
ar
X

iv
:2

40
9.

15
25

8v
2 

 [
m

at
h.

C
O

] 
 1

5 
O

ct
 2

02
4

On the proper rainbow saturation numbers of cliques,

paths, and odd cycles

Dustin Baker∗ Enrique Gomez-Leos∗ Anastasia Halfpap∗

Emily Heath† Ryan R. Martin∗ Joe Miller∗ Alex Parker∗

Hope Pungello∗ Coy Schwieder∗ Nick Veldt∗

October 16, 2024

Abstract

Given a graph H, we say a graph G is properly rainbow H-saturated if there is
a proper edge-coloring of G which contains no rainbow copy of H, but adding any
edge to G makes such an edge-coloring impossible. The proper rainbow saturation

number, denoted sat*(n,H), is the minimum number of edges in an n-vertex rainbow
H-saturated graph. We determine the proper rainbow saturation number for paths
up to an additive constant and asymptotically determine sat*(n,K4). In addition, we
bound sat*(n,H) when H is a larger clique, tree of diameter at least 4, or odd cycle.

1 Introduction

For a fixed graph H , how many edges can a graph G on n vertices have if it does not contain
H as a subgraph? We say that G is H-saturated if G contains no copy of H , but for any
x, y ∈ V (G) with xy /∈ E(G), the graph G+xy on vertex set V (G) with edge set E(G)∪{xy}
contains a copy of H .

A classical question in extremal combinatorics asks for the maximum number of edges
in an n-vertex H-saturated graph. This is called the Turán number ex(n,H), and has been
extensively studied following work of Mantel [4] and Turán [11] determining ex(n,Kt) for
t ≥ 3. Also of interest is the other extremal case, in which we seek the minimum number of
edges in an n-vertex H-saturated graph, called the saturation number sat(n,H). The study
of the saturation number was initiated by work of Zykov [12] and independently Erdős,
Hajnal, and Moon [3]. Many different generalizations of these two problems have been
studied over the years, including analogous questions in the setting of edge-colored graphs.

An edge-coloring c : E(G) → C is proper if c(e) 6= c(f) for all incident edges e, f and
rainbow if c(e) 6= c(f) for all edges e, f ∈ E(G). Given graphs G and H and a proper
edge-coloring c of G, we say that G is rainbow H-free under c if G contains no copy of H
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which is rainbow under the coloring c. A graph G is (properly) rainbow H-saturated if the
following two conditions hold:

1. There exists a proper edge-coloring c of G such that G is rainbow H-free under c, and

2. For any edge e /∈ E(G), any proper edge-coloring of G+ e contains a rainbow copy of
H .

Keevash, Mubayi, Sudakov, and Verstraëte [8] introduced the rainbow extremal number
ex∗(n,H) which is the maximum number of edges in an n-vertex rainbow H-saturated graph.
More recently, Bushaw, Johnston, and Rombach [2] initiated the study of the proper rainbow
saturation number sat*(n,H) which is the minimum number of edges in an n-vertex rainbow
H-saturated graph.

It is worth noting that other versions of rainbow saturation problems have been considered
as well. For example, Behague, Johnston, Letzter, Morrison, and Ogden [1] explored the
problem without the restriction that colorings be proper. Another variant, introduced by
Hanson and Toft [6], requires that colorings, while not necessarily proper, are restricted to
a set of only t colors.

Throughout the remainder of the paper, we will exclusively study proper rainbow satu-
ration problems; thus we drop the qualifier “proper” as this is assumed.

There are few graphs for which the rainbow saturation number is known asymptotically,
namely sat*(n, P4) determined by Bushaw, Johnston, and Rombach [2] and sat*(n, C4) de-
termined by Halfpap, Lidický, and Masař́ık [5]. Adding to this list, we determine sat*(n,K4)
asymptotically.

Theorem 1.1. Let 1
2
> α > 0. For any n such that α2n ≥ 7 and αn > 220, we have

7

2
n− 8αn ≤ sat*(n,K4) ≤

7

2
n+O(1).

We also give bounds on the rainbow saturation number for larger cliques.
Our next main result is to determine the rainbow saturation numbers for paths up to an

additive constant. Throughout the paper, we use Pk to denote the path on k vertices (with
k − 1 edges).

Theorem 1.2. For k ≥ 5 and n ≥ (k − 1)2k−4, we have

n− 1 ≤ sat*(n, Pk) ≤ n +O(2k).

In particular, taking k fixed relative to n, we have that sat∗(n, Pk) is asymptotically equal
to n. We also remark that the lower bound of Theorem 1.2 can be extended to a larger class
of graphs, showing that sat*(n, T ) ≥ n− 1 for any tree T of diameter at least 4.

Finally, we consider the rainbow saturation number of cycles. Recently, Halfpap, Lidický,
and Masař́ık [5] proved that sat*(n, C4) =

11
6
n+o(n). They also gave upper bounds for other

short cycles, showing that sat*(n, C5) ≤
⌊

5n
2

⌋

−4 for n ≥ 9 and that sat*(n, C6) ≤
7
3
n+O(1).

In the following theorem, we give an upper bound for the rainbow saturation number for
longer odd cycles. For context, no disconnected graph can be rainbow Ck-saturated for any
k, so we trivially have n− 1 ≤ sat∗(n, Ck) for all k.
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Theorem 1.3. For odd k ≥ 7 and for n ≥ 3k − 2, we have

sat∗(n, Ck) ≤

(

k − 1

2

)

n−

(

k+1
2

2

)

.

The remainder of the paper is organized as follows. In Section 2, we prove Theorem 1.1
and bounds for larger cliques. In Section 3, we prove Theorem 1.2. Finally, in Section 4, we
prove Theorem 1.3.

Remark. While completing this paper, we learned that Lane and Morrison simultane-
ously and independently derived partially-overlapping results for the proper rainbow satura-
tion number of various graphs. Among other results in [9], they gave the upper bound (but
not the lower bound) on sat*(n,K4) in Theorem 1.1 as well as more general upper bounds
for larger cliques. They also obtained the upper bound on sat*(n, Ck) for odd k in Theorem
1.3 and gave a similar upper bound for even k. In [10], they used a similar approach to ours
to show that sat*(n, Pk) = n +O(k) and studied other families of trees such as brooms and
caterpillars which we did not consider.

1.1 Notation and Preliminary Definitions

Throughout the paper, we will use the following notation. We denote the degree of a vertex
v ∈ V (G) by d(v) and the minimum vertex degree of a graph G by δ(G). For a vertex
v ∈ V (G) we use N(v) to denote the neighborhood of v by N(v) := {u ∈ V (G) : uv ∈ E(G)}
so that d(v) = |N(v)|. We also use N [v] to denote the closed neighborhood of v, that is,
N [v] := N(v) ∪ {v}. Given graphs G and H , let G ∨H denote the join of G and H which
has vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {gh : g ∈ V (G), h ∈ V (H)}.
Let En denote the empty graph on n vertices. Given two sets A,B we denote by A∆B
the symmetric difference, that is A∆B =

(

A \ B
)

∪
(

B \ A
)

. In a graph G, the distance
between two vertices u and v, denoted d(u, v), is the length of the shortest uv-path in G.
The diameter of G is the length of a longest shortest path in G, i.e., max

u,v∈V (G)
d(u, v).

Often, we will wish to modify one edge-coloring of some graph G to obtain another edge-
coloring. Formally, if c is an edge-coloring of G and E ′ ⊆ E(G), we recolor E ′ by selecting
edge-colors ci 6= c(ei) for each ei ∈ E ′, and defining a new edge-coloring

c′(e) =

{

c(e) if e 6∈ E ′,

ci if ei ∈ E ′.

In a slight abuse of notation, when we modify edge-colorings in this way, we will refer to
both the original and the new edge-colorings as c. Given a recoloring of E ′ and ei ∈ E ′, we
say that c(ei) is a new color for c if c(ei) 6= c(e) for all e 6∈ E ′.

Given a forbidden graph F , we will in particular wish to modify one rainbow F -free edge-
coloring c of G to obtain another. We say E ′ ⊆ E(G) is unrestricted relative to a rainbow
F -free edge-coloring c if G remains rainbow F -free under any recoloring of E ′. Typically, c
and F will be clear from context, and we will simply refer to such an edge set as unrestricted.
In the case that E ′ = {e}, we simply say that the edge e is unrestricted.
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2 Cliques

2.1 Bounds for general cliques

To begin this section, we correct a proof from [2], which states that for any r ≥ 4, we have
sat*(n,Kr) ≥ (r − 1)n+O(1).

Lemma 2.1. If G is a rainbow Kr-saturated graph, then for any u, v ∈ V (G) with uv 6∈
E(G), one of the following holds:

(1) |N(u) ∩N(v)| ≥ r − 1,

(2) d(u) + d(v) ≥
(

r

2

)

− 1.

Proof. Let G be a rainbow Kr-saturated graph, c be a proper edge-coloring of G containing
no rainbow copy of Kr, and u, v ∈ V (G) with uv 6∈ E(G). Suppose |N(u) ∩N(v)| < r − 1.
Note that the common neighborhood of any two nonadjacent vertices in a rainbow Kr-
saturated graph has size at least r − 2, so we may assume |N(u) ∩ N(v)| = r − 2. Let
G′ = G[{u, v} ∪ (N(u) ∩ N(v))]. Then, G′ must be a copy of K−

r (that is, Kr with the
edge uv removed) which is rainbow under the coloring c, as otherwise, we may add the
edge uv to G and extend c without introducing a rainbow copy of Kr. Furthermore, if
|N(u)△N(v)| <

(

r−2
2

)

, then there exists an edge xy ∈ G[N(u) ∩N(v)] such that c(xy) does
not appear on any edges incident to u or v. In this case, we may add the edge uv to G and
assign it the color c(xy), contradicting that G is rainbow Kr-saturated. Therefore, it must
be the case that |N(u)△N(v)| ≥

(

r−2
2

)

. Thus, we have

d(u) + d(v) = |N(u)△N(v)|+ 2|N(u) ∩N(v)|

≥

(

r − 2

2

)

+ 2(r − 2)

=

(

r

2

)

− 1.

Lemma 2.2. Let r ≥ 4. If G is a rainbow Kr-saturated graph, then G has at most one
vertex of degree r − 2.

Proof. Let G be a rainbow Kr-saturated graph and c be a proper edge-coloring of G with
no rainbow Kr. Suppose for contradiction that G has two vertices u, v of degree r − 2.

Note that if uv 6∈ E(G), then since G is rainbow Kr-saturated, it must be the case that
N(u) = N(v) and G[N(u)∪{u, v}] is a rainbow copy of K−

r under c. But then, we may add
the edge uv to G and color this edge with any color appearing in G[N(u)] without creating
a rainbow copy of Kr, a contradiction.

Therefore, we must have uv ∈ E(G). However, in this case, adding any new edge to u
does not create a copy of Kr, a contradiction.

Proposition 2.3. Let r ≥ 4 and t ≥ r − 1. If G is a rainbow Kr-saturated graph with
δ(G) = t, then

e(G) ≥

(

r + t− 2

2

)

n+O(1).
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Proof. Let G be a rainbowKr-saturated graph with minimum degree t ≥ r−1. Let u ∈ V (G)
with d(u) = t. For any v ∈ V (G) \N [u], because G is rainbow Kr-saturated, then u and v
have at least r−2 common neighbors and there exists aKr−2 inG[N(u)∩N(v)]. Furthermore,
v has d(v)− |N(u) ∩N(v)| neighbors outside of N(u). Since this is true for any vertex not
incident with u, we have:

e(G) = e(N [u], V (G) \N [u]) + e(G[V (G) \N [u]]) + e(G[N [u]])

≥ (r − 2)(n− t) +
1

2
(t− (r − 2))(n− t− 1) +

(

r − 2

2

)

=

(

r − 2 +
t− (r − 2)

2

)

n+O(1)

=

(

t + r − 2

2

)

n+O(1).

