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1. Introduction

For n ∈ N let En the n-dimensional Euclidean space, i.e. Rn with Euclidean distances. For any
m > 0 integer, let ℓm denote the m-progression with distance 1, that is, a set of m points on a line
so that there is a unit distance between the consecutive points. In general, for any α ∈ R+, α ℓm
stands for an m-progression with distance α, that is, a set of m points on a line so that there is a
distance α between the consecutive points.

For any finite sets A, B ⊂ En, we write En
→ (A, B) if for every red/blue-coloring of En, there is

either a red copy of A or a blue copy of B. Conversely, write En ↛ (A, B) if a red/blue-coloring of En

exists that does not contain any red copy of A nor any blue copy of B.
In this note we investigate the case where A and B are progressions. The general question is that

for which n, m1, m2 does En
→ (ℓm1 , ℓm2 ) hold. These kind of problems, in a much more general

form, were first studied in a series of papers by Erdős, Graham, Montgomery, Rothschild, Spencer
and Straus [6–8].

Conlon and Fox [1] proved that there is a constant c > 0 such that En ↛ (ℓ2, ℓm) for all m ≥ 2cn.
owever, it follows from a result of Szlam [12] and Frankl and Wilson [9] that En

→ (ℓ2, ℓm) for
ome other constant c ′ > 0 and m ≤ 2c′n.
E-mail addresses: jakob.fuehrer@tugraz.at (J. Führer), geza@renyi.hu (G. Tóth).

https://doi.org/10.1016/j.ejc.2024.104105
0195-6698/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.ejc.2024.104105
https://www.elsevier.com/locate/ejc
https://www.sciencedirect.com/journal/european-journal-of-combinatorics
https://www.sciencedirect.com/journal/european-journal-of-combinatorics
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejc.2024.104105&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jakob.fuehrer@tugraz.at
mailto:geza@renyi.hu
https://doi.org/10.1016/j.ejc.2024.104105
http://creativecommons.org/licenses/by/4.0/


J. Führer and G. Tóth European Journal of Combinatorics 125 (2025) 104105

s
i
a

o

a

a

w

l

w
p

a
ℓ

p
s
s

p
c

If we replace ℓ2 with ℓ3, the situation is quite different. Conlon and Wu [2] showed that
En ↛ (ℓ3, ℓm) for m = 1050, independent of the dimension n. The proof is based on a random
pherical coloring, that is, the color of each point depends only on its distance from the origin. So
t can be applied in any dimension. Spherical colorings were applied by Erdős et al. [6] to show
 four-coloring of En with no monochromatic ℓ3. In this note we construct an explicit spherical

coloring to improve the bound 1050 to 1177.

Theorem 1. For any n > 0, there exists a red/blue-coloring of En that does not contain any red copy
f ℓ3 and any blue copy of ℓ1177.
We also studied progressions with different distances. Observe that the statement En

→

(αredℓm1 , αblueℓm2 ) is equivalent to En
→ (ℓm1 , (αblue/αred)ℓm2 ).

Theorem 2.
For any n > 0, there exists a red/blue-coloring of En that does not contain any red copy of ℓ3 and

ny blue copy of α ℓ8649, whenever α ∈ R+ satisfies at least one of the following conditions:

• α2
̸ ∈ Q,

• α2
= p/q, p, q ∈ N and 47 ̸ | q,

• α2
≥ 2,

• α2
≤ 1/(7 · 474

· 48).

For integers a ≤ b let [a, b] = {a, a + 1, . . . , b}. For any real γ let ⌊γ ⌋ be the integral part of γ
nd let {γ } := γ − ⌊γ ⌋ be the fractional part. Denote by Fp the field with p elements and by Sp the

set of squares in Fp. We write F∗
p and S∗

p for the corresponding sets without zero.

2. Overview

In Sections 3 and 4 we prove Theorems 1 and 2, respectively. Both proofs follow the same ideas
hich we sketch in this section.
We start with the most important fact: If three points x, y, z lie in arithmetic progression, their

norms satisfy an equation of the form

|x|2 − 2|y|2 + |z|2 = K ,

where K = 2|x − y|2 = 2|y − z|2, so it depends on the distance of the points and not on their
ocations. It is therefore natural to give a coloring, which only depends on the norm of the points.

