is false, but a finite form of it is true. In particular they
showed the following.
(1) There exists an r.e. set A such that a) A has no arithmetic progressions
of length 3, and b) no r.e. subset of A has, for each k, an infinite number of
arithmetic progressions of length k.
(2) For every r.e. set A, either a) A has arbitrarily long arithmetic progres-
sions, or b) for every k there is an r.e subset of A that has an infinite number
of arithmetic progressions of length k.

Gasarch[62] investigated van der Waerden’s theorem in a different way.
If c is a 2-coloring of N, then a sequence function for c is a function that
maps k to the ordered pair (a, d) such that there is a k-long monochromatic
arithmetic sequence starting at a with difference d. If c is recursive, then there
is a recursive sequence function by just looking for an arithmetic sequence
until you find one (such will exist by van der Waerden’s theorem). He posed
the following conjecture: If a is a nonrecursive Turing degree then there exists
a coloring c ∈ a such that c has no recursive sequence function. It is easy
to show that all weakly 1-generic sets [112] are 2-colorings that satisfy the
conjecture, hence the conjecture is true for weakly 1-generic degrees. If the
conjecture holds for a, then it holds for all b such that a ≤T b. Hence the
conjecture is true for every degree above some weakly 1-generic degree. This
includes the 1-generic sets and the n-r.e. sets. These results were proven
directly in [62] without using weak 1-genericity (it is easier to use weak 1-
genericity).

5Our formulation is equivalent to the c = 2 case of the standard formulation: for every
c and k there exists an n such that if you c-color {1, . . . , n} then there is a monochromatic
arithmetic progression of length k.

108

8.6 Sets of Positive Density

A set A has positive upper density if limn→∞
1
n
|A∩{1, . . . , n}| > 0. It is easy

to show that for all sets A ⊆ N either A or A has positive upper density.
Consider the following ‘r.e. version’ of this statement: “if A is r.e. then
either A has positive upper density or there is an r.e. subset of A that has
positive upper density.” Jockusch (personal communication) has shown that
this statement is false. Let A be a simple set of upper density 0 (which
is easily seen to exist by replacing the bound 2e by e2 in Post’s simple set
construction in [159]). Then, since all r.e. sets disjoint from A are finite,
neither A nor any r.e. subset of A has positive density.

8.7 Abstract Constructions in Recursive Graph The-
ory

In virtually all the proofs in recursive graph theory the recursion theory part
is ‘easy’ and the combinatorics is ‘hard’ or ‘clever’. Carstens and Papping-
haus [31] isolated the recursion theory from the combinatorics by proving a
general theorem from which, given the proper graph-theoretic constructions,
theorems from recursive graph theory can be obtained. They give three
examples of theorems that can be obtained in their framework: (1) for all
d ≥ 3 there exists a connected highly recursive graph that is d-colorable but
not recursively d-colorable (originally proved in [10]), (2) for all d ≥ 2 there
exists a highly recursive d-regular bipartite graph (all vertices have degree
d) which has no recursive solution (originally proven in [119]), (3) for every
g ≥ 1 there exists a connected highly recursive graph of genus g that cannot
be recursively embedded on an orientable surface of genus g (this seems to
be new in [31]).

We suspect that the strengthening of (1) that we presented in Theo-
rem 5.30 can be obtained in their framework.

8.8 Relativized results

Carstens [27] considered relativized versions of several of the results stated
here. Instead of recursive graphs (bipartite graphs, partitions) he consid-
ered a-recursive graphs, where V and E are recursive in a (a-recursive bi-
partite graphs, etc.). All the negative results relativize easily (e.g., there

109

exists a highly a-recursive graph which is k-colorable but not a-recursively
k-colorable). For the positive results he used the relativized version of the
Jockusch-Soare low basis theorem (Theorem 3.13).

8.9 Applications to Complexity Theory

Carstens and Pappinghaus [32] use recursive graph theory to show that cer-
tain types of algorithms (‘extendible algorithms’) will not work on several
finite problems. The problems considered are matching, maxflow, and inte-
ger programming.

8.10 Applications using Σ1
1-completeness

David Harel and Tirza Hirst [83] have been working on connecting recur-
sive combinatorics with finite optimization problems. Given an optimization
problem A that is based on an NP problem, they have set up a way to define
a related problem A+ in recursive combinatorics. Thus, for example, the infi-
nite version of maximum-clique becomes the question of whether a recursive
graph has an infinite clique.

They have shown that if A+ /∈ Π2
0 then A /∈Max-NP, and hence A /∈Max-

SNP either (see [130] for definitions). They also have a general result that
makes it possible to “lift up” certain NP reductions to become Σ1

1 reductions.
The enables one to prove that, for some A’s, the recursive counterpart A+ is
Σ1

1-complete; hence A+ /∈ Π2
0, and so A /∈ Max-NP. These two results provide

a framework for proving that certain optimization problems are outside Max-
NP and Max-SNP.

Arora et al. [6] have shown that, unless P=NP, problems that are hard for
the class Max-SNP by a certain kind of approximation-preserving reduction,
cannot be approximated by a polynomial-time approximation scheme unless
P=NP (see their paper for exact definitions). The results of Harel and Hirst
show that certain problems are not directly subject to this bad news. Of
course, these problems may still be hard to approximate, but the techniques
of [6] are probably not able to establish this.