Together with Theorem 1.1, Proposition 2.4 allows us to recover the rainbow saturation
lower bound for cliques as stated in [2].

Proposition 2.4. For r ≥ 5, sat∗(n,Kr) ≥ (r − 1)n+O(1).

Proof. Let G be a rainbow Kr-saturated graph. If δ(G) ≥ r, we get the desired bound by
Proposition 2.3. So, we may assume that δ := δ(G) ∈ {r − 2, r − 1}. Let u be a vertex
of minimum degree and let G′ = G[V (G) \ N [u]]. By Lemma 2.1, for v 6∈ N [u], either
|N(u) ∩N(v)| ≥ r − 1 or d(u) + d(v) ≥

(

r

2

)

− 1.
Let T1 = {v ∈ V (G)\N [u] : |N(u)∩N(v)| ≥ r−1} and let T2 = V (G)\(N [u]∪T1). Then,

for all v ∈ T2, d(v) ≥
(

r

2

)

− 1− δ. Furthermore, since for all v ∈ T2, |N(u) ∩N(v)| = r − 2,
we obtain dG′(v) ≥

(

r

2

)

− 1− δ − (r − 2). Therefore, we have:

e(G) ≥ (r − 1)|T1|+ (r − 2)|T2|+
1

2
|T2|

((

r

2

)

− 1− δ − (r − 2)

)

+O(1)

= (r − 2)(|T1|+ |T2|) + |T1|+
|T2|

2

((

r

2

)

− 1− δ − (r − 2)

)

+O(1)

≥ (r − 2)(|T1|+ |T2|) + |T1|+
|T2|

2

((

r − 2

2

)

− 1

)

+O(1)

≥ (r − 2)(|T1|+ |T2|) + |T1|+
|T2|

2
(2) +O(1)

= (r − 1)n+O(1).

We give an upper bound construction. The key ingredient to this construction is Lemma 2.5.
Given a graph G, a subgraph H of G, an edge-coloring cH of H , and an edge-coloring cG of
G. We say that cH extends to cG if for any edge e ∈ E(H) we have cH(e) = cG(e), in which
case we call cG the extension of cH to G.

5



Lemma 2.5. Let G = Kr and let c : E(G) → N be a rainbow edge-coloring of G. Let
H = E

r(r−1

2 )+1 and set G′ := G ∨ H. Then, for any extension of c to G′ that is a proper

edge-coloring, there exists some vertex v ∈ V (H) such that G′[V (G)∪{v}] is a rainbow Kr+1

under c.

Proof. Let G′ be as described and let c : E(G′) → N be a proper edge-coloring of G′ such
that G′[V (G)] is a rainbow Kr. We will call a vertex v ∈ V (H) bad if G′[V (G) ∪ {v}] is
not a rainbow Kr+1. For each u ∈ V (G), there are at most

(

r−1
2

)

vertices in V (H) that may
repeat a color appearing on an edge of G − u. Since |V (G)| = r, then there are at most
r
(

r−1
2

)

bad vertices of H . Since |V (H)| ≥ r
(

r−1
2

)

+1, we are guaranteed to have at least one
vertex which is not bad.

The following construction allows us to obtain an explicit upper bound on the rainbow
saturation for all cliques on at least four vertices. In a way, it refines the general upper
bound proof in [2] when restricted to cliques.

Construction 1. Let r ≥ 3 and let n ≥ r
(

r−1
2

)

+ 2 +
∑r

i=3

(

i
(

i−1
2

)

+ 1
)

and set n′ :=

n− 1 +
∑r

i=3

(

i
(

i−1
2

)

+ 1
)

. Now, let G(r, n) be defined as follows:

G(r, n) = E1 ∨

(

r
∨

i=3

E
r(r−1

2 )+1

)

∨ En′.

We will call the Ei’s the parts of G(r, n) and we will call the part of size n′ the leftover
part of G(r, n). Observe that G(r, n) is a complete r-partite graph (and therefore, Kr+1-free).

Proposition 2.6. Let r ≥ 3 and n ≥ r
(

r−1
2

)

+ 2 +
∑r

i=3

(

i
(

i−1
2

)

+ 1
)

. Then, G(r, n) as
defined in Construction 1 is properly rainbow Kr+1-saturated.

Proof. We prove this by induction on r. To begin, let r = 3 and n large enough. As men-
tioned before, since G(3, n) is 3-partite, then it is clearly rainbow K4-free for any proper
edge-coloring. Now, suppose we add an edge e to G(3, n) and let c be any proper edge-
coloring of G(3, n) + e. Because G(3, n) is a complete 3-partite graph, then e must be
contained within one of the parts of size greater than 1. In this case, either e is contained in
the part of size 4 or the leftover part, which has size at least 4. In either case, e is contained
in a triangle with the part of size 1. Finally, since any proper-edge coloring of a triangle
leads to a rainbow triangle, then this triangle together with the part of size greater than 1
not containing e must contain a rainbow K4 by Lemma 2.5.

Next, suppose r ≥ 4 and let n be large enough (as defined in Construction 1). Suppose
we have show that G(r − 1, m) is properly rainbow Kr-saturated for all m large enough.
We claim that G(r, n) is properly rainbow Kr+1-saturated. As mentioned above, G(r, n) is
r-partite and therefore, clearly rainbow Kr-free for any proper edge-coloring. Denote the
part of size r

(

r−1
2

)

+ 1 by Sr and denote the leftover part by Sℓ. Let n′ = |Sℓ| and let
n1 = n− |Sr|, n2 = n− n′. Observe that G1 := G(r, n)[V (G(r, n)) \ Sr] = G(r − 1, n1) and
G2 := G(r, n)[V (G(r, n)) \ Sℓ] = G(r − 1, n2). Now, suppose we add an edge uv to G(r, n)
and let c be any proper edge coloring of G(r, n) + uv. Observe that the vertices u and v

6



must be contained in at least one of V (G1) or V (G2). Without loss of generality, suppose u
and v are contained in V (G1). Then, since G1 = G(r − 1, n1), by induction, G1 contains a
rainbow copy of Kr, K. Now, by Lemma 2.5, K ∨ Sr, a subgraph of G(r, n) must contain a
rainbow copy of Kr+1.

As n → ∞, the number of edges of G(r, n) not incident to a vertex in the leftover part
is some constant. Therefore, we have:

lim
n→∞

e(G(r, n)) =

(

r
∑

i=2

r

(

r

2

)

+ 1

)

n+O(1)

=

(

r4 − 2r3 − r2 + 10r − 8

8

)

n+O(1)

≤

(

r4

8

)

n+O(1).

Corollary 2.7. Let r ≥ 3. Then, for n large enough, we have:

sat∗(n,Kr+1) ≤

(

r4

8

)

n +O(1).

2.2 Proof of Theorem 1.1

In the case of K4, we can obtain asymptotically tight bounds. Before we provide an upper
bound construction for sat*(n,K4), we make some observations which will be repeatedly
useful.

Observation 2.8. Suppose G is a properly rainbow K4-saturated graph, and xy 6∈ E(G).
Then N(x) ∩N(y) contains an edge.

Proof. If G is properly rainbow K4-saturated, then G has a rainbow K4-free proper edge
coloring c, but there is no rainbow K4-free proper edge coloring of G + xy. In particular,
we can properly edge-color G+ xy by coloring E(G) according to c and adding edge xy in a
color not appearing in c, so this proper edge-coloring of G+ xy contains a rainbow K4-copy.
Since G is rainbow K4-free under c, any rainbow K4-copy in the described coloring must
include xy. In particular, xy is contained in some K4-copy, say on {x, y, u, v}, and uv is an
edge in N(x) ∩N(y).

Observation 2.9. Suppose vertices x, y, z form a K3-copy, and let Vj = {v1, v2, . . . , vj}
be a set of j ≥ 1 vertices disjoint from {x, y, z}. Under any rainbow K4-free proper edge-
coloring of {x, y, z} ∨ Vj, each vi ∈ Vj is adjacent to one of x, y, z via an edge with color in
{c(xy), c(xz), c(yz)}.

Proof. Under any proper edge-coloring of {x, y, z}∨Vj, the K3 on {x, y, z} must be rainbow.
Moreover, for any vi ∈ Vj, the edges xvi, yvi, zvi must receive distinct colors in any proper
edge-coloring. Thus, if the K4-copy on {x, y, z, vi} is not rainbow, then

{c(xy), c(xz), c(yz)} ∩ {c(xvi), c(yvi), c(zvi)} 6= ∅.

7



Observation 2.9 has two particular implications. Note that in a proper edge-coloring,
c(xy) 6∈ {c(xvi), c(yvi)}, so if c(xy) ∈ {c(xy), c(xz), c(yz)} ∩ {c(xvi), c(yvi), c(zvi)}, then
c(zvi) = c(xy). Since z is incident to at most one edge of color c(xy), this implies that for at
most one vi ∈ Vj do we have c(xy) ∈ {c(xy), c(xz), c(yz)} ∩ {c(xvi), c(yvi), c(zvi)}. Thus, as
a consequence of Observation 2.9, any properly rainbow K4-saturated graph is K3 ∨E4 free.
Moreover, if G is a properly edge-colored, rainbowK4-free graph containing a copy ofK3∨E3,
then the edge-colors used in this K3-copy must be repeated on a matching between V (K3)
and V (E3). Using Observation 2.9, we can now quickly show that Construction 2 is properly
rainbow K4-saturated. This construction will provide the upper bound in Theorem 1.1.

Construction 2. For n ≥ 6, consider the n-vertex graph G(n) obtained as follows. Let
G′(n) be the n − 2 vertex graph on k := ⌈n−2

4
⌉ components C1, C2, . . . , Ck, with Ci = K4 if

i ≤ ⌊n−2
4
⌋. We label the vertices of Ci as {vi,j : 1 ≤ j ≤ 4}. If n − 2 ≡ m mod 4 with

m 6= 0, then let Ck = Km, and label the vertices of Ck as {vk,j : 1 ≤ j ≤ m}. We take
G(n) = K2 ∨G′(n), labeling the vertices of the K2-copy joined to G′(n) as x, y.

We edge-color G(n) as follows. Color G(n)[C1 ∪ {x, y}] with five colors using the perfect
matching decomposition of a K6. Suppose c(xy) = 0 in this coloring and the other colors
used are {1, 2, 3, 4}. For 1 < i ≤

⌊

k−2
4

⌋

, color the K6 induced by Ci ∪ {x, y} the exact same
(most importantly, ensuring c(xy) = 0), switching colors {1, 2, 3, 4} with colors {4i+ 1, 4i+
2, 4i+ 3, 4i+ 4}. Finally, if |V (Ck)| < 4, we color the edges incident to V (Ck) in any legal
fashion (using at most 4 new colors) which avoids a rainbow K4-copy on V (Ck) ∪ {x, y}.

We illustrate the described coloring of an edge xy and the components C1 and C2 in
Figure 1. The proof of Proposition 2.10 yields the upper bound of Theorem 1.1.

Proposition 2.10. Construction 2 is properly rainbow K4-saturated for all n ≥ 6.