First we choose a suitable prime p, two integer parameters d, l and a red/blue coloring of Fp,
here 0, d, 2d, . . . , (l − 1)d are colored red and the remaining numbers blue. Then we color each
oint x ∈ En to the color of ⌊|x|2⌋ (mod p).
Let X, Y , Z ∈ {0, d, 2d, . . . , (l − 1)d} be the squared norms of three red points, that form an ℓ3,

lready rounded and reduced modulo p. Observe that we have K = 2 here. To avoid red copies of
3, we need two conditions on the parameters p, d, l:

• p should be large enough so that p > 2(l−1)d+K +2. This allows us to look at the equations
X − 2Y + Z = K ′ for values of K ′ close to K in the integers instead of modulo p, since
−p + K ′ < X − 2Y + Z < p + K ′.

• d ≥ 4 so that K ≤ d− 2. Then 1 ≤ K ′
≤ d− 1. But K ′

= X − 2Y + Z should be 0 modulo d for
a red ℓ3, which gives the desired contradiction.

The squared norms of a longer progression {x1, x2, . . . , xn} can be described by a quadratic
olynomial function: |xi|2 = ai2 + bi + c . By appropriately rescaling the problem and looking at
ub-progressions, we can assume that the coefficients a and b are integral, at the cost of having
ome error term. We get |xi|2 ≈ a(i+b′)2 + c ′ and therefore, the function hits every square or every
non-square modulo p, shifted by a constant. What remains is to choose l large enough, for a fixed
, such that {C, C + d, C + 2d, . . . , C + (l − 1)d} contains both squares and non-squares for every
hoice of C . This guarantees that there are no arbitrarily long blue progressions.
2
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3. Proof of Theorem 1

Lemma 1. Let x, y, z ∈ En form a configuration congruent to α ℓ3 i.e. x − 2y + z = 0 and
|x − y|2 = |y − z|2 = α2. Then we have

|x|2 − 2|y|2 + |z|2 = 2α2.

Proof.
|x|2 − 2|y|2 + |z|2 =|x|2 − 2|y|2 + |2y − x|2

=|x|2 − 2|y|2 + 4|y|2 + |x|2 − 4⟨x, y⟩

=2|x|2 + 2|y|2 − 4⟨x, y⟩

=2|x − y|2

=2α2.

□

Now we define the red/blue coloring of En. Let R (resp. B) denote the set of red (resp. blue)
oints. Let

R := {x ∈ En
|

⌊
|x|2

⌋
∈ {0, 4, 8, 12} + 29Z}

and

B := En
\ R.

We have to show that there is no red copy of ℓ3 and no blue copy of ℓ1177. Suppose that
, y, z ∈ En form a red configuration congruent to ℓ3.
For simplicity, let X = ⌊|x|2⌋, Y = ⌊|y|2⌋, Z = ⌊|z|2⌋ and let X ′

=
{
|x|2

}
, Y ′

=
{
|y|2

}
, Z ′

=
{
|z|2

}
.

By Lemma 1, X + X ′
− 2Y − 2Y ′

+ Z + Z ′
= 2.

Lemma 2. We have

X − 2Y + Z ∈ {1, 2, 3}.

Proof. For R = X ′
− 2Y ′

+ Z ′, we have |R| < 2. But then X − 2Y + Z = 2− R. Since X − 2Y + Z ∈ Z,
R ∈ Z, therefore, R ∈ {−1, 0, 1}, so X − 2Y + Z ∈ {1, 2, 3}. □

Since x, y, z are red, X, Y , Z ∈ {0, 4, 8, 12} + 29Z. To get a contradiction, it is enough to show is
hat the three equations X − 2Y + Z = k, k ∈ {1, 2, 3}, do not have any solution in F29 such that
, Y , Z ∈ {0, 4, 8, 12}. Since −29 + 3 < −24 ≤ X − 2Y + Z ≤ 24 < 29 + 1 as inequalities in Z
ith X, Y , Z ∈ {0, 4, 8, 12}, it is enough to show that the equations do not have any solutions in Z,
hich is clear when considered modulo 4.
Now we show that there is no blue copy of ℓ1177.