Harel and Hirst [78] have used these two results to prove that many
problems in recursive combinatorics are Σ1

1-complete. Here is a partial list of
the finitary versions, which, as explained, are therefore all outside Max-NP
and Max-SNP:

110

1. maximum-clique (this was known to be outside Max-SNP [7]),

2. max-independent-set (this is essentially the same as max-clique),

3. max-Hamiltonian-path (in the sense that we seek the path with maxi-
mum tag, where we tag a path by k if it covers the first k nodes of the
graph in some fixed ordering),

4. max-set-packing (i.e., the maximal number of nonoverlapping sets from
among a given collection of sets),

5. complement of min-vertex-cover (this is really the same as max-clique),

6. max-subgraph (given graphs H and G, find the subgraph of H with
maximal tag that is part of G; here again we tag a subgraph with k if
it covers the first k nodes),

7. complement of min-set-cover,

8. largest common subsequence (given a set of strings, find largest string
that is a – perhaps noncontinuous – substring of each string in the set),

9. max-color (very much like max-independent-set),

10. max-exact-cover (even restricted to sets with 3 elements),

11. max-domino or max-tiling (maximum k for which the k× k subgrid of
an n×m grid is tileable).

8.11 Ramsey-Type Edge Colorings

In this section we do not restrict edge colorings as we did in Section 8.2.

Definition 8.3 A graph is i-connected if removing any i−1 vertices leaves it
connected. Let Γ3 be the set of 3-connected graphs unioned with the triangle
graph.

Let H1, H2 ∈ Γ3. Burr [23] showed that it is undecidable if a given partial
(finite) edge coloring of a highly recursive graph can be extended to a coloring
c such that there are no RED H1’s or BLUE H2’s. (He actually used a much
more restrictive notion than highly recursive.)

111

Gasarch and Grant [63] showed that there are highly recursive graphs
that can be edge colored in a triangle-free manner, but not recursively so
colored. They also showed that determining if a particular graph can be
recursively colored in a triangle-free manner is Σ3-complete.

8.12 Schröder-Bernstein Theorem and Banach’s The-
orem

The Schröder-Bernstein theorem6 states that if there exist injections f :
A → B and g : B → A then there exists a bijection h : A → B. Banach [9]
refined this theorem by showing that if there exist injections f : A→ B and
g : B → A then there exist partitions A = A1 ∪ A2 and B = B1 ∪ B2 such
that f restricted to A1 is a bijection between A1 and B1, and g-1 restricted
to A2 is a bijection from A2 to B2 (in short, f [A1] ∪ g-1[A2] is a bijection of
A onto B).

Remmel [138] showed that the recursive analogue of the Schröder-Bern-
stein theorem holds, but the recursive analogue of Banach’s theorem does not.
For both recursive versions the premise is that there exist partial injections
f, g and recursive sets A,B such that f (g) is defined on all of A (B). From
this, the existence of a partial recursive bijection from A to B (defined on all
of A) is easily shown. However, Remmel constructed f, g, A,B such that no
recursive A1, A2, B1, B2 (as in Banach’s theorem) exist.

8.13 König’s Max-Min Theorem

Let G = (A,B,E) be a finite bipartite graph. A matching is a set of disjoint
edges. A cover is a set of vertices C such that every edge contains a vertex
in C. The matching number is the maximum cardinality of a matching. The
covering number is the minimal cardinality of a cover.

König ([107], see [116] for a modern version in English) showed that the
matching number and covering number are identical. Lovász and Plum-
mer [116] consider this to be the most important theorem in matching theory.
We consider König’s matching theorem for countable bipartite graphs. To

6Schröder announced the theorem in 1896, but his proof was flawed (see [108] for the
full story). Bernstein published the first correct proof in 1898 in [19]. Cantor also had a
proof, but it used the axiom of choice, which was not needed.

112

give the statement substance we need the following special type of cover. A
cover C of G is a König cover if there exists a matching M such that C can
be obtained by picking one vertex from every edge in M .

Aharoni [1, 2] showed that every bipartite graph has a König cover. Aha-
roni, Magidor, and Shore [3] investigated this theorem in terms of both proof
theory and recursion theory. They showed that (1) compactness, or König’s
Lemma on infinite trees, is not enough, from a proof-theoretic viewpoint, to
prove the theorem, (2) there exist recursive bipartite graphs such that all
König covers are of degree above all the hyperarithmetic Turing degrees, and
(3) for every recursive bipartite graph there exists a König cover of degree
≤T O where O is Kleene’s O (of degree Σ1

1).

8.14 Arrow’s Theorem

Let V be a finite set which we think of as being individuals (or voters). Let
X be a finite set which we think of as alternatives being decided upon by the
society of individuals (perhaps by voting). Let P be a subset of all rankings
of X which we think of as the orders on X that are allowed to be chosen. Let
G be a function that takes the information consisting of every individual’s
preferred ranking of X (these rankings must be in P) and outputs a ranking
in P . The tuple (V,X, P,G) is called a society and is intended to model how
a society chooses among alternatives.

Arrow [8] showed that a set of four reasonable conditions on a society
imply that there exists a ‘dictator’, i.e., an individual v ∈ V such that G will
rank X the same way v does. Skala [156] showed that the infinite version
of Arrow’s theorem depends on the model of set theory. In particular, if
ZF is consistent, then there is a model of ZF+AC where Arrow’s theorem
is false for countable V ; however, if one assume the Axiom of Determinacy
then there is a model where Arrow’s theorem is true for countable V .