Proof. Let c be the edge-coloring of G(n) described in Construction 2. Since there are no
edges between any Ci, then any possible rainbow K4 under c must be contained in the graph
induced by Ci∪{x, y} for some 1 < i ≤ ⌊k−2

4
⌋. However, for any i, G(n)[Ci∪{x, y}] contains

at most 5 colors, ensuring that no rainbow K4 can exist.
Now, suppose we add an edge vi,jvi′,j′ to G(n). Without loss of generality, suppose i ≤

⌊

n−2
4

⌋

.
In particular, |Ci| = 4. Then, observe that vi,j, x, y form a triangle in G(n) and the vertices
vi′,j′, vi,j+1, vi,j+2, vi,j+3 (where the second indices are taken mod 4) are joined to every vertex
of the triangle by an edge in G(n) + vi,jvi′,j′. That is, G(n) + vi,jvi′,j′ contains a copy of
K3 ∨ E4. Therefore, by Observation 2.9, G(n) + vi,jvi′,j′ contains a rainbow K4 under any
coloring.

We now turn to proving the lower bound in Theorem 1.1. We begin with a lemma which
greatly restricts the number and behavior of very low-degree vertices in a properly rainbow
K4-saturated graph.

Lemma 2.11. If G is rainbow K4-saturated, then the vertices of G with degree at most 3
form a clique.

8
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Figure 1: Construction 2 on 6 and 10 vertices; note the repetition of color 0 when x, y are
adjacent to multiple K4-copies.

Proof. Let u, v be vertices with degree at most 3, and suppose uv 6∈ E(G). By Observa-
tion 2.8, there is an edge xy in N(u)∩N(v). Without loss of generality, 2 ≤ d(u) ≤ d(v) ≤ 3.
Fix a rainbow K4-free coloring of G, say c. There are four cases to consider, ordered by com-
plexity.

Case 1: d(u) = d(v) = 2.

Observe that the edges ux and vy are not contained in any K4 copy in G, so {ux, vy}
is unrestricted. We may thus re-color so that c(ux) = c(vy) is a new color for c. Now,
adding the edge uv in another new color creates a proper edge-coloring of G + uv.
Note that uv is contained in exactly one K4 copy, on {u, v, x, y}, which is not rainbow.
Thus, G+ uv admits a rainbow K4-free proper edge-coloring, a contradiction.

Case 2: d(u) = 2, d(v) = 3.

Let z ∈ N(v) \ N(u). Since uz /∈ E(G), there must exist an edge in N(u) ∩ N(z),
which must be xy since N(u) = {x, y}. Hence {x, y, z} form a clique. The edges
ux, uy are in no K4, so {ux, uy} is unrestricted. Both vx and vy are in exactly one
K4, on vertex set {v, x, y, z}. It follows that either {ux, uy, vx} or {ux, uy, vy} is
unrestricted: if c(xy) = c(vz), then both are unrestricted; if c(xz) = c(vy), then
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{ux, uy, vx} is unrestricted; if c(yz) = c(vx), then {ux, uy, vy} is unrestricted. Without
loss of generality, {ux, uy, vy} is unrestricted. By recoloring {ux, vy} as in Case 1, we
can extend c to a rainbow K4-free edge-coloring of G+ uv, a contradiction.

Case 3: d(u) = d(v) = 3, N(u) 6= N(v).

Let z ∈ N(u) \N(v) and w ∈ N(v) \N(u). First, suppose c(uz) 6= c(xy) and c(vw) 6=
c(xy). We extend c to G + uv by setting c(uv) = c(xy). This extension of c remains
proper, and uv is contained in one K4 copy, on {u, v, x, y}, which is not rainbow, a
contradiction. Hence either c(uz) = c(xy) or c(vw) = c(xy). Relabeling if necessary,
we may assume c(uz) = c(xy) = 1. Then {ux, uy} is unrestricted. If {x, y, w} does not
induce a clique, then in fact {ux, uy, vx, vy} is unrestricted. If so, we may proceed as
in Case 1 to reach a contradiction. Hence we may assume {x, y, w} induces a clique.
As in Case 2, at least one of {ux, uy, vx} and {ux, uy, vy} is free. Without loss of
generality, {ux, uy, vy} is free, and we recolor ux and vy with the same new color,
as in previous cases. Adding the edge uv in any color introduces no rainbow K4, a
contradiction.

Case 4: d(u) = d(v) = 3, N(u) = N(v).

Say N(u) = {x, y, z}. If {x, y, z} does not induce a clique, then the set of all edges
incident to u and v is unrestricted. Then we may recolor so that c(ux) = c(vy) = k1,
c(uy) = c(vz) = k2, c(uz) = c(vx) = k3, where all ki are new colors. We then extend c
to G+ uv letting c(uv) be another new color. The only copies of K4 that can contain
uv in G+ uv are on vertex sets {u, x, y, v}, {u, x, z, v}, and {u, y, z, v}, none of which
are rainbow under c. Hence G + uv is rainbow K4-free under c, a contradiction.
Hence, {x, y, z} induces a clique. Then {u, x, y, z} is a K4 copy, and so two of its edges
must receive the same color under c. Without loss of generality, c(xy) = c(uz) = 1.
Similarly, two edges induced by {v, x, y, z}must repeat a color under c. This can not be
the same color repeated in {u, x, y, z}. Without loss of generality, c(yz) = c(vx) = 2.
Note c(xz) must be distinct from both of these, say c(xz) = 3. Then {ux, uy, vy, vz}
is unrestricted. We recolor so that c(ux) = c(vy) = k1, c(uy) = c(vz) = k2, where ki
are new colors. We add the edge uv, and extend c to G + uv by setting c(uv) = 3.
Note, c remains proper since u and v are incident to no edges colored 3 under c in G.
Adding the edge uv creates three new K4 copies: the copy on {u, x, y, v} repeats color
k1, the copy on {u, x, z, v} repeats color 3, and the copy on {u, y, z, v} repeats color
k2. Hence G+ uv admits a rainbow K4-free proper edge-coloring, a contradiction.

In any case, we reach a contradiction. Hence, uv ∈ E(G). This holds for any pair of vertices
of degree at most 3. Hence all vertices of degree at most 3 form a clique.

We now derive the main tool (Lemma 2.12) needed to prove Theorem 1.1. The broad
strategy of our argument is to first argue that any rainbow K4-saturated graph G has a
dominating set D with certain useful properties, and then count edges in G by examining
the structure of G \ D and the density of edges between D and V (G \ D). Towards this
end, we begin by arguing that any sparse rainbow K4-saturated graph must contain a small
dominating set satisfying one of two properties. We say that D ⊂ V (G) is k-dominating if
for any v /∈ D, we have |N(v) ∩D| ≥ k.
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Lemma 2.12. Fix 1
2
> α > 0, and suppose G is an n-vertex, rainbow K4-saturated graph

with n large enough that α2n ≥ 7. Then either e(G) ≥ 7
2
n−4αn, or G contains a dominating

set D with |D| ≤ 2αn such that D satisfies one of the following conditions:

1. D is a 3-dominating set;

2. D is a 2-dominating set containing adjacent vertices x, y such that v ∈ N(x, y) for
every v ∈ V (G) \D.

Proof. Let v be a vertex of minimum degree in G. If d(v) ≥ αn− 1, then by choice of n, we
have δ(G) ≥ α

2
n, and thus

e(G) ≥
1

2
·
α

2
n2 =

α

4
n2 >

α2

2
n2,

with the last inequality following from 1
2
> α. Now, since α2n ≥ 7, we have

e(G) ≥
α2

2
n2 ≥

7

2
n,

and so the desired edge bound holds.
Thus, we may assume that |N [v]| ≤ αn. If N [v] is a 3-dominating set, then we set

D = N [v] and are done. Suppose not. We let V ′ := V (G) \ N [v], and G′ := G[V ′]. By
Observation 2.8, |N(u) ∩ N(v)| ≥ 2 for any u ∈ V ′, so N [v] is a 2-dominating set. We now
consider the degrees of vertices in V ′, and in particular those vertices which have either two
neighbors in N [v] or few neighbors in V ′.

We define
L1 := {u ∈ V ′ : |N(u) ∩N(v)| = 2}

and
L2 := {u ∈ V ′ : |N(u) \N(v)| ≤ 2}.

We also define a set of vertices with many neighbors in N [v]:

H := {u ∈ V ′ : |N(u) ∩N(v)| ≥ 4}.

Note that H and L1 are disjoint.
We first show that we may assume L1 ∩L2 is not empty. Indeed, if L1 ∩L2 = ∅, then we

can bound

e(V ′, N [v]) ≥ 4|H|+ 3(|V ′| − |H|)− |L1| = 3|V ′ \ (L1 ∪ L2)|+ 2|L1|+ 3|L2|+ |H| (1)

and estimate e(G′) as follows. Recall that by Lemma 2.11, the vertices of degree at most
3 in G form a clique. In particular, Lemma 2.11 implies that L2 \H contains at most one
vertex u with dG′(u) = 0. Indeed, if u1, u2 ∈ L2 \H have degree 0 in G′, then d(u1), d(u2)

11



are both at most 3, which implies u1u2 is an edge in G′. Thus, at most one vertex of L2 \H
has degree 0 in G′, so we have

e(G′) =

∑

w∈V ′\L2
d(w) +

∑

u∈L2
dG′(u)

2
≥

3|V ′ \ L2|+ |L2 \H| − 1

2

=
3

2
|V ′ \ (L1 ∪ L2)|+

3

2
|L1|+

1

2
|L2 \H| −

1

2
. (2)

We combine (1) and (2), noting that since (L2\H)∪H ⊇ L2, we have 3|L2|+|H|+ 1
2
|L2\H| ≥

7
2
|L2|. Thus,

e(G) ≥
9

2
|V \ (L1 ∪ L2)|+

7

2
|L1|+

7

2
|L2| −

1

2
≥

7

2
|V ′| − 1 ≥

7

2
n−

7α

2
n− 1 >

7

2
n− 4αn,

yielding the desired edge bound.
So we may assume that L1∩L2 is not empty; let z ∈ L1∩L2, with N(v)∩N(z) = {x, y}.

Since N(v) ∩N(z) is not an independent set, we must have xy ∈ E(G). Our goal now is to
show that almost all vertices in V ′ are in N(x, y). If d(z) = 2, then by Observation 2.8, any
u ∈ V ′ is in N(x, y). So, assume d(z) ≥ 3. Suppose there exists w ∈ V ′ \ [N(x, y) ∪ N(z)].
(So, w is not dominated by xy, and w is not adjacent to z.)

Claim 1. If |N(w)| ≤ αn, then N [v] ∪ N [w] ∪ N(z) is a 3-dominating set of size at most
2αn.

Proof of Claim 1. We set D := N [v] ∪ N [w] ∪ N(z), and begin by bounding |D|. Since
z ∈ L1∩L2, we have |N(z)∩V ′| ≤ 2. Since zw /∈ E(G), we must have |N(z)∩N(w)| ≥ 2; in
particular, since N(w) contains at most one of x, y, we know that |N(z) ∩ V ′| is non-empty
and intersects N(w). Thus, |N [w] ∪ (N(z) ∩ V ′)| ≤ |N [w]| + 1 ≤ αn + 2. Moreover, since
vw /∈ E(G), we must have |N [w] ∩N [v]| ≥ 2, implying that

|D| = |N [v]|+ |(N [w] ∪N(z)) ∩ V ′| ≤ |N [v]|+ |N [w] ∪ (N(z) ∩ V ′)| − 2 ≤ 2αn,

as desired.
Next, we show that every vertex in V \D has at least 3 neighbors in D. By construction,

z has at least 3 neighbors in D since |N(z)| ≥ 3. Take u 6= z in V \D. Thus, u is not adjacent
to v, w, or z. In particular, u must have at least two neighbors in each of N(v), N(w), and
N(z). We have two cases.

1. x, y ∈ N(u).

In this case, since |{x, y} ∩ N(w)| ≤ 1, we know that u must have at least one more
neighbor in N(w). Thus, |N(u) ∩D| ≥ 3.