Lemma 3. For all c ∈ F29:

S29 + c ̸ ⊆ F29 \ {0, 4, 8, 12}.

Proof. The squares modulo 29 are 0, 1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28, so the non-
quares do not contain an arithmetic progression of 4 elements with consecutive distance 4, which
s equivalent to the statement of the Lemma. □

Suppose that {x0, x1, . . . , x1176} forms a blue congruent copy of ℓ1177. For 0 ≤ i ≤ 1176, let
Xi = |xi|2. By Lemma 1, for 0 ≤ i ≤ 1174, Xi+2 = 2Xi+1 − Xi + 2. We obtain that

Xi = i2 + (X1 − X0 − 1)i + X0, i ∈ [0, 1176].

Let β := X1 −X0 −1. To understand the integral part of i2 +βi+X0 we approximate β by a rational
number.
3
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Lemma 4 (Dirichlet’s Approximation Theorem [11]). For all β ∈ R and N ∈ N there exist a, d ∈ Z with
1 ≤ d ≤ N such that

|dβ − a| ≤
1

N + 1
.

Let a, d ∈ Z satisfy the conditions of Dirichlet’s approximation theorem with N = 28. Then with
ϵ = β −

a
d , |ϵ| ≤

1
29d . So

i2 + βi + X0 = i2 +
a
d
i + X0 + ϵi.

Consider now only every dth point, let X ′

j = Xdj. Then

X ′

j = Xdj = (dj)2 + aj + X0 + ϵdj,

and

|{j ∈ N0 | dj ≤ 1176}| = 1 +

⌊
1176
d

⌋
≥ 1 +

⌊
1176
28

⌋
= 43.

Lemma 5. There exists c ∈ F29 such that

c + S29 ⊆ {⌊X ′

j ⌋ (mod 29) | j ∈ [0, 42]}.

Proof.
X ′

j =(dj + (2d)−1a)2 − ((2d)−1a)2 + 29N + X0 + ϵdj

=(dj + s)2 + c ′
+ r + ϵdj + 29N ′,

where s, c ′
∈ [0, 28] and N,N ′ are suitable integers, r := {X0} < 1 and (2d)−1 is the inverse of 2d

in F29 considered as an integer in [0, 28].
Observe that dj + s = M has a solution j for each M considered as an equation in F29 and that

or η := −sd−1, j− := η − k and j+ := η + k with k ∈ F29,

(dj− + s)2 = (dj+ + s)2.

Therefore,

{(dj + s)2 + c ′
|j ∈ [η − 14, η]} = {(dj + s)2 + c ′

|j ∈ [η , η + 14]} = c ′
+ S29.

Let η0 ∈ [0, 28] be a representative of η.

• Case 1: η0 < 14
Note that η0 + 29 ≤ 42. We can assume that either

⌊r + ϵdη0⌋ = ⌊r + ϵd(η0 + k)⌋, ∀k ∈ [0, 14],

or

⌊r + ϵd(η0 + 15)⌋ = ⌊r + ϵd(η0 + k)⌋, ∀k ∈ [15, 29].

Indeed, otherwise, as r + ϵdj is either increasing or decreasing in j,

|(r + ϵdη0) − (r + ϵd(η0 + 29))| > 1,

which contradicts |29ϵd| ≤ 1.
But then either

{⌊X ′

j ⌋ (mod 29) | j ∈ [η0, η0 + 14]} = c ′
+ ⌊r + ϵdη0⌋ + S29

or

{⌊X ′

j ⌋ (mod 29) | j ∈ [η0 + 15, η0 + 29]} = c ′
+ ⌊r + ϵd(η0 + 15)⌋ + S29.
4
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• Case 2: η0 ≥ 14
We can proceed similarly. Note that η0 − 14 ≥ 0, η0 + 14 ≤ 42. We can assume that either