Since the classic Arrow’s theorem is not true for countable V , recursive
combinatorics will play a different role than usual. In this context it is used
to recover some version of Arrow’s theorem that is true. Lewis [114] defined
r.e. society, recursive society, and recursive dictator functions. He has shown
that an r.e. version of Arrow’s theorem, with countable V , is true; and that
a recursive version of Arrow’s theorem, with countable V , is true with a
primitive recursive dictator function.

See [113] and [125] more on this topic.

113

8.15 An Undecidable Problem in Finite Graph Theory

Let G be a finite graph,v be a vertex of G, and r ∈ N. The r-neighborhood of v
is the induced subgraph with vertex set consisting of all vertices of distance at
most r from v. Let r-neib(G) be the set of all r-neighborhoods of a graph G.
Note that r-neib(G) is a set of graphs. Consider the following problem: given
a finite set of graphs {H1, . . . , Hk}, and a number r ∈ N, does there exist
a graph G such that r-neib(G) = {H1, . . . , Hk}? Winkler[171] has shown
that this problem is undecidable in general. However, if the cycle length of
G is bounded then the problem is solvable. This result can be used to solve
the following problem: given k and a finite set D ⊆ N, does there exist a
k-ary tree whose degree set is D? This problem had been solved earlier by
Winkler [170].

8.16 Hindman’s Theorem

Hindman [81] proved the following remarkable theorem: If c is a k-coloring
of N, then there exists an infinite monochromatic set X such that every sum
of elements from X is the same color. We call such a set sum-homogeneous.

Blass, Hirst, and Simpson [17] have analyzed this theorem recursion-
theoretically. They have shown (1) there exists a recursive 2-coloring of
N such that for all sum-homogeneous sets X, X ̸≤T K, (2) for all k-colorings
c of N there exists a sum-homogeneous set that is recursive in ∅ω+1.

8.17 Recursive Linear Orderings

A recursive linear ordering (henceforth RLO) is a linear ordering where the
order relation is recursive. For information on both the classic and recursive
theories of linear orderings, see For a survey of recursive linear orderings see
[49]. We give one example of a line of research in this area which fits into
our theme.

It is a classic theorem that if L is an infinite linear order then it has either
an infinite ascending or infinite descending suborder. Tennenbaum (see [143])
has shown that this theorem is false recursively, that is, there exist infinite
RLO’s with no r.e. suborder isomorphic to either ω or ω∗ (ω∗ is the order
. . . , 3, 2, 1, 0). Tennenbaum’s order is isomorphic to ω∗ + ω. Watnick [169]
characterized exactly which order types may have RLO’s that are recursive

114

counterexamples. Let L be the set of all such order types. He showed that
L ∈ L iff L ∼= ω +Zα+ ω∗ where α is a Π2 linear order (Π2 base set and Π2

relation).

8.17.1 Recursive Automorphisms

It is easy to see that the order ω∗ + ω has a non-trivial automorphism.
Moses [127] has shown that this is not true recursively. He has shown that
an RLO L has a nontrivial automorphism iff L has a dense suborder.

8.18 Well Quasi Orderings

A quasi-order P is a set P (called the base set) together with a relation ≤
that is transitive and reflexive, but not necessarily anti-symmetric. (e.g., take
P = {0, 1}ω and ≤ is subsequence). A well-quasi-order (henceforth wqo) is
a quasi order ⟨P,≤⟩ with the following additional property: if p1, p2, . . . is
an infinite sequence of elements from P then there exists i < j such that
pi ≤ pj.

Kruskal [110] showed that the set of trees, ordered via homeomorphic
embedding (or minor), form a wqo (see [128, 129] for an elegant proof).
Robertson and Seymour [141] have shown the far more difficult result that
the set of all graphs, ordered under minors, is wqo. Another interesting
example of a wqo is Σ∗ (where Σ is a finite alphabet) under subsequence
(proof uses similar techniques to those in [128, 129]).

What makes wqo’s interesting is the following theorem: If ⟨P,≤⟩ is a wqo
and Q ⊆ P is closed downward under ≤ then there exists a finite number of
elements p1, . . . , pk ∈ P such that

Q = {q ∈ P :
k∧

i=1

pi ̸≤ q}.

The set {p1, . . . , pk} is called the obstruction set for Q. For example, since
the set of graphs of genus ≤ g (some fixed g) is closed under minors, and
graphs under minor is a wqo, for every g there is a finite obstruction set Og

such that G has genus g iff G does not have an element of Og as a minor. For
genus 1 (planar) the obstruction set is known to be {K5, K3,3}. For another
example, let Σ be any finite alphabet and let X ⊆ Σ∗. Let SUBSEQ(X)

115

be the set of all subsequences of strings in X. Since Σ∗ under subsequence
is a wqo, and SUBSEQ(X) is closed under subsequence, there is a finite
obstruction set for SUBSEQ(X). This implies the (somewhat remarkable)
theorem that if X is any language whatsoever then the set of subsequences
of X is regular. Kruskal [111] notes that this was first proven (using different
terminology) by Higman [80] and has been proven several times since then,
most recently by Haines [73].

The proof that sets closed downward under ≤ have finite obstruction sets
is not hard, but it is noneffective. In [15] the recursive analogue is considered
and shown to be false.

Harvey Friedman has shown that finite versions of Kruskal’s Theorem are
unprovable in Peano Arithmetic. See [153] or [115] for a proof, and see [158]
for an exposition. Friedman, Robertson, and Seymour have examined proof
theoretic considerations of the Graph Minor Theorem [55].