2. N(u) contains at most one of x, y.

In this case, we know that |N(u) ∩N(v)| ≥ 2 and that N(u) contains a neighbor of z
which is not in {x, y}. Since N(v) ∩ N(z) = {x, y}, this implies that N(u) intersects
D \N(v); thus, |N(u) ∩D| ≥ 3.

Hence, D is a 3-dominating set, completing the claim.
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Now, by Claim 1, we are done if there exists a vertex w ∈ V ′ \ [N(x, y) ∪ N(z)] with
d(w) ≤ αn. On the other hand, if V contains at least αn− 8 vertices of degree greater than
αn, then

e(G) ≥
1

2
(αn)(αn− 8) =

α2

2
n2 − 4αn ≥

7

2
n− 4αn,

satisfying the desired bound. So |V ′ \ [N(x, y) ∪N(z)]| < αn− 8, and thus

D := N [v] ∪ [V ′ \N(x, y)]

has |D| ≤ 2αn, and D is a 2-dominating set with the property that u ∈ N(x, y) for any
u /∈ D.

We are now ready to prove Theorem 1.1, which we restate here for convenience.

Theorem 1.1. Let 1
2
> α > 0. For any n such that α2n ≥ 7 and αn > 220, we have

7

2
n− 8αn ≤ sat*(n,K4) ≤

7

2
n+O(1).

Proof. By Proposition 2.10, we have sat*(n,K4) ≤
7
2
n + O(1). Thus, we must only demon-

strate the lower bound. Suppose that G is an n-vertex, properly rainbow K4-saturated graph
with α2n ≥ 7. If e(G) ≥ 7

2
n−4αn, we are done, so suppose not. By Lemma 2.12, G contains

a dominating set D with |D| ≤ 2αn satisfying one of the outcomes of Lemma 2.12. We now
have two cases, depending upon which outcome occurs. For notational convenience, we set
V ′ := V (G) \D and let G′ be the subgraph of G induced on V ′.

Suppose first that D is a 3-dominating set. Recall that by Lemma 2.11, the set of vertices
in G of degree at most 3 form a clique. Note that if v ∈ V ′ has degree at most 3, then in
fact d(v) = 3 and N(v) ⊆ D. Thus, the set of vertices of degree at most 3 intersects V ′ at
most once. We define

V1 := {v ∈ V ′ : dG′(v) = 0}

and
V2 := {v ∈ V ′ : dG′(v) ≥ 1}.

By the above observations, V1 contains at most one vertex of degree 3 in G. We have

e(G) ≥ e(V ′, D) + e(G′) =
∑

v∈V1

d(v) +
∑

u∈V2

|N(u) ∩D|+
1

2

∑

u∈V2

dG′(u)

≥ 4|V1| − 1 + 3|V2|+
|V2|

2
≥

7

2
|V ′| − 1.

Since |V ′| = n− |D| ≥ (1− 2α)n, we have

e(G) ≥
7

2
(1− 2α)n− 1 =

7

2
n− 7αn− 1 >

7

2
n− 8αn,

as desired.
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Next, suppose D is a 2-dominating set containing adjacent vertices x, y such that v ∈
N(x, y) for every v ∈ V (G) \D. In this case, note that V (G) \N(x, y) ⊆ D, and both are
2-dominating sets of the desired type. For later convenience, we will redefine D if necessary,
setting

D := V (G) \N(x, y).

Note that now, V ′ = V (G) \D is simply equal to N(x, y). As before, we set G′ = G[V ′].
Now, we begin by making several observations on the structure and coloring of G′. In

particular, we will find a matching within G′ of edges which receive the same color as xy;
to indicate the special role played by this edge-color, we shall say c(xy) = 0. We begin by
showing that certain vertices in G′ must be incident to edges of color 0.

Suppose z ∈ V ′ has dG′(z) ≥ 3. By Observation 2.9, we must have dG′(z) = 3, and
each of the three vertices in N(z) ∩ V ′ is adjacent to one of x, y, z via an edge with color in
{0, c(xz), c(yz)}. To maintain a proper edge-coloring, only x can be adjacent to N(z) ∩ V ′

via an edge of color c(yz), only y can be adjacent to N(z) ∩ V ′ via an edge of color c(xz),
and only z can be adjacent to N(z) ∩ V ′ via an edge of color 0. Thus, the maximum degree
in G′ is 3, and every vertex of degree 3 in G′ is incident to an edge of color 0.

We now investigate vertices with degree 2 in G′. In particular, we define the set of vertices
with degree 2 in G′ and exactly 2 neighbors in D,

S2
2 := {v ∈ V ′ : dG′(v) = 2 and |N(v) ∩D| = 2}.

Note that every v ∈ S2
2 has N(v) ∩ D = {x, y}. We start by noting that S2

2 contains very
few vertices which are not incident to an edge of color 0.

Indeed, suppose there exist u, v ∈ S2
2 such that d(u, v) > 2 and neither u nor v is incident

to an edge of color 0. We can thus add uv to G with c(uv) = 0 while maintaining a proper
coloring. Moreover, since d(u, v) > 2, the addition of uv does not form a triangle in G′.
Thus, any copy of K4 using uv in G+uv must contain two vertices from D. Since u, v ∈ S2

2 ,
their only neighbors in D are x, y. Hence, {u, v, x, y} span the unique copy of K4 using uv
in G + uv; since c(uv) = c(xy) = 0, this copy is not rainbow. So G + uv can be properly
edge-colored while avoiding a rainbow K4-copy, a contradiction to the assumption that G is
rainbow K4-saturated.

Thus, the subset of vertices in S2
2 which are not incident to edges of color 0 pairwise are

at distance at most 2 in G′. Since ∆(G′) ≤ 3, for any vertex u ∈ G′, we have

|{v ∈ G′ : dG′(u, v) ≤ 2}| ≤ 13.

While a tighter bound in fact holds for vertices in S2
2 , we shall only require that the subset

of vertices in S2
2 not incident to edges of color 0 is of constant size.

Now, let M0 be the matching in G′ consisting of all edges in E(G′) colored 0. We form
G′

0 by deleting M0 from G′. Now, by the above observations, ∆(G′
0) ≤ 2. Thus, every

component of G′
0 is a path (possibly trivial) or a cycle. We shall use this structure to count

edges in G.
Call v ∈ V ′ light if N(v) ∩D = {x, y}, and heavy if not. (Thus, all S2

2 vertices are light,
but V ′ may contain light vertices which are not in S2

2 .) Call a component C of G′
0 light if at

most one vertex of C is heavy, and let L be the set of light components of G′
0.
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Similarly, call a component C heavy if at least two vertices of C are heavy, with the set
of heavy components denoted by H . For a component C of G′

0, let LC denote the set of light
vertices in V (C) and HC the set of heavy vertices in V (C).

Now, e(G) ≥ e(G′, D)+e(G′), which we can bound by summing component-by-component:

e(G) ≥
∑

v∈V ′

(

|N(v) ∩D|+
1

2
d′G(v)

)

=
∑

v∈C,C∈L

(

|N(v) ∩D|+
1

2
dG′(v)

)

+
∑

v∈C,C∈H

(

|N(v) ∩D|+
1

2
dG′(v)

)

.

In particular, if the number of edges incident to component C satisfies

i(C) =:
∑

v∈C

(

|N(v) ∩D|+
1

2
dG′(v)

)

≥
7

2
|C| (3)

for all components C, then the desired bound on e(G) would hold. We will not be able to
guarantee that (3) holds for all C, but show that only constantly many components C can
fail to satisfy (3).

We shall obtain different bounds on i(C) for different types of components. Firstly, recall
that by Lemma 2.11, at most four vertices of G have degree ≤ 3, and we have argued above
that at most 13 vertices in S2

2 are not incident to an edge of color 0 in G′. Call a component
C exceptional if C contains either a vertex with degree ≤ 3 in G or a vertex in S2

2 which is not
incident to an edge of color 0 in G′. Note that there are at most 17 exceptional components
of G′

0 in total. We now estimate i(C) for different types of components C.
We first address components of size 1. If C is a component such that some vertex v in C

has dC(v) = 0, then V (C) = {v}. In this case, i(C) = d(v). Note that if C is non-exceptional,
then d(v) ≥ 4, so i(C) > 7

2
|C|.

Next, we consider components of size greater than 1. We treat these in cases, depending
upon their classification as light or heavy.

Case 1: |V (C)| ≥ 2 and C ∈ H .

For a non-exceptional component C ∈ H , we estimate i(C) as follows. If v is a light
vertex of C, then (since C is non-exceptional) v either is in S2

2 and is incident to a
color 0 edge in G′ or dG′(v) = 3. In either case, v is incident to an edge in M0, so
dG′(v) = dC(v) + 1. If v is a heavy vertex of C, then |N(v) ∩ D| ≥ 3, and (since
|V (C)| ≥ 2) dC(v) ≥ 1. Now,

i(C) =
∑

u∈LC

(

|N(u) ∩D|+
dG′(u)

2

)

+
∑

v∈HC

(

|N(v) ∩D|+
dG′(v)

2

)

≥
∑

u∈LC

(

2 +
dC(u) + 1

2

)

+
∑

c∈HC

(

3 +
dC(v)

2

)

.
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Since C is either a path or a cycle, at most two vertices of C have degree 1 in C, so

∑

u∈LC

(

2 +
dC(u) + 1

2

)

+
∑

c∈HC

(

3 +
dC(v)

2

)

≥
7

2
|LC |+ 4|HC| − 1 =

7

2
|C|+

1

2
|HC | − 1 ≥

7

2
|C|

since, because C is heavy, |HC| ≥ 2.

If C is an exceptional heavy component, then at most 17 vertices in C are either of
degree at most 3 in G or are in S2

2 but not incident to an edge of M0. Since every vertex
in C has at least one neighbor in G′ and at least two neighbors in D, every vertex in
C has degree at least 3 in G and if C contains a vertex of degree 3, then this is a light
vertex. All vertices in S2

2 are light, so to estimate i(C) when C is an exceptional heavy
component, only the edge incidence count for LC will change. It remains true that at
most two vertices of G have degree 1 in C, since C is a cycle or a path, and now at
most 17 vertices in LC are not incident to an edge of M0. So

∑

u∈LC

(

|N(u) ∩D|+
dG′(u)

2

)

≥
∑

u∈LC

(

2 +
dC(u) + 1

2

)

−
17

2
≥

7

2
|LC | −

19

2
.

Thus,

i(C) ≥
7

2
|LC |+ 4|HC| −

19

2
≥

7

2
|C| −

17

2
.

Case 2: |V (C)| ≥ 2 and C ∈ L.

As in Case 1, if C is a non-exceptional component, then we have

i(C) ≥
∑

u∈LC

(

2 +
dC(u) + 1

2

)

+
∑

c∈HC

(

3 +
dC(v)

2

)

.

Now, either |HC | = 1 or HC is empty. Note that since 2 + dC(v)+1
2

< 3+ dC(v)
2

, we have

i(C) ≥
∑

u∈V (C)

2 +
dC(u) + 1

2

regardless of the size of HC . Now, if C is a cycle, we have

i(C) ≥
∑

u∈V (C)

2 +
2 + 1

2
=

7

2
|C|.

If C is a path, then we have i(C) ≥ 7
2
|C| − 1.