⌊r + ϵdη0⌋ = ⌊r + ϵd(η0 + k)⌋, ∀k ∈ [−14, 0]

or

⌊r + ϵdη0⌋ = ⌊r + ϵd(η0 + k)⌋, ∀k ∈ [0, 14],

otherwise, as r + ϵdj is either increasing or decreasing in j,

|(r + ϵd(η0 − 14)) − (r + ϵd(η0 + 14))| > 1,

which contradicts |29ϵd| ≤ 1.
But then either

{⌊X ′

j ⌋ (mod 29) | j ∈ [η0 − 14, η0]} = c ′
+ ⌊r + ϵdη0⌋ + S29

or

{⌊x′

j⌋ (mod 29) | j ∈ [η0, η0 + 14]} = c ′
+ ⌊r + ϵdη0⌋ + S29. □

Lemmas 3 and 5 together imply that there is no blue copy of ℓ1177 in the construction and that
completes the proof of Theorem 1. □

4. Proof of Theorem 2

Analogously to the distance one case, set

R := {x ∈ En
| ⌊|x|2⌋ ∈ {0, 5, 10, 15, 20} + 47Z}

and

B := En
\ R.

We will study for which αred ∈ R, is it true that there are no three red points x, y, z ∈ En that
satisfy the equation |x|2 − 2|y|2 + |z|2 = 2α2

red and for which αblue ∈ R is it true that there are no
628 blue points x0, x1, . . . , x6627 in En that satisfy the equations |xi|2−2|xi+1|

2
+ |xi+2|

2
= 2α2

blue for
i ∈ [0, 6625] and then give the corresponding ratios αblue/αred. We choose the bigger prime 47 and
the above coloring as it allows us some freedom to increase the distances in the 3-term arithmetic
progression.

Lemma 6. Let x, y, z form a copy of αredℓ3 with 47N + 1 ≤ α2
red ≤ 47N + 3/2 and N ∈ Z≥0 then

⌊|x|2⌋ − 2⌊|y|2⌋ + ⌊|z|2⌋ ∈ {1, 2, 3, 4} (mod 47).

Proof. Let R := ({|x|2} − 2{|y|2} + {|z|2}), clearly |R| < 2. Now
⌊|x|2⌋ − 2⌊|y|2⌋ + ⌊|z|2⌋ = 2α2

− R. Since 2α2
∈ [2, 3] + 47Z and ⌊|x|2⌋ − 2⌊|y|2⌋ + ⌊|z|2⌋ ∈ Z,

we have ⌊|x|2⌋ − 2⌊|y|2⌋ + ⌊|z|2⌋ ∈ {1, 2, 3, 4} (mod 47). □

Lemma 7. For all c ∈ F47:

S47 + c ̸ ⊆ F47 \ {0, 5, 10, 15, 20},

and

(F47 \ S∗

47) + c ̸ ⊆ F47 \ {0, 5, 10, 15, 20},

Proof. Assume for a contradiction that L := {c, c + 5, c + 10, c + 15, c + 20} is either contained in
F \ S ) = (F∗

\ S∗ ) or in S∗ . The squares in F∗ are 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 17, 18, 21,
47 47 47 47 47 47

5
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24, 25, 27, 28, 32, 34, 36, 37, 42 and it is easy to see that there is no interval and no gap of size 5
n the squares. Now

{19c, 19c + 1, 19c + 2, 19c + 3, 19c + 4} = 19L ⊆ 19(F∗

47 \ S∗

47) = S∗

47

or

19L ⊆ 19S∗

47 = (F∗

47 \ S∗

47),

a contradiction. □

We now choose a longer arithmetic progression, compared to the distance one case which allows
s to add an additional error term.
Let αblue ∈ R+ such that α2

blue = b+ϵ2 with b ∈ N\47Z and 0 < ϵ2 < 17(7 ·474
·48) and suppose

that {x0, x1, . . . , x8648} forms a copy of αblueℓ8649. For 0 ≤ i ≤ 8648, let Xi = |xi|2. By Lemma 1, for
≤ i ≤ 8646, Xi+2 = 2Xi+1 − Xi + 2α2

blue consequently Xi = α2
bluei

2
+ (X1 − X0 − 1)i + X0. Let

β := X1 − X0 − 1. Let a, d ∈ Z satisfy the conditions of Dirichlet’s approximation theorem with
N = 47, so

α2
bluei

2
+ βi + x = α2

bluei
2
+

a
d
i + x + ϵ1i

with |ϵ1| ≤ 1/(48d). Consider only every dth point, let X ′

j = Xdj. Then

X ′

j := Xdj = α2
blue(dj)

2
+ aj + X0 + ϵ1dj,

and

|{j ∈ N0 | dj ≤ 8648}| = 1 +

⌊
8648
d

⌋
≥ 1 +

⌊
8648
47

⌋
= 185.