9 Acknowledgments

I thank Richard Beigel, Katia Guimaraes, Tamara Hummel, Henry Kier-
stead, Georgia Martin, Nick Reingold, and James Schmerl, for proofreading.
I thank Tamara Hummel for informing me of the results in her thesis on Ram-
sey theory. I thank Carl Jockusch for help on Section 4.5. I thank Henry
Kierstead for help on Section 7 and offering several helpful suggestions. I
thank James Schmerl for several helpful suggestions.

I thank Georgia Martin for finding some subtle mistakes (now corrected,
I hope) and in general for proofreading beyond the call of duty.

116

References

[1] R. Aharoni. On a duality principle in infinite bipartite graphs. Journal
of the London Math Society, 28:385–392, 1983.

[2] R. Aharoni. König’s duality theorem for infinite bipartite graphs. Jour-
nal of the London Math Society, 29:1–12, 1984.

[3] R. Aharoni, M. Magidor, and R. A. Shore. On the strength of
König’s duality theorem. Journal of Combinatorial Theory (Series B),
54(2):257–290, Mar. 1992.

[4] K. Appel and W. Haken. Every planar map is four-colorable. Part I:
discharging. Illinois Journal of Mathematics, 21:429–490, 1977.

[5] K. Appel and W. Haken. Every planar map is four-colorable. Part II:
reducibility. Illinois Journal of Mathematics, 21:491–567, 1977.

[6] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof
verification and intractability of approximation problems. In Proc. of
the 33st IEEE Sym. on Found. of Comp. Sci., October 1992.

[7] S. Arora and S. Safra. Approximating clique is NP-complete. Unpub-
lished Manuscript, January 1992.

[8] K. J. Arrow. Social Choice and Individual Values. Wiley, 1951. Second
edition in 1963.

[9] S. Banach. Un théorème sur les transformations biunivoques. Math.,
6:236–239, 1924.

[10] D. Bean. Effective coloration. Journal of Symbolic Logic, 41:496–480,
1976.

[11] D. Bean. Recursive Eulerian and Hamiltonian paths. Proc. of The
American Mathematical Society, 55:385–394, 1976.

[12] R. Beigel and W. Gasarch. Σ3-complete results in recursive graph
theory, 1989. Handwritten Notes.

117

[13] R. Beigel and W. I. Gasarch. On the complexity of finding the chro-
matic number of a recursive graph I: The bounded case. Annals of
Pure and Applied Logic, 45(1):1–38, Nov. 1989.

[14] R. Beigel and W. I. Gasarch. On the complexity of finding the chro-
matic number of a recursive graph II: The unbounded case. Annals of
Pure and Applied Logic, 45(3):227–247, Dec. 1989.

[15] R. Beigel and W. I. Gasarch. On the complexity of finding the obstruc-
tion set, 1989. manuscript.

[16] R. Beigel and W. I. Gasarch. The mapmaker’s dilemma. Discrete
Applied Mathematics, 34:37–48, 1991.

[17] A. R. Blass, J. L. Hirst, and S. G. Simpson. Logical analysis of some
theorems of combinatorics and topological dynamics. In Logic and
Combinatorics, volume 65 of Contemporary Mathematics, pages 89–
124. American Mathematical Society, 1987.

[18] B. Bollobás. Graph Theory: An introductory Course. Springer Verlag,
New York, 1979.

[19] E. Borel. Leçons sur la théorie des fonctions. Gauthier-Villars et fils,
Paris, 1898. First correct proof of Schröder-Bernstein is here.

[20] S. Brackin. A summary of Ramsey-type theorems and their provability
in weak formal systems. In Logic and Combinatorics, volume 65 of
Contemporary Mathematics, pages 169–178. American Mathematical
Society, 1987.

[21] R. Brooks. On colouring the nodes of a network. Proc. Cambridge Phil.
Soc., 37:194–197, 1941.

[22] R. Brooks. On colouring the nodes of a network. In I. Gessel and
G.-C. Rota, editors, Classic papers in combinatorics, Boston, 1987.
Birkhauser.

[23] S. A. Burr. Some undecidable problems involving the edge-coloring and
vertex-coloring of graphs. Discrete Mathematics, 50:171–177, 1984.

118

[24] T. J. Carlson and S. G. Simpson. A dual form of Ramsey’s Theorem.
Advances in Mathematics, 53:265–290, 1984.

[25] T. J. Carlson and S. G. Simpson. Topological Ramsey theory. In
J. Nešetřil and V. Rödl, editors, Mathematics of Infinite Ramsey The-
ory. Springer-Verlag, 1990.

[26] H.-G. Carstens. Rekursionstheoretische Untersuchungen über Graphen.
PhD thesis, Hannover, Germany, 1975. This is the author’s Habilita-
tionsschrift.

[27] H.-G. Carstens. The complexity of some combinatorial constructions.
Zeitsch. f. math. Logik und Grundlagen d. Math., 23:121–130, 1977.

[28] H.-G. Carstens. A 5-color-extension-theorem. In Computation Theory
and Logic, volume 270 of Lecture Notes in Computer Science, pages
67–77, Berlin, 1987. Springer-Verlag.

[29] H.-G. Carstens and U. Golze. Recursive paths in cross-connected trees
and applications to cell spaces. Mathematical Systems Theory, 15:29–
37, 1982.

[30] H.-G. Carstens and P. Pappinghaus. Recursive coloration of countable
graphs. Annals of Pure and Applied Logic, 25:19–45, 1983.