If C is an exceptional component then, as in Case 1, at most 17 vertices of C either
have degree 3 or are in S2

2 but not incident to an edge from M0. We can then bound

i(C) ≥
∑

u∈V (C)

(

2 +
dC(u) + 1

2

)

−
17

2
≥

7

2
|C| −

19

2
.
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Again, the goal is to show that very few components C have i(C) < 7
2
|C|. Among non-

exceptional components, only light paths fail to meet the desired value of i(C). Our final
step is thus to demonstrate that there are few non-exceptional light paths in G′

0. We first
require a more careful description of heavy vertices in light paths.

Recall that if C is a light path, then either C contains no heavy vertices, or precisely one
heavy vertex, say v. Note that if v is a heavy vertex of C which is incident to an edge of
M0, then we in fact have

i(C) =
∑

u∈LC

(

2 +
dC(u) + 1

2

)

+ 3 +
dC(v) + 1

2
=

5

2
|C|+ 1 +

∑

u∈V (C)

dC(u)

2
=

7

2
|C|.

Thus, any light path C with i(C) < 7
2
|C| either contains no heavy vertex v, or its heavy

vertex v is not incident to an edge from M0. Note that this implies dC(v) = dG′(v), and in
particular, v is not adjacent to any heavy vertex in V ′. Similarly, if C contains a heavy vertex
with more than 3 neighbors in D, then i(C) ≥ 7

2
|C|, so any light path C with i(C) < 7

2
|C|

either contains no heavy vertex v, or its heavy vertex v is adjacent to exactly 3 vertices in
D.

Now, recall that D is precisely V (G) \ N(x, y), so there is no triangle in D containing
xy. In particular, suppose v is a heavy vertex in G′ which has no heavy neighbor in G′, such
that N(v) ∩ D = {x, y, z}. Then at most one neighbor of v is adjacent to z, so vz is an
unrestricted edge. Among light paths, we will thus be able in large part to argue without
distinguishing their heavy vertices.

Suppose G′
0 contains two non-exceptional light paths P1 = v1, v2, . . . , vk and P2 =

w1, w2, . . . , wℓ such thatM0 contains no edges between {v1, v2, vk−1, vk} and {w1, w2, wℓ−1, wℓ}.
Note that we can find two such non-exceptional light paths if G′

0 contains more than 5 non-
exceptional light paths in total. We will contradict that G is properly rainbow K4-saturated
by showing that an edge between an endpoint of P1 and an endpoint of P2 may be added
without creating any rainbow K4-copy.

To identify the correct place in which to add this edge, we will fix an orientation of
both paths, as follows. Observe, since c(v1v2) 6= 0 and the K4-copy on {x, y, v1, v2} is not
rainbow, either c(v1x) = c(v2y) or c(v1y) = c(v2x). We will say edge vivi+1 of P1 is left-
oriented if c(vix) = c(vi+1y), and right oriented if not. Observe, if v1v2 is left-oriented, then
c(v2y) cannot equal c(v3x), since x is already adjacent to v1 via an edge colored with c(v2y).
Thus, if v1v2 is left-oriented, then v2v3 must also be left-oriented. Inductively, if v1v2 is
left-oriented, then in fact vivi+1 must be left-oriented for all i ≤ k − 1, and similarly, if v1v2
is right-oriented, then vivi+1 is right-oriented for every i ≤ k − 1.

Say P1 is left-oriented if all of its edges are left-oriented, and right-oriented if all of its
edges are right-oriented. Observe that orientation is purely a function of a path’s vertex
labelling: if P1 is right-oriented, we may relabel its vertices, changing vi to vn−i+1, to view
P1 as left-oriented. So, we relabel P1 and P2 if necessary to ensure that both are left-
oriented. (Note that under this relabelling, it remains the case that no M0 edge connects
{v1, v2, vk−1, vk} and {w1, w2, wℓ−1, wℓ}.) Now, we will add either vkw1 or wℓv1 to G, choosing
whichever edge contains fewer heavy vertices. Since P1, P2 are light, one of vkw1, wℓv1
contains at most one heavy vertex. Without loss of generality, say we add vkw1.

Because at most one of vk, w1 is heavy, the addition of vkw1 does not create any K4-copy
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Figure 2: Left and right orientations of v1v2. Note that in each case, to avoid a rainbow
K4-copy, the orientation of v2v3 must match that of v1v2.

vk−2 vk−1 vk

0x y

w1 w2 w3

Figure 3: P1 and P2, both left-oriented. We add the dashed edge vkw1 to G.

which intersects D \{x, y}. In particular, if P1, P2 contain heavy vertices vi, wj, say adjacent
to zi, zj ∈ D (possibly with zi = zj), then c(vizi) and c(wjzj) are unrestricted, and even in
G + vkw1, the edges vizi and wjzj are not contained in any K4-copy. We choose distinct
new colors for each of vizi, wjzj to ensure that these edges do not share a color with any
edge of G; we will also never reuse these new colors in subsequent recoloring steps. Thus,
any recoloring of edges incident to vi, wj will not conflict with c(vizi) or c(wjzj). For the
remainder of the proof, we may omit consideration of vizi and wjzj , if they exist.

The addition of vkw1 creates one K4-copy, on {x, y, vk, w1}. Since no edge of M0 connects
{v1, v2, vk−1, vk} with {w1, w2, wℓ−1, wℓ}, the addition of vkw1 does not create any triangle in
G′, so in fact, {x, y, vk, w1} span the unique K4-copy containing vkw1. If xvk and yw1 are
both unrestricted edges, we can recolor so that c(xvk) = c(yw1), using an edge-color not yet
appearing in G. Coloring vkw1 with any legal color then creates a proper edge-coloring of
G+ vkw1 which is rainbow K4-free, a contradiction.

Thus, suppose xvk is restricted. Since P1 is left-oriented, the K4-copy on {x, y, vk−1, vk}
has c(xvk−1) = c(xvk), so for xvk to be restricted, xvk must be contained in another K4-
copy. This is only possible if vk−2vk ∈ M0, a situation we depict in Figure 4. Note that
the coloring depicted in Figure 4 is without loss of generality; in particular, since P1 is
left-oriented, we have c(xvk−2) = c(xvk−1) and c(xvk−1) = c(yvk), none of which can be in
{c(vk−2vk−1), c(vk−1vk)} since the edge-coloring is proper.

Observe that if xvk is restricted, then to avoid a rainbowK4-copy, we must have c(yvk−2) =
c(vk−1vk) (color 1 in Figure 4) and c(xvk) = c(vk−1vk−2) (color 2 in Figure 4). Now, if vk−2vk−1

is only in the K4-copies on {vk−2, vk−1, x, y}, {vk−2, vk−1, vk, x}, and {vk−2, vk−1, vk, y}, then
we can recolor vk−2vk−1 and xvk simultaneously, so long as we maintain c(vk−2vk−1) = c(xvk).
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Figure 4: The structure of G near vk if xvk is restricted

If vk−2vk−1 is in another K4 copy in G, then this copy must include a triangle in G′, implying
vk−3vk−1 ∈ M0. We depict this in Figure 5.
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33 44

2

1
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x y

vk−3 vk−2 vk−1 vk

Figure 5: The structure of G near vk if both vk−2vk and vk−3vk−1 are in M0

Now, consider a = c(yvk−3) and b = c(vk−3vk−2). To maintain a proper coloring, a 6∈
{0, 1, 3, 4} and b 6∈ {0, 1, 2, 4}. So, since y, vk−1, vk−2, vk−3 cannot span a rainbow K4-copy
in G, we must have a = 2. Because P1 is left-oriented, we know that a = c(yvk−3) is equal
to c(xvk−4), if vk−4 exists. However, such a color assignment would be impossible if a = 2,
since x is already incident to vk via an edge of color 2.

Thus, if vk−3vk−1 is in M0, we conclude that P1 is a four-vertex light path with vk−3vk−1

and vk−1vk in M0. In this case, P1 is not only a component of G′
0 but of G′ and, because

P1 is light, every K4-copy in G + vk−3vk which intersects P1 must use only vertices from
V (P1)∪{x, y}. We can thus add the edge vk−3vk, since P2∨K4 can be properly edge-colored
without creating a rainbow K4-copy, a contradiction.

Thus, either xvk is unrestricted, or c(xvk) = c(vk−2vk−1) and we can freely change the
value of c(xvk) so long as we also change c(vk−2vk−1) to maintain c(xvk) = c(vk−2vk−1).
Analogously, either yw1 is unrestricted, or c(yw1) = c(w2w3) and we can freely change the
value of c(yw1) so long as we also change the value of c(w2w3). Also note that because P1, P2

are separate components, the edges xvk, vk−1vk−2, yw1, and w2w3 are pairwise vertex disjoint,
so it is possible to maintain a legal edge-coloring if some or all of their colors are equal. We
recolor so that c(xvk) = c(yw1) via a color not yet used in G, also recoloring vk−2vk−1 and
w2w3 if necessary. Under this new edge-coloring, G remains rainbow K4-free. Moreover, we
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have constructed this new coloring to allow the addition of vkw1 in any legal color without
creating a rainbow K4-copy.

Thus, if we can find P1, P2 in G′
0, then G is not properly rainbow K4-saturated, a con-

tradiction. If we cannot find P1, P2 as above, then G′
0 contains at most 5 non-exceptional

light paths. We know that G′
0 contains at most 17 exceptional components in total, so con-

tains at most 22 components C with i(C) < 7
2
|C|. We have seen that every component has

i(C) ≥ 7
2
|C| − 19

2
> 7

2
|C| − 10, so in total

e(G) ≥
∑

C

i(C) ≥
∑

C

7

2
|C| − 22 · 10 =

7

2
(n− |D|)− 220 ≥

7

2
(n− 2αn)− 220 >

7

2
n− 8αn

since we have αn > 220.

3 Paths

In this section, we prove Theorem 1.2. We begin by proving the desired lower bound in
the following proposition. We remark that this argument can be adapted to show that
sat∗(n, T ) ≥ n− 1 for all trees T with diameter at least 4.

Proposition 3.1. If a graph G is rainbow Pk-saturated for k ≥ 5, then G has at most one
acyclic component. Consequently, sat∗(n, Pk) ≥ n− 1.

Proof. We first show that G does not contain two acyclic components of diameter at most
2. For the sake of a contradiction, assume two such components exist. Note that these
two components are stars, and adding an edge between their centers will create no new
Pk-copies. Thus, G is not rainbow Pk-saturated, a contradiction. It follows that G has at
most one acyclic component of diameter at most 2. If this component has at least 3 vertices,
then adding an edge between two leaves will not create any new Pk-copies. So again, G is
not rainbow Pk-saturated, a contradiction. Thus, such a component has at most 2 vertices,
meaning it is isomorphic to K1 or K2.

We now show that, in fact, G cannot contain two acyclic components of any diameter.
Suppose towards a contradiction that G has two acyclic components, T1 and T2. By the above
observations, one of T1 or T2 must have diameter at least 3. Without loss of generality, say
this is T1. Fix u ∈ V (T1) and x ∈ V (T2) to be endpoints of longest shortest paths (i.e.,
paths which realize the diameters of T1 and T2). Then u and x are necessarily leaves. By
the above, we may assume T1 is a tree of diameter at least 3, while T2 may be either K1,
K2, or a tree of diameter at least 3.

Let v be the unique neighbor of u. Since T1 has diameter at least 3, v must have exactly
one non-leaf neighbor, say w. Let c be a rainbow Pk-free proper edge-coloring of G. Without
loss of generality, c(uv) = 1 and c(vw) = 2. Now, we consider the edge-coloring of T2. If T2

is not a K1-copy, let y be the neighbor of x, and if T2 is not a K2-copy, let z be the unique
non-leaf neighbor of y. By relabeling edge-colors within T2 only, we can set c(xy) = 1 (if y
exists) and c(yz) = 2 (if z exists).

Now we claim we can add the edge ux with c(ux) = 2 without creating any rainbow
Pk-copy. Indeed, observe that since k ≥ 5, any copy of Pk which contains ux either contains
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Figure 6: Leaves in T1 and T2 which can be connected by an edge of color 2. If necessary,
we can relabel colors within T2 only so that a = 1 and b = 2

one of vw or yz, or else both of uv and xy. Thus, G + ux can be properly edge-colored
without rainbow Pk-copies, contradicting the assumption that G is properly rainbow Pk-
saturated.