Lemma 8. There exists c ∈ F47 such that

c + S47 ⊆ {⌊X ′

j ⌋ (mod 47) | j ∈ [0, 184]}

or

c + (F47 \ S∗

47) ⊆ {⌊X ′

j ⌋ (mod 47) | j ∈ [0, 184]}

Proof. Suppose first that d < 47. Then
X ′

j =α2
blued

2j2 + aj + X0 + ϵ1dj

=bd2j2 + aj + X0 + ϵ1dj + ϵ2d2j2

=b(dj + (2db)−1a)2 − ((2b)−1a)2 + 47N + X0 + ϵ1dj + ϵ2d2j2

=b(dj + s)2 + c ′
+ r + ϵ1dj + ϵ2d2j2 + 47N ′,

where s, c ′
∈ [0, 46] and N,N ′ are suitable integers, r := {X0} < 1 and (2db)−1 is the inverse of 2db

in F47 considered as an integer in [0, 46].
Now either b is a square and b(dj + s)2 will run through S47 or otherwise b(dj + s)2 will run

through (F47 \ S∗

47). In both cases denote the corresponding set by S.
Observe that dj + s = M has a solution j for each M considered as an equation in F47 and that

or η := −sd−1, j− := η − k and j+ := η + k with k ∈ F47,

b(dj− + s)2 = b(dj+ + s)2.

Therefore,

{b(dj + s)2 + c ′
| j ∈ [η − 23, η]} = {b(dj + s)2 + c ′

| j ∈ [η , η + 23]} = c ′
+ S.

Let η0 be a representative of η in [0, 46] and write E(µ) := r + ϵ1dµ + ϵ2d2µ2. As E is at most
quadratic, it changes its monotonicity at most once.
6
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• Case 1: η0 < 23.
Let δ := 0 if E is monotone in [η0, η0 + 47] and δ := 47 otherwise. Let η1 := η0 + δ. Now E is
monotone in I := [η1, η1 + 47].
Note that η1 + 47 ≤ δ + 69 ≤ 116 < 185. Assume that

⌊E(η1)⌋ = ⌊E(η1 + k)⌋, ∀k ∈ [0, 23]

or

⌊E(η1 + 24)⌋ = ⌊E(η1 + k)⌋, ∀k ∈ [24, 47].

Then

{⌊X ′

j ⌋ (mod 47) | j ∈ [η1, η1 + 23]} = c ′
+ ⌊E(η1)⌋ + S

or

{⌊X ′

j ⌋ (mod 47) | j ∈ [η1 + 24, η1 + 47]} = c ′
+ ⌊E(η1 + 24)⌋ + S.

Otherwise, as E is monotone in I ,

|E(η1) − E(η1 + 47)| > 1,

which is a contradiction to
|E(η1) − E(η1 + 47)|

=|47ϵ1d + (94η1 + 472)ϵ2d2|

≤|47ϵ1d| + |(94η1 + 472)ϵ2d2|

≤
47
48

+ (94 · 93 + 472)462
|ϵ2|

≤
47
48

+ 5 · 474
|ϵ2| ≤ 1.

• Case 2: η0 ≥ 23
Similarly, let δ := 0 if E is monotone in [η0−23, η0+23] and δ := 47 otherwise. Let η1 := η0+δ.
Now E is monotone in I := [η1 − 23, η1 + 23].

Note that η1 − 23 ≥ δ ≥ 0, η1 + 23 ≤ δ + 69 ≤ 116 < 185 and assume that

⌊E(η1)⌋ = ⌊E(η1 + k)⌋, ∀k ∈ [−23, 0]

or

⌊E(η1)⌋ = ⌊E(η1 + k)⌋, ∀k ∈ [0, 23].