[31] H.-G. Carstens and P. Pappinghaus. Abstract constructions of coun-
terexamples in recursive graph theory. In Computation and Proof The-
ory, volume 1104 of Lecture Notes in Mathematics, pages 39–62, Berlin,
1984. Springer-Verlag.

[32] H.-G. Carstens and P. Pappinghaus. Extensible algorithms. In Borger,
Hasenjaeger, and Rodding, editors, Decision Problems and Complex-
ity, volume 171 of Lecture Notes in Computer Science, pages 162–182.
Springer-Verlag, Berlin, 1984.

[33] J. Case. Sortability and extensibility of the graphs of r.e. partial and
total orders. Zeitsch. f. math. Logik und Grundlagen d. Math., 22:1–18,
1976.

119

[34] D. Cenzer and J. Remmel. Index sets for π0
1 classes. Annals of Pure

and Applied Logic. to appear.

[35] D. Cenzer and J. Remmel. π0
1 classes in mathematics. In Ershov, Gon-

charov, Nerode, and Remmel, editors, Handbook of Recursive Algebra.
North Holland, 1997.

[36] D. Cenzer and J. B. Remmel. Feasible graphs and colorings. Mathe-
matical Logic Quarterly, 41, 1995.

[37] P. Cholak, C. Jockusch, and T. Slaman. Ramsey’s Theorem for pairs,
1997. Will appear as an abstract in the Bulletin of Symbolic Logic.

[38] V. Chvátal. Linear Programming. W.H. Freeman, 1983.

[39] V. Chvátal. Topics on Perfect Graphs (Annals of Discrete Math Volume
21). North-Holland, Amsterdam, 1984.

[40] P. Clote. A recursion-theoretic analysis of the clopen Ramsey Theorem.
Journal of Symbolic Logic, 49:376–400, 1984.

[41] P. Clote. Weak partition relations, finite games, and independence re-
sults in Peano arithmetic. In Model Theory of Algebra and Arithmetic,
volume 834 of Lecture Notes in Mathematics, pages 92–107, Berlin,
1984. Springer-Verlag.

[42] J. Crossley, A. Manaster, and M. Moses. Recursive categoricity and
recursive stability. Annals of Pure and Applied Logic, 31:191–204, 1986.

[43] G. Dantzig and D. Fulkerson. Minimizing the number of tankers to
meet a fixed schedule. Naval Research Logistics Quarterly, 1:217–228,
1954.

[44] G. Dantzig and A. Hoffman. Dilworth’s Theorem on partially ordered
sets, linear inequalitites, and related systems. In Annals of Mathe-
matical Studies (No. 38), pages 207–214. Princeton University Press,
1956.

[45] N. de Bruijn and P. Erdös. A colour problem for infinite graphs and a
problem in the theory of relations. Nederl. Akad. Wetensch. Proc. ser.
A, 54:371–373, 1951.

120

[46] J. Dekker. Twilight graphs. Journal of Symbolic Logic, 46:539–571,
1981.

[47] R. Dilworth. A decomposition theorem for partially ordered sets. An-
nals of Mathematics, 51(2):161–166, 1950.

[48] R. Dilworth. A decomposition theorem for partially ordered sets. In
I. Gessel and G.-C. Rota, editors, Classic papers in combinatorics,
Boston, 1987. Birkhauser.

[49] R. Downey. Recursion theory and linear ordering. In Ershov, Gon-
charov, Nerode, and Remmel, editors, Handbook of Recursive Algebra.
North Holland, 1997.

[50] E. Ellentuck. A new proof that analytic sets are Ramsey. Journal of
Symbolic Logic, 39:163–165, 1974.

[51] P. Erdos. Obituary for a friend. Geometorics, 2(1):5–6, 1992. This is
more of a newsletter than a journal.

[52] P. Erdös and A. Hajnal. On chromatic number of graphs and set
systems. Acta Math. Sci. Hung., 17:61–99, 1966.

[53] S. Even, A. Selman, and Y. Yacobi. The complexity of promise prob-
lems with applications to public-key cryptography. Information and
Control, 61(2):159–173, May 1984.

[54] P. Fishburn. Interval orders. Journal of Math. Psychology, 7:144–149,
1970.

[55] H. Friedman, N. Robertson, and P. Seymour. The metamathatics of
the graph minor theorem. In Logic and Combinatorics, volume 65 of
Contemporary Mathematics. American Mathematical Society, 1987.

[56] A. Froehlich and J. Shepherdson. Effective procedures in field theory.
Phil. Transactions of the Royal Society of London (Series A), 248:407–
432, 1955.

[57] D. R. Fulkerson. Note on Dilworth’s decomposition theorem for par-
tially ordered sets. Proc. of the American Mathematical Society, 7:701–
702, 1956.

121

[58] Z. Galil. Efficient algorithms for finding maximum matchings in graphs.
Computing Surveys, 18(1):23–38, March 1986.

[59] T. Gallai and A. N. Milgram. Verallgemeinerung eines Graphen-
theoretischsatzes von Rédei. Acta Sci. Math. (Szeged), 21:181–186,
1960.

[60] F. Galvin and K.Prikry. Borel sets and Ramsey’s theorem. Journal of
Symbolic Logic, 38:193–198, 1973.

[61] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H.
Freeman and Company, New York, 1979.

[62] W. I. Gasarch. A recursion theoretic view of van der Waerden’s the-
orem. Technical Report TR-10-84, Harvard University Computer Sci-
ence Department, 1984.

[63] W. I. Gasarch and T. Grant. Edge coloring of recursive graphs.
Manuscript, 1990.