We now work to show the upper bound in Theorem 1.2. The substance of this argument
will be showing that a particular construction is properly rainbow Pk-saturated. In order to
do this, we must define a family of graphs upon which our construction is based, and develop
an understanding of the proper edge-colorings of this family.

Definition 3.2. For w ≥ 3, let V = {0, 1}w/ ≡, where ≡ is the equivalence relation u ≡ v iff
ui = 1−vi for each i ∈ [w]. Let uv ∈ E if and only if u, v ∈ V have respective representatives
that differ in exactly one bit. Define Hw/2 := (V,E).

We note that Hw/2 is precisely the (w − 1)-dimensional hypercube Hw−1 with edges
joining antipodal vertices, sometimes called the folded hypercube. Moreover, Hw/2 is w-
regular, and diam(Hw/2) = ⌊w/2⌋. The folded hypercube has previously been examined
in the study of rainbow Turán numbers for paths; in the cases where the rainbow Turán
number of Pk is known, folded hypercubes provide an extremal construction.

The following lemma describes a construction of Johnston and Rombach [7] for a coloring
ofHw/2 which avoids rainbow Pw+1-copies. In this lemma and the rest of this section, we will
find it convenient to describe the edges of Hw/2 by the component in which their endpoints
differ. We refer to the elements of the binary strings defining the vertices as bits and say that
edge e ∈ E(Hw/2) corresponds to an ith bit-flip if (some representations of) its endpoints
differ in precisely bit i.

Lemma 3.3. For w ≥ 3, Hw/2 has a proper edge-coloring that is rainbow Pw+1-free.

Proof. Define a coloring c : E → N by setting c(e) = i if e corresponds to an ith bit-flip.
Then for any u ∈ V , a rainbow walk starting from u with w edges flips every bit exactly
once, and therefore forms a cycle. Hence, Hw/2 has no rainbow Pw+1 under this coloring.

While we have exhibited a proper edge-coloring of Hw/2 which is rainbow Pw+1-free, this
is not necessarily the unique such coloring. In order to use the family of folded hypercubes to
construct the desired properly rainbow Pk-saturated family of graphs, we must understand
the set of all rainbow Pw+1-free proper edge-colorings of Hw/2. Towards this end, we show
that every rainbow Pw+1-free proper edge-coloring of Hw/2 contains a rainbow cycle of
particular structure.
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Definition 3.4. A total bit-flip cycle (TBFC) is a cycle of length w in Hw/2 in which every
edge corresponds to a different bit-flip. A total bit-flip rainbow cycle (TBFRC) is a TBFC
with a rainbow edge-coloring.

Lemma 3.5. For w ≥ 3, every proper edge-coloring of Hw/2 that is rainbow Pw+1-free
contains a TBFRC.

Proof. We construct a rainbow path Pk = (x0, . . . , xk) for all 0 ≤ k ≤ w − 1 iteratively. Set
P0 = (x0), for some fixed vertex x0. Given Pk, the manner in which we extend to Pk+1 will
depend upon the value of k. We will say that a color c is new for Pk if c 6= c(xi−1xi) for any
i ∈ {1, . . . , k}. Let d := diam(Hw/2) = ⌊w/2⌋. While k ≤ d, we say a color c is bad for Pk

if c satisfies the following conditions:

1. c = c(xi−1xi) for some i ∈ {1, . . . , k};

2. For some vertex y 6∈ {x0, . . . , xk−1}, xky is an edge with c(xky) = c.

For 0 ≤ k ≤ d, extend Pk to Pk+1 by adding an edge xkxk+1 such that c(xkxk+1) is new
(for convenience we may assume this is color k+1) and xkxk+1 corresponds to a yet unused
bit-flip. Such an edge exists, since the number of bad colors at this step is at most k−1, and
the edges of Pk correspond to k bit-flips, leaving w − k new bits available to flip. Indeed, if
k ≤ d, then 2k − 1 ≤ 2 ⌊w/2⌋ − 1, and thus, we have k − 1 < w − k.

In this manner, we produce a rainbow path Pd+1 of length d+ 1, where each edge uses a
different bit-flip. Now, for k ≥ d + 1, we continue an extension process, obtaining Pk+1 by
adding an edge xkxk+1 to Pk so that c(xkxk+1) is new and xkxk+1 corresponds to a specified
type of bit-flip. However, to ensure that such an edge xkxk+1 exists, we must somewhat relax
the condition on which bit-flips may correspond to xkxk+1. To describe this new condition,
we introduce the following notation.

Given d + 1 ≤ k ≤ w − 1, suppose Pk has been defined. We denote by Sd the subpath
(x0, . . . , xd) of Pk, and for d+1 ≤ j ≤ k, we denote by Sj the subpath (x2j−w, . . . , xj) of Pk.
We say that bit-flip i is used by Sj if some edge of Sj corresponds to bit-flip i. Rather than
extending Pk by adding an edge xkxk+1 which does not correspond to the same bit-flip as
any previous edge in Pk, we will only demand that xkxk+1 corresponds to a bit-flip not used
by Sk. For d ≤ j < k, we will denote by S+

j the concatenation of Sj and xjxj+1. Thus, to
determine an acceptable choice for xj+1 as we are building our path, we ensure that xjxj+1

does not repeat a bit-flip used by Sj; once we add xj+1 to our path, the subpath S+
j contains

no repeated bit-flips.

Claim 2. For d+1 ≤ k ≤ w− 1, there exists a rainbow path Pk = (x0, . . . xk) in Hw/2 such
that for every j with d ≤ j ≤ k − 1, S+

j contains no two edges corresponding to the same
bit-flip. Moreover, xixj 6∈ E(Hw/2) if i+ 1 6≡ j mod w.

Proof of Claim 2. We proceed by induction. For k = d+1, we take Pd+1 as described above.
By construction, Pd+1 is rainbow, and each edge corresponds to a different bit-flip. It is
immediate that S+

d contains no two edges corresponding to the same bit-flip, and that two
vertices xi, xj either are adjacent in Pd+1 or are connected by a path corresponding to ℓ ≥ 2
distinct bit-flips. Note that if 2 ≤ ℓ < w − 1, then xi, xj are not adjacent in Hw/2. If
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ℓ = w − 1, then xi = x0 and xj = xd+1, and we must have d + 2 ≡ 0 mod w. Thus, the
statement holds for k = d+ 1.

Let d+1 < k ≤ w−1 and suppose that there exists a rainbow path Pk−1 = (x0, . . . , xk−1)
satisfying all conditions in the statement of Claim 2. We shall obtain a rainbow path Pk

by extending Pk−1. Let N be the set of neighbors of xk−1 which are not on Pk−1. Since
k ≤ w − 1, by the inductive hypothesis, xk−1 is adjacent to no vertex on Pk−1 except for
xk−2, so |N | = w − 1. Note that at most k − 2 elements of N are adjacent to xk−1 via an
edge whose color is not new for Pk−1 (since the color of xk−2xk−1 is not new for Pk−1, but is
not used for any edge between xk−1 and N). Moreover, exactly w − k + 1 bit-flips are used
by Sk−1, so at most w − k elements of N are adjacent to xk−1 via an edge corresponding to
a bit-flip used by Sk−1 (since the bit-flip corresponding to xk−2xk−1 does not correspond to
any edge from xk−1 to N). In total, there are at most (k − 2) + (w− k) = w− 2 elements x
of N such that either c(xk−1x) is not new for Pk−1 or xk−1x corresponds to a bit-flip used by
Sk−1. Thus, there exists an element xk of N such that c(xk−1xk) is new for Pk−1 and xk−1xk

does not correspond to a bit-flip used by Sk−1. We set Pk = (x0, . . . , xk−1, xk).
Now, it remains to show that Pk satisfies all conditions in Claim 2. By construction, Pk

is rainbow. For j < k − 1, the inductive hypothesis on Pk−1 implies that S+
j contains no

two edges corresponding to the same bit-flip. By construction, S+
k−1 contains no two edges

corresponding to the same bit-flip, since xkxk+1 does not correspond to a bit-flip used by
any edge of Sk−1, and since Sk−1 is contained in S+

k−2, implying that no two edges of Sk−1

correspond to the same bit-flip. Thus, we only need verify that xixj 6∈ E(Hw/2) if i+ 1 6≡ j
mod w. Again, the inductive hypothesis on Pk−1 guarantees this if both i, j are smaller than
k. Thus, we consider pairs xi, xk. There are several cases to consider.

Case 1: i = 0 and k ≤ w − 2

Since S+
d has no repeated bit-flips, we have d(x0, xd+1) = w − (d + 1). Then since

d(x0, xd+1) ≤ d(x0, xk) + d(xk, xd+1), we have

w − (d+ 1) ≤ d(x0, xk) + k − (d+ 1).

This implies 2 ≤ w − k ≤ d(x0, xk). Therefore, x0xk 6∈ E(Hw/2).

Case 2: i = 1

By assumption, S+
d+1 has no repeated bit-flips and has length w − d, so we have

d(x2d−w+2, xd+2) = d. Thus, d(x2d−w+2, xd+2) ≤ d(x2d−w+2, x1)+d(x1, xk)+d(xk, xd+2),
which implies

d ≤ (2d− w + 1) + d(x1, xk) + k − (d+ 2).

As a result, we have w − k + 1 ≤ d(x1, xk), and hence 2 ≤ d(x1, xk). Therefore,
x1xk 6∈ E(Hw/2).

Case 3: 2 ≤ i ≤ 2(k − 1)− w

Let j =
⌊

i+w
2

⌋

. Note that j ≥
⌊

2+w
2

⌋

= d+1, and j ≤
⌊

2(k−1)−w+w

2

⌋

= k−1. Hence by

assumption, S+
j has no repeated bit-flips, and is a path from x2j−w to xj+1 with length

w − j + 1. We also note that i− 1 ≤ 2j − w ≤ i and i < j + 1. If i = 2 and w is odd,
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then j = d + 1 and S+
j contains w − (d + 1) + 1 = w − d = d + 1 edges. In this case,

2j−w = 1 and i = 2, so d(xi, xj+1) = d, and we note that d = j+1− i. If w is even or
i ≥ 3, then S+

j contains w− j+1 ≤ d edges, and it follows that d(xi, xj+1) = j+1− i.
We combine these observations with the inequality d(xi, xj+1) ≤ d(xi, xk)+d(xk, xj+1),
which implies

j + 1− i ≤ d(xi, xk) + (k − (j + 1)).

Thus, we have 2 + 2j − i ≤ d(xi, xk) + (w − 1), which gives 2 ≤ d(xi, xk). Therefore,
xixk 6∈ E(Hw/2).

Case 4: 2(k − 1) − w < i ≤ k − 2 By assumption, S+
k−1 has no repeated bit-flips and is a

path from x2(k−1)−w to xk with length w − k + 2. Then xi lies on this path, with
d(xi, xk) = k − i ≥ 2. Therefore, xixk 6∈ E(Hw/2).

With Claim 2 established, we construct a TBFRC in Hw/2 as follows. Let Pw−1 =
(x0, . . . xw−1) be a rainbow path satisfying the conditions of Claim 2. Without loss of gen-
erality, c(xi−1xi) = i for each i ∈ {1, . . . , w − 1}. Since the only neighbors of xw−1 on Pw−1

are xw−2 and potentially x0, there are at least w − 2 ways to extend Pw−1 to a path with
w edges. By hypothesis, Hw/2 is rainbow Pw+1-free, so each of these w − 2 edges must use
colors from {1, . . . , w − 2}. This also means that there must exist an edge xw−1x0, and it
must use a new color, w. Let Cw := Pw−1 + xw−1x0. Thus, Cw is a rainbow cycle of length
w. It remains to check that Cw is a TBFC.

Fix a representation of x0. For 1 ≤ i ≤ w, if xi−1 and xi differ in bit j, then fix the
representation of xi obtained by flipping the jth bit of xi−1. In this manner, we select
representations for x0, . . . , xw so that for each 1 ≤ i ≤ j, there is precisely one bit of
difference between xi−1 and xi. With these representations fixed, we proceed as follows.
Since x0xw−1 ∈ E(Hw/2), we have that (the fixed representations of) x0 and xw−1 either
differ in exactly one bit or differ in w− 1 bits. Observe that if xw−1 differs from x0 in w− 1
bits, then Cw is a TBFC. Thus, it suffices to show that x0 and xw−1 differ in more than one
bit. Note that x0 and xw−1 differ in bit i if and only if an odd number of edges in Pw−1

correspond to the ith bit-flip. So if x0 and xw−1 differ in exactly one bit, then the number
of edges of Pw−1 corresponding to bits in which x0 and xw−1 do not differ is even, and the
number of edges corresponding to the unique bit in which they do differ is odd. If w is odd,
then Pw−1 has an even number of edges, and it is thus impossible for x0 and xw−1 to differ
in exactly one bit. If w is even, consider the path P = (xd, xd+1, . . . x0) on Cw. Because no
bit-flips are repeated within S+

d , we know that xd in fact has distance d = w
2
from x0. Since

P is a path of length d from x0 to xd, P must also contain no two edges which correspond
to the same bit-flip. Thus, the bit-flip corresponding to xdxd+1 is repeated nowhere in Pw−1.
Thus, if x0 and xw−1 differ only in one bit, then this is the same bit in which xd differs from
xd+1; moreover, every bit-flip which corresponds to another edge in Pw−1 in fact corresponds
to at least two edges of Pw−1.

Now, we partition Pw−1 into two sub-paths: P1 = (x0, . . . , xd) and P2 = (xd+1, . . . xw−1).
Since both P1 and P2 contain no repeated bit-flips, it must be the case that every bit-flip
corresponding to an edge of P1 also corresponds to an edge of P2. However, P1 has length
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d and P2 has length d − 2, and thus some bit-flip corresponding to an edge of P1 does not
correspond to an edge of P2. We conclude that x0 and xw−1 differ in more than one bit;
thus, Cw is a TBFRC.

Now, the existence of a TBFRC in any rainbow Pw+1-free edge-coloring ofHw/2 will imply
that in fact, all rainbow Pw+1-free edge-colorings of Hw/2 are equivalent up to relabeling of
colors. To see this, we also require the following lemma.

Lemma 3.6. For w ≥ 5, a TBFRC in Hw/2 can be uniquely extended to a rainbow Pw+1-free
edge-coloring of Hw/2.

Proof. Suppose that we have a TBFRC Cw := (x1, x2, . . . , xw, x1), where x1 is an arbitrary
starting point. Reindexing if necessary, we may assume that xixi+1 corresponds to the ith
bit-flip in Hw/2. We identify any TBFC starting at x1 with the permutation on [w] given
by the order of bit-flips corresponding to the edges of this cycle; thus, Cw corresponds to
the identity permutation. We may also assume without loss of generality that c(xixi+1) = i
(with subscripts taken modulo w + 1).

Note that if x is on a TBFRC C, and y ∈ N(x) is not on C, then c(xy) must be a color
appearing on C to avoid a rainbow Pw-copy. Also note that the only vertices on C which are
adjacent to x are the two neighbors of x along C, since a vertex at distance at least 2 from x
in C differs from x in at least two bit-flips. Thus, x is incident to only edges receiving colors
used on C. Since d(x) = w, this implies that x is incident to edges of all colors used on C.

We now consider TBFC’s in Hw/2 which interact with Cw. For a fixed 2 ≤ i ≤ w, let y
be the vertex such that xi−1y corresponds to the ith bit-flip in Hw/2. Note that yxi+1 is an
edge of Hw/2 corresponding to the (i− 1)st bit-flip. So,

C(i, i− 1) := (x1, . . . , xi−1, y, xi+1, . . . xw, x1)

is a TBFC not containing xi, which corresponds to the transposition (i, i − 1). Since we
assume w ≥ 5, note also that N(xi−1, xi+1) is exactly equal to {xi, y}. (If w = 4, this
statement does not hold; common neighborhoods in Hw/2 have size 3.) We now consider
the edge-coloring of C(i, i− 1).

We claim that c(xi−1y) = i and c(yxi+1) = i − 1. Indeed, if this did not hold, then
by the above observations on the edges incident to xi−1 and xi+1, there would exist edges
xi−1u and xi+1v such that u 6= v and u, v 6∈ V (C(i, i− 1)) with c(xi−1u) = i and c(xi+1v) =
i − 1. (We allow for the possibility that one of u, v is equal to y.) This would yield that
(u, xi−1, xi−2, . . . , x1, xw, . . . , xi+1, v) is a rainbow Pw+1-copy in Hw/2, a contradiction. Thus,
c(xi−1y) = i and c(yxi+1) = i− 1, so C(i, i− 1) is a TBFRC. Moreover, the edge-coloring of
C(i, i − 1) is uniquely determined, with the property that each edge of C(i, i − 1) has the
same color as the bit-flip to which it corresponds.

Repeatedly applying the above argument, if C ′ is a TBFC containing x1 which corre-
sponds to a product of transpositions of the form (i, i−1), then C ′ has a rainbow edge-coloring
determined by the permutation to which it corresponds. That is, if u, v are adjacent on C ′

and differ in bit i, then c(u, v) = i. Note that every TBFC containing x1 corresponds to some
permutation of [w], and it is well-known that every permutation of [w] can be written as the
product of permutations of the form (i, i−1). Thus, if uv is an edge of Hw/2 such that uv is
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in some TBFC containing x1, then c(uv) is equal to the bit in which u, v differ. We observe
that given x1 and uv (possibly with x1 = u), it is possible to construct a TBFC beginning at
x1 and containing uv. Indeed, let Pu be a shortest path between x1 and u, and Pv a shortest
path between x1 and v. Thus, Pu and Pv do not repeat bit-flips. Without loss of generality,
we may assume |e(Pu)| ≤ |e(Pv)|. Suppose that uv corresponds to bit-flip i, and there is
also an edge of Pu corresponding to bit-flip i. Let B be the set of bit-flips different from i
which correspond to edges of Pu. Note that v must differ from x1 in precisely the bits of B,
so there is a path of length |B| < |e(Pu)| from x1 to v, contradicting the assumption that
|e(Pu)| ≤ |e(Pv)|. Thus, Pu + uv is a path with no repeated bit-flips containing x1 and uv.
It is clear that Pu + uv can be extended to a TBFC. Thus, uv is colored by the bit in which
u, v differ.

We are now equipped to prove our main result, Theorem 3.7, on the edge-colorings of
Hw/2.

Theorem 3.7. For w ≥ 3, there is a unique (up to relabeling) rainbow Pw+1-free edge-
coloring of Hw/2.

Proof. If w ≥ 5, this follows quickly from Lemmas 3.3,3.5, and 3.6. Indeed, suppose c
and c′ are two rainbow Pw+1-free edge-colorings of Hw/2. (By Lemma 3.3, at least one
rainbow Pw+1-free edge-colorings of Hw/2 exists.) By Lemmas 3.5 and 3.6, each of c and c′

contain a TBFRC, and in fact every TBFC in Hw/2 is rainbow under both c and c′. Fix
in particular the TBFC in Hw/2 whose ith edge corresponds to bit-flip i, which we shall
call C = (x1, x2, . . . , xw). Relabel the colors of c′ so that c(xixi+1) = c′(xixi+1) for every
i ∈ {1, . . . , w}. By Lemma 3.6, every color which appears in c′ appears on some edge of
C, so this relabeling of c′ indeed extends to a relabeling of every edge-color under c′. Now,
under the described relabelling, c and c′ agree on a TBFRC, so by Lemma 3.6, c and the
relabelling of c′ must be equal.

Thus, it remains only to verify the result for w ∈ {3, 4}. If w = 3, then we have
H3/2 = K4. The only proper edge-coloring of K4 that avoids a rainbow P4-copy is the
3-coloring under which each color class forms a perfect matching.

For w = 4, observe that H4/2 = K4,4. We show that there exists one rainbow P5-free
edge-coloring of K4,4 up to isomorphism. Let A ∪ B be the bipartition of V (K4,4) where
every pair ai ∈ A, bj ∈ B forms an edge aibj . It is not difficult to check that, to avoid a
rainbow P5-copy, K4,4 must be 4 edge-colored. Thus, say we edge-color K4,4 using colors
{1, 2, 3, 4}. Without loss of generality, let c(a1bj) = j and c(aib1) = i.

Consider the edge aibi for i ≥ 2. If c(aibi) = j 6= 1, then there exists a path aibia1b1ak
for k 6= j that is rainbow. Therefore c(aibi) = 1.

Consider the edge aibj for i, j ≥ 2, i 6= j. To maintain a proper edge-coloring, c(aibj)
is not i, j, or 1, and thus c(aibj) must be the unique color in [4] \ {1, i, j}. Thus, up to
relabelling, there is a unique rainbow P5-free edge-coloring of K4,4. For reference, we depict
the described edge-coloring in Figure 7.

Now that we have established a precise understanding of the rainbow Pw+1-free colorings
of Hw/2, we are ready to define and study a set of constructions arising from the folded
hypercubes. Theorem 3.7 implies that, while it is possible to properly edge-color Hw/2 while
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Figure 7: The unique coloring of H4/2, viewed as K4,4 and as a folded hypercube

avoiding a rainbow Pw+1-copy, any such edge-coloring contains many rainbow Pw-copies. In
particular, every sequence of w − 1 distinct bit-flips corresponds to a rainbow Pw-copy in
Hw/2. In the following observation, we note that it is possible to construct such paths from
any desired starting point, and which avoid any desired vertex or bit-flip.

Observation 3.8. Let w ≥ 3, j ∈ [w], and u, v ∈ V (Hw/2) be distinct vertices. Then there
exist paths P and P ′ of length w−1 starting at u in which each edge corresponds to a distinct
bit-flip, such that no edge in P corresponds to bit-flip j and v is not a vertex in P ′.

Using this observation, we will show the desired upper bound on sat∗(n, Pk). Consider
the following construction.

Construction 3. Fix k ≥ 6 and n ≥ (k − 1)2k−4. Let Gk(n) be the graph obtained from
Hk−3/2 by attaching (k − 2) pendant edges to each vertex of Hk−3/2 except for 0k−3, and
n− (k − 1)2k−4 + k − 2 pendant edges to 0k−3.

We call the subgraph of Gk(n) isomorphic to Hk−3/2 the core of Gk(n), and call a vertex
of Gk(n) not in the core a pendant vertex. We illustrate G6(20) and a more general depiction
of G6(n) in Figure 8.

Note that when n = (k − 1)2k−4, every vertex of the core of Gk(n) is incident to exactly
k − 2 pendant vertices. In general, we have

|E(Gk(n))| = E(Hk−3/2) + (k − 2)(2k−4 − 1) + n− (k − 1)2k−4 + k − 2

= n + (k − 3)2k−5 + (k − 2)2k−4 − (k − 2)− (k − 1)2k−4 + k − 2

= n + (k − 3)2k−5 − 2k−4

= n + (k − 5)2k−5.