[64] W. I. Gasarch, D. Kueker, and D. Mount. Recursive categoricity of
highly recursive graphs. Congressus Numeratium, pages 97–102, 1989.

[65] W. I. Gasarch and A. Lee. On the finiteness of the recursive chromatic
number. Annals of Pure and Applied Logic. to appear.

[66] W. I. Gasarch and G. Martin. Index sets in recursive combinatorics. In
J. Crossley, J. B. Remmel, R. Shore, and M. Sweedler, editors, Logical
Methods (In honor of Anil Nerodes’s Sixtieth Birthday)., Boston, 1993.
Birkhaeuser.

[67] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathe-
matica und verwandter Systeme. Monatssch. Math. Phys., 38:173–178,
1931.

[68] R. Graham, J. Spencer, and A. Rothschild. Ramsey Theory. Wiley,
1990. First edition was 1980. This is second edition.

[69] J. Gross and T. W. Tucker. Topological Graph Theory. Wiley, 1987.

122

[70] A. Gyárfás. On Ramsey covering numbers. In Infinite and Finite Sets,
pages 801–816, New York, 1975. North-Holland and American Elsevier.
Coll. Math. Soc. János Bolyai 10.

[71] A. Gyárfás. Problems from the world surrounding perfect graphs. Za-
stowania Matematyki Applications Mathematicae, XIX:413–441, 1985.

[72] A. Gyárfás and J. Lehel. On-line and first-fit coloring of graphs. Journal
of Graph Theory, 12:217–227, 1988.

[73] L. Haines. On free monoids partially ordered by embedding. Journal
of Combinatorial Theory, 6:94–98, 1969.

[74] M. Hall. Distinct representatives of subsets. Bulletin of the American
Mathematical Society, 54:922–926, 1948.

[75] P. Hall. On representations of subsets. Journal of the London Math
Society, 10:26–30, 1935.

[76] P. Hall. On representations of subsets. In I. Gessel and G.-C. Rota,
editors, Classic papers in combinatorics, Boston, 1987. Birkhauser.

[77] D. Harel. Hamiltonian paths in infinite graphs. Israel Journal of Math-
ematics, 76:317–336, 1991. Earlier version appeared in STOC 1991.

[78] D. Harel, 1992. Personal communication.

[79] P. J. Heawood. Map-colour theorem. Quarterly Journal of Mathemat-
ics, pages 332–338, 1890.

[80] A. G. Higman. Ordering by divisibility in abstract algebra. Proc. of
the London Math Society, 3:326–336, 1952.

[81] N. Hindman. Finite sums from sequences within cells of partitions on
N. Journal of Combinatorial Theory (series A), 17:1–11, 1974.

[82] J. Hirst. Marriage theorems and reverse mathematics. In Logic and
Computation, volume 106 of Contemporary Mathematics. American
Mathematical Society, 1990. Proc. of a Workshop held at Carnegie
Mellon University June 30-July 2 1987.

123

[83] T. Hirst and D. Harel. Taking it to the limit: On infinite variants of
NP-complete problems. J. Comput. Syst. Sci., 53, 1996.

[84] L. Hopkins. Some problems involving combinatorial structures deter-
mined by intersection of intervals. PhD thesis, University of South
Carolina, 1981.

[85] T. Hummel. Effective versions of ramsey’s theorem: Avoiding the cone
above 0’. Journal of Symbolic Logic, 59(4):682–687, 1994.

[86] S. Irani. Coloring inductive graphs on-line. Algorithmica, 11, 1994.
Earlier version in FOCS 1990.

[87] C. G. Jockusch. Ramsey’s theorem and recursion theory. Journal of
Symbolic Logic, 37:268–280, 1972.

[88] C. G. Jockusch, 1992. Personal communication.

[89] C. G. Jockusch and I. Kalantari. Recursively enumerable sets and van
der Waerden’s Theorem on arithmetic progressions. Pacific Journal of
Mathematics, 115(1):143–153, 1984.

[90] C. G. Jockusch and R. I. Soare. Π0
1 classes and degrees of theories.

Transactions of the AMS, 173:33–56, 1972.

[91] C. G. Jockusch and F. Stephan. A cohesive set which is not high.
Mathematical Logic Quarterly, 39:515–530, 1993.

[92] A. Kanamori and K. McAloon. On Gödel incompleteness and finite
combinatorics. Annals of Pure and Applied Logic, 33(1):23–41, 1987.

[93] J. Ketonen and R. M. Solovay. Rapidly growing Ramsey functions.
Annals of Mathematics, 113:267–314, 1981.

[94] H. A. Kierstead. An effective version of Dilworth’s theorem. Transac-
tions of the AMS, 268:63–77, 1981.

[95] H. A. Kierstead. Recursive colorings of highly recursive graphs. Cana-
dian Journal of Mathematics, 33:1279–1290, 1981.

124

[96] H. A. Kierstead. An effective version of Hall’s theorem. Proc. of the
American Mathematical Society, 88:124–128, 1983.

[97] H. A. Kierstead. Recursive ordered sets. In Combinatorics and Ordered
Sets, volume 57 of Contemporary Mathematics. American Mathemati-
cal Society, 1986.

[98] H. A. Kierstead. Recursive and on-line graph colorings. In Ershov,
Goncharov, Nerode, and Remmel, editors, Handbook of Recursive Al-
gebra. North Holland, 1997.

[99] H. A. Kierstead, G. McNulty, and W. Trotter. Recursive dimension for
partially ordered sets. Order, 1, 1984.