We will show that Gk(n) is properly rainbow Pk-saturated in Theorem 3.10 with the help
of the following simple lemma.
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(a)

n− 16

(b)

Figure 8: (a): The construction G6(n) for n = 20; (b): for general n

Lemma 3.9. Let k ≥ 3 let C be an n-vertex graph with n ≥ 1. Let G be a graph obtained
from C by attaching at least k − 2 pendant edges to each vertex of C. Then a proper edge-
coloring c of G contains a rainbow Pk-copy if and only if the restriction of c to C contains
a rainbow Pk−2-copy.

Proof. First, suppose G contains a rainbow copy of Pk, say P = (x0, x1, . . . , xk). Note that
P contains at most two pendant edges of G, and any pendant edge contained in P must
contain either x0 or xk. Thus, the sub-path (x1, . . . , xk−1) is a rainbow Pk−2-copy contained
C.

On the other hand, suppose C contains a rainbow Pk−2-copy, say P ′, with endpoints u
and v. Note that u and v are each incident to at least k−2 pendant edges in G. Furthermore,
one of the k − 3 edges on P ′ is incident to u and another is incident to v. So, only k − 4 of
the edge-colors used on P ′ may appear among the k − 2 pendant edges incident to u, and a
(possibly different) set of k − 4 of these colors may appear among the k − 2 pendant edges
incident to v. In particular, there are 2 pendant edges incident to u and two pendant edges
incident to v whose edge-colors are distinct from those on P ′. We may extend P ′ via two of
these pendant edges to a rainbow Pk-copy in G.

Observe that Lemma 3.9 can be applied to Gk(n), with the core of Gk(n) acting as C;
however, we will also apply Lemma 3.9 in a case where C may not equal the core of Gk(n).

Now, we are ready to prove that Gk(n) is properly rainbow Pk-saturated.

Theorem 3.10. For k ≥ 6 and n ≥ (k−1)2k−4, Gk(n) is rainbow Pk-saturated. In particular,
sat∗(n, Pk) ≤ n+ (k − 5)2k−5.

Proof. By Theorem 3.7, there is (up to relabelling of colors) a unique rainbow Pk−2-free
coloring of the core, and by Lemma 3.9, this extends to a rainbow Pk-free coloring of Gk(n).
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Next, we show that for any edge e 6∈ E(Gk(n)), any proper edge-coloring of Gk(n) + e
contains a rainbow Pk-copy. Assume, for the sake of contradiction, that some coloring c of
Gk(n) + e is rainbow Pk-free for some e /∈ E(Gk(n)). By Lemma 3.9, the restriction of c to
the core must be rainbow Pk−2-free. By Theorem 3.7, the core must be colored so that edges
corresponding to the same bit-flip receive the same color.

Now, either both endpoints of e are pendant vertices, or else e is incident to the core.
Suppose first that both endpoints x, y of e are pendant vertices. Say x, y have neighbors
u and v, respectively, in the core. As a consequence of Theorem 3.7, the core is colored
with precisely k − 3 edge-colors, say {1, 2, . . . , k − 3}, and in particular, u and v are each
incident to edges of every color i ∈ {1, 2, . . . , k − 3} within the core. So c(ux) and c(vy)
are not in {1, 2, . . . , k − 3}. Now, whether or not c(xy) ∈ {1, 2, . . . , k − 3}, Observation 3.8
implies that there exists a rainbow Pk−3-copy P in the core which has u as an endpoint and
does not contain an edge of color c(xy). Let w be the endpoint of this path not equal to
u. Of at least k − 2 pendant edges incident to w, at least k − 3 are incident to neither x
nor y. As k − 3 ≥ 3, at least one such pendant edge, say wz, has c(wz) 6∈ {c(xy), c(ux)}.
Observe that the concatenation of (y, x, u), P , and (w, z) is a rainbow Pk-copy in Gk(n)+ e,
a contradiction.

Next, suppose e is incident to the core. Let C be the subgraph of Gk(n) induced on
the vertices of the core (so either C is the core, or C is the core with an added edge). By
Lemma 3.9, to avoid a rainbow Pk-copy, we must color so that C is rainbow Pk−2-free. We
claim that this is not possible if both endpoints of e are incident to the core.

Indeed, to avoid an immediate contradiction, all core edges which are not equal to e still
must be colored as described by Theorem 3.7. If both endpoints u, v of e are contained in
the core, then by Observation 3.8, there exists a rainbow Pk−3-copy P in the core which
has u as an endpoint and does not contain v. Note also that, since u, v are already incident
to edges of all colors from {1, 2, . . . , k − 3}, we must have c(uv) 6∈ {1, 2, . . . , k − 3}. Thus,
concatenating uv with P yields a rainbow Pk−2-copy in the core, which can be extended to
a rainbow Pk-copy in Gk(n) + e by Lemma 3.9, a contradiction.

Finally, we consider the case where one endpoint u of e is in the core and the other, say
x, is a pendant vertex. Note again that c(ux) 6∈ {1, 2, . . . , k − 3} and since ux 6∈ E(Gk(n)),
x is adjacent to a core vertex distinct from u, say v. Now, using Observation 3.8, there
is a rainbow Pk−3-copy P in the core with v as an endpoint which does not contain u.
Concatenating P with (u, x, v) and a pendant edge incident to the other endpoint of P will
again yield a rainbow Pk-copy in Gk(n) + e, a contradiction.

Finally, for the sake of completeness, we derive Theorem 1.2

Theorem 1.2. For k ≥ 5 and n ≥ (k − 1)2k−4, we have

n− 1 ≤ sat*(n, Pk) ≤ n +O(2k).

Proof. We have the lower bound by Proposition 3.1 and the upper bound for k ≥ 6 by
Theorem 3.10. For k = 5, consider the n-vertex graph G5(n) obtained by attaching n − 4
pendant edges to one vertex of a K4-copy; we again call this K4-copy the core of G5(n) and
say that vertices outside the core are pendant vertices. Note that we can extend the perfect
matching coloring of the core to a rainbow P5-free proper edge-coloring of G5(n). We claim
that in fact, G5(n) is properly rainbow P5-saturated.
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Let x be the core vertex to which all pendant vertices of G5(n) are adjacent. Since
n ≥ 4 ·2 = 8, x has at least 4 pendant vertex neighbors. Since the core is complete, any edge
added to G5(n) either connects two pendant vertices u, v or connects a core vertex y 6= x
to a pendant vertex u. Note that if we add edge uv to G5(n), then {u, v, x} must span a
(rainbow) triangle, while if we add edge uy to G5(n), then there exist two other pendant
vertices v, w such that c(ux), c(vx), c(wx), and c(uy) are pairwise distinct. We depict these
two cases in Figure 9, also labeling the other core vertices of G5(n).

1

2

3

z s

x y

u
v

(a)

1

2 3 4

z s

x y

v
w

u

(b)

Figure 9: (a): G5(n) with uv added between pendant vertices; (b): G5(n) with uy added
between a pendant vertex and a core vertex

In G5(n) + uv, note that at most one of c(xy), c(xz), c(xs) is equal to 1; without loss
of generality, c(xy) 6= 1. Thus, both (u, v, x, y) and (v, u, x, y) are rainbow P4-copies in
G5(n)+uv. Note also that c(yz), c(ys) are not equal to c(xy), and at most one is equal to 1.
Without loss of generality, c(yz) 6= 1. Then either (u, v, x, y, z) or (v, u, x, y, z) is a rainbow
P5-copy in G5(n) + uv. Thus, any proper edge-coloring of G5(n) + uv contains a rainbow
P5-copy.

In G5(n) + uy, note that at most one of c(yz), c(ys) is equal to 3. Without loss of
generality, c(yz) 6= 3. Then either (v, x, u, y, z) or (w, x, u, y, z) is a rainbow P5-copy in
G5(n) + uy. Thus, any proper edge-coloring of G5(n) + uy contains a rainbow P5-copy.

We conclude that G5(n) is properly rainbow P5-saturated. Note that |E(G5(n))| = n+2.
Thus, the desired upper bound also holds for k = 5.

4 Cycles

Theorem 1.3. For odd k ≥ 7 and for n ≥ 3k − 2, we have

sat∗(n, Ck) ≤

(

k − 1

2

)

n−

(

k+1
2

2

)

.

Proof. Fix odd k ≥ 7, and suppose n ≥ 3k − 2. Let G = X ∨ Y , where X = K k−1

2

and

Y = En− k−1

2

. We will show that G is rainbow Ck-saturated.
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Set V (X) = {x1, . . . , xk−1

2

} and V (Y ) = {y1, . . . , yn−|V (X)|}. Since |V (X)| = k−1
2

and Y

is an independent set, there are no odd cycles of length k or greater in G. Let G′ = G+ y1y2
and c : E(G′) → N be a proper edge-coloring of G′. Observe that the double star S(1, 2) is
a subgraph of G′[x1, x2, x3, y1, y2] with centers y1, y2. So, there is a rainbow path of length 3
containing y1y2. Without loss of generality, suppose this rainbow path is P = x1y1y2x2.

We begin building our rainbow Ck by setting C := P and greedily building the rest. For
an edge e ∈ G′, we call e a bad edge if c(e) ∈ c(C) and otherwise, e is a good edge. Set

S3 := {y ∈ Y : y 6∈ V (C) and x2y, x3y are good edges}.

Observe that there can be at most two bad edges outside of E(C) incident to x2 and
at most three bad edges incident to x3. Therefore, if |V (Y )| ≥ 2 + 2 + 3 + 1 = 8, then
S3 6= ∅. Since |V (Y )| ≥ 5

2
(k − 1) + 1 ≥ 16, this inequality holds. By relabeling, we may

assume y3 ∈ S3. Now, add the edges x2y3, y3x3 to C. Continuing in this way, after relabeling,
suppose C = x1y1y2x2y3x3 . . . yixi, i <

k−1
2
. Then, set

Si+1 := {y ∈ V (Y ) : y 6∈ V (C) and xiy, xi+1y are good edges}.

As before, observe that there can be at most |E(C)| − 1 = 2i bad edges outside of E(C)
incident to xi and at most |E(C)| = 2i+ 1 bad edges incident to xi+1. Therefore, Si+1 6= ∅
if the following inequality holds:

|V (Y )| ≥ |V (C) ∩ V (Y )|+ (2i) + (2i+ 1) + 1 = i+ (2i) + (2i+ 1) + 1 = 5i+ 2

Since |V (Y )| ≥ 5
2
(k−1)+1, this inequality holds for all 3 ≤ i < k−1

2
and we may continue

building C. Finally, suppose C = x1y1y2x2y3x3 . . . y k−1

2

xk−1

2

and set

S k−1

2

:= {y ∈ V (Y ) : y 6∈ V (C) and x1y, xk−1

2

y are good edges}.

Now, there can be at most |E(C)| − 1 = k − 1 bad edges outside of E(C) incident to x1

and same for xk−1

2

. Therefore, S k−1

2

6= ∅ if the following inequality holds:

|V (Y )| ≥ |V (C) ∩ V (Y )|+ (k − 1) + (k − 1) + 1 =
k − 1

2
+ 2(k − 1) + 1 =

5

2
(k − 1) + 1.

Again, since |V (Y )| ≥ 5
2
(k−1)+1, the inequality holds and we may find y k+1

2

∈ S k−1

2

, add

the edges x1y k+1

2

and xk−1

2

y k+1

2

to C, completing our rainbow Ck. Therefore, G′ is rainbow

Ck-saturated.
Finally, we count the edges of G′ as follows:

|E(G′)| = |E(X)|+ |E(X, Y )|+ |E(Y )|

=

(

k−1
2

2

)

+ |V (X)|(n− |V (X)|) + 0

=

(

k−1
2

2

)

+

(

k − 1

2

)(

n−
k − 1

2

)

=

(

k − 1

2

)

n−

(

k+1
2

2

)

.
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