[100] H. A. Kierstead and S. Penrice. Radius two trees specify c-bounded
classes. Journal of Graph Theory, 18:119–129, 1994.

[101] H. A. Kierstead, S. Penrice, and W. Trotter. On-line colorings and
recursive graph theory. SIAM Journal on Discrete Mathematics, 7:72–
89, 1994.

[102] H. A. Kierstead and W. Trotter. An extremal problem in recursive
combinatorics. Congressus Numeratium, 33:143–153, 1981.

[103] H. A. Kierstead and W. Trotter. On-line graph colorings. In C. Mc-
Geoch and D. Sleator, editors, Proc. of DIMACS workshop on On-line
algorithms, pages 10–16. American Math Society, 1988.

[104] S. C. Kleene. Introduction to Metamathematics. D. Van Nostrand,
Princeton, 1952.

[105] D. E. Knuth. Fundamental Algorithms, volume 1. Addison-Wesley,
Reading, MA, 1973.

[106] D. König. Sur les correspondances multivoques des ensembles. Funda-
menta Mathematicae, 9:113–134, 1926.

[107] D. König. Theorie der endlichen und unendlichen Graphen. Chelsea,
1950. This is a reprinted version.

125

[108] A. Korselt. Über einen Beweis des äquivalenzsatzes. Math. Ann.,
70:294–296, 1911.

[109] G. Kreisel. Notes on arithmetical models for consistent formulae of the
predicate calculus. Fundamenta Mathematicae, 37:265–285, 1950.

[110] J. Kruskal. Well-quasi-ordering, the tree theorem and Vazzsonyi’s Con-
jecture. Transactions of the AMS, 95:210–225, 1960.

[111] J. Kruskal. The theory of well-quasi-orderings: a frequently discov-
ered concept. Journal of Combinatorial Theory (series A), 13:297–305,
1972.

[112] S. A. Kurtz. Notions of weak genericity. Journal of Symbolic Logic,
48:764–770, Sept. 1983.

[113] A. A. Lewis. On effectively computable realizations of choice functions.
Mathematics of Social Science, 10:43–80, 1985.

[114] A. A. Lewis. An infinite version of Arrow’s theorem in the effective
setting. Mathematical Social Sciences, 16:41–48, 1988.

[115] M. Loebl and J. Matoušek. On undecidability of the weakened
Kruskal’s Theorem. In Logic and Combinatorics, volume 65 of Con-
temporary Mathematics. American Mathematical Society, 1987.

[116] L. Lovász and M. Plummer. Matching Theory (Annals of Discrete Math
Volume 29). North-Holland, Amsterdam, 1986.

[117] L. Lovász, M. Saks, andW. Trotter. An online graph coloring algorithm
with sublinear performance ratio. Discrete Mathematics, pages 319–
325, 1989.

[118] A. Manaster and J. Rosenstein. Effective matchmaking. Proc. of the
London Mathematical Society, 25:615–654, 1972.

[119] A. Manaster and J. Rosenstein. Effective matchmaking and k-
chromatic graphs. Proc. of the American Mathematical Society, 39:371–
378, 1973.

126

[120] D. A. Martin. Completeness, the recursion theorem, and effectively
simple sets. Proc. of The American Mathematical Society, 17:838–842,
1966.

[121] A. Mathias. On a generalization of Ramsey’s theorem. Notices of the
American Math. Society, 15, 1968. Abstract 68T-E19.

[122] K. McAloon. Diagonal methods and strong cuts in models of arith-
metic. In Logic Colloquium; 1978, pages 171–181, 1978.

[123] G. Metakides and A. Nerode. Recursively enumerable vector spaces.
Annals of Mathematical Logic, 11:147–171, 1977.

[124] G. Metakides and A. Nerode. Effective content of field theory. Annals
of Mathematical Logic, 17:289–320, 1979.

[125] H. R. Mihara. Arrows Theorem, Turing Computability, and oracles.
PhD thesis, University of Minnesota, 1995.

[126] D. Misercque. Problème des mariages et récursivité (the marriage prob-
lem and recursiveness). Bull. Soc. Math. Belg. Ser. A, 30(2):111–121,
1978.

[127] M. Moses. Recursive properties of isomophism types. PhD thesis,
Monash University, Clayton, Victoria, Australia, 1983.

[128] C. Nash-Williams. On well-quasi-ordering finite trees. Proc. Cambridge
Phil. Soc., 59:833–853, 1963.

[129] C. Nash-Williams. On well-quasi-ordering finite trees. In I. Gessel and
G.-C. Rota, editors, Classic papers in combinatorics, Boston, 1987.
Birkhauser.

[130] C. Papadimitriou and M. Yannakakis. Optimization, approximation,
and complexity classes. J. Comput. Syst. Sci., 43:425–440, 1991.

[131] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Al-
gorithms and Complexity. Prentice-Hall, Englewood Cliffs, New Jersey,
1982.

127

[132] J. Paris. Independence results for Peano arithmetic. Journal of Sym-
bolic Logic, 43:725–731, 1978.

[133] J. Paris and L. Harrington. A mathematical incompleteness in Peano
arithmetic. In J. Barwise, editor, Handbook of Mathematical Logic,
pages 1133–1142. North-Holland, Amsterdam, 1977.

[134] M. Perles. A proof of Dilworth’s decomposition theorem for partially
ordered sets. Israel Journal of Mathematics, 1:105–107, 1963.

[135] M. Rabin. Computable algebra, general theory and theory of com-
putable fields. Transactions of the AMS, 95:341–360, 1960.

[136] F. Ramsey. On a problem of formal logic. Proc. of the London Math
Society (series 2), 30:264–286, 1930.

[137] F. Ramsey. On a problem of formal logic. In I. Gessel and G.-C. Rota,
editors, Classic papers in combinatorics, Boston, 1987. Birkhauser.

[138] J. B. Remmel. On the effectiveness of the Schroder-Bernstein theorem.
Proc. of The American Mathematical Society, 83:379–386, 1981.

[139] J. B. Remmel. Graph coloring and recursively bounded Π1-classes.
Annals of Pure and Applied Logic, 32:185–194, 1986.

[140] G. Ringel and J. W. T. Young. Solution of the Heawood map colouring
problem. Proc. of the National Acadamy of Science (USA), 60:438–445,
1967.

[141] N. Robertson and P. D. Seymour. Graph minors XV: Wagner’s con-
jecture. to appear in Journal of Combinatorial Theory (Series B).

[142] H. Rogers, Jr. Theory of Recursive Functions and Effective Computabil-
ity. McGraw Hill, New York, 1967.

[143] J. G. Rosenstein. Linear Orderings. Academic Press, New York, 1981.
Pure and Applied Math Series 98.

[144] D. K. Roy. Effective extensions of partial orders. Zeitsch. f. math.
Logik und Grundlagen d. Math., 36:232–236, 1990.

128

[145] J. H. Schmerl. Recursive colorings of graphs. Canadian Journal of
Mathematics, 32:821–830, 1980.

[146] J. H. Schmerl. The recursive version of Brooks’s theorem. Canadian
Journal of Mathematics, 34:1036–1046, 1982.

[147] J. H. Schmerl, 1992. Personal communication.

[148] D. Seetapun and T. A. Slaman. On the strength of Ramsey’s Theorem.
Notre Dame Journal of Formal Logic, 36:570–581, 1995.

[149] J. Shoenfield. Degrees of models. Journal of Symbolic Logic, 25:233–
237, 1960.

[150] J. Silver. Every analytic set is Ramsey. Journal of Symbolic Logic,
35:60–64, 1970.

[151] S. G. Simpson. Sets which do not have subsets of every higher degree.
Journal of Symbolic Logic, 43:135–138, 1978.

[152] S. G. Simpson. Which set existence axioms are needed to prove the
Cauchy-Peano Theorem for ordinary differential equations? Journal
of Symbolic Logic, 49:783–802, 1984.

[153] S. G. Simpson. Nonprovability of certain combinatorial properties of
finite trees. In Harvey Friedman’s Research on the Found. of Mathe-
matics, volume 117 of Studies in Logic and the Found. of Mathematics,
1985.

[154] S. G. Simpson. Recursion theoretic aspects of the dual Ramsey theo-
rem. In Recursion Theory Week at Oberwolfach, volume 1141 of Lecture
Notes in Mathematics, pages 357–371, Berlin, 1985. Springer-Verlag.

[155] S. G. Simpson. Unprovable theorems and fast growing functions. In
Logic and Combinatorics, volume 65 of Contemporary Mathematics,
pages 359–394. American Mathematical Society, 1987.

[156] H. Skala. On the found. of the social ordering problem. In D. Moeschiln
and D. Pallasche, editors, Game Theory and Mathematical Economics,
pages 249–261. North Holland, 1981.

129

[157] T. A. Slaman, 1992. Communicated by Carl Jockusch.

[158] C. Smoryński. The varieties of arboreal experience. The Mathematical
Intelligencer, 4:182–189, 1982.

[159] R. I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in
Mathematical Logic. Springer-Verlag, Berlin, 1987.

[160] R. M. Solovay. Hyperarithmetically encodable sets. Transactions of
the AMS, 239:99–121, 1978.

[161] E. Specker. Ramsey’s Theorem does not hold in recursive set theory.
In Logic Colloquium; 1969 Manchester, pages 439–442, 1971.

[162] D. Sumner. Subtrees of a graph and chromatic number. In G. Char-
trand, editor, The Theory and Application of Graphs, pages 557–576.
Wiley and Sons, New York, 1981.

[163] K. Tanaka. On choice sets and strongly non-trivial self-embeddings
of recursive linear orders. Zeitsch. f. math. Logik und Grundlagen d.
Math., 38:301–304, 1992.

[164] H. Tverberg. On Schmerl’s effective version of Brooks’s theorem. Jour-
nal of Combinatorial Theory, Series B, 37:27–30, 1984.

[165] B. van der Waerden. Beweis einer Baudetschen vermutung. Nieuw
Arch. Wisk., 15:212–216, 1927.

[166] S. Vishwanathan. Randomized online graph coloring. Journal of Algo-
rithms, 13, 1992.

[167] G. Vizing. The chromatic class of a multigraph. Cybernetics, 1:32–41,
1965. Appeared originally in Russian in Kibernetika (Kiev) 1965).

[168] H. Wang. Popular Lectures on Mathematical Logic. Van Nostrand
Reinhold Company and Science Press, New York, 1981.

[169] R. Watnick. A generalization of Tennenbaum’s Theorem on effectively
finite recursive linear orderings. Journal of Symbolic Logic, 49:563–569,
1984.

130

[170] P. Winkler. Graph characterization of k-trees. Congressus Numer-
atium, 33:349–357, 1981.

[171] P. Winkler. Existence of graphs with a given set of r-neighboods.
Journal of Combinatorial Theory, Series B, 34:165–176, 1983.

131