Then

{⌊x′

j⌋ (mod 47) | j ∈ [η1 − 23, η1]} = c ′
+ ⌊E(η1)⌋ + S

or

{⌊x′

j⌋ (mod 47) | j ∈ [η1, η1 + 23]} = c ′
+ ⌊E(η1)⌋ + S.

Otherwise, as E is monotone in I ,

|E(η1 − 23) − E(η1 + 23)| > 1,
7
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c
u

which is a contradiction to
|E(η1 − 23) − E(η1 + 23)|

=|46ϵ1d + (92η1 + 2 · 232)ϵ2d2|

≤|46ϵ1d| + |(92η1 + 2 · 232)ϵ2d2|

≤
46
48

+ (92 · 93 + 2 · 232)462
|ϵ2|

≤
46
48

+ 5 · 474
|ϵ2| < 1.

Now let d = 47, then a ̸ = 0. Then
X ′

j =α2
blued

2j2 + aj + X0 + ϵ1dj

=aj + X0 + ϵ1dj + ϵ2d2j2 + 47N

=aj + c + r + ϵ1dj + ϵ2d2j2 + 47N ′,

where c ∈ [0, 46], N,N ′ are integers and r := {X0} < 1.
Again, write E(µ) := r + ϵ1dµ + ϵ2d2µ2 and let δ := 0 if E is monotone in [0, 92] or δ := 92

otherwise. Now E is monotone in I := δ + [0, 92] and I ⊆ [0, 184]. If

⌊E(δ)⌋ = ⌊E(δ + k)⌋, ∀k ∈ [0, 46]

then

{⌊X ′

j ⌋ (mod 47) | j ∈ [δ , δ + 46]} = F47 ⊇ S47.

Otherwise, let η ∈ δ + [1, 46] be such that ⌊E(η−1)⌋ = ⌊E(η)⌋. Note that [η−1, η+46] ⊆ I . Again,
if

⌊E(η)⌋ = ⌊E(η + k)⌋, ∀k ∈ [0, 46]

then

{⌊X ′

j ⌋ (mod 47) | j ∈ [η , η + 46]} = F47 ⊇ S47.

Otherwise, as E is monotone in I ,

|E(η − 1) − E(η + 46)| > 1,

which is a contradiction to
|E(η − 1) − E(η + 46)|

=|47ϵ1d + (94η + 462
− 1)ϵ2d2|

≤|47ϵ1d| + |(94η + 462
− 1)ϵ2d2|

≤
47
48

+ (94 · 140 + 472)462
|ϵ2|

≤
47
48

+ 7 · 474
|ϵ2| ≤ 1.

□

4.1. Large numbers

Together, Lemmas 6 and 8 prove Theorem 2 for α2
≥ 2. The intervals [2n/3, n] for n ∈ Z≥3 \47Z

over R≥2 as 2n/3 ≤ n− 1 for n ≥ 3 and 2n/3 ≤ n− 2 for n ∈ 1+ 47N. Therefore it is sufficient to
se red progressions α ℓ and blue progressions α ℓ with 1 ≤ α2

≤ 3/2 and α2
∈ Z \47Z.
red 3 blue m red blue ≥3

8
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4.2. Small numbers

Let c := 7 ·474
·48. Analogously to the case of large ratios, Lemmas 6 and 8 prove Theorem 2 for

2
≤ 1/(2c). The intervals [n/(1+1/c), n] for n ∈ Z≥2(c+1)\47Z cover R≥2c as n/(1+1/c) ≤ n−2 for

≥ 2(c + 1). Therefore it is sufficient to use red progressions αredℓ3 and blue progressions αblueℓm
ith 1 ≤ α2

blue ≤ 1 + 1/c and α2
red ∈ Z≥2(c+1) \ 47Z.

4.3. Rational numbers

•

Let α2
= p/q where p, q ∈ N, 47 ∤ pq and k, r ∈ Z such that 0 < r < 47 and q = 47k + r . Let

r−1 be the inverse of r in F47 considered as an integer in [1, 46] and let αred :=

√
qr−1 and

αblue :=

√
pr−1. Then our construction does not contain any red copy of αredℓ3 and no blue

copy of αblueℓm which proves Theorem 2 for α = αblue/αred.
• Case 2:

Let α2
= p/q where p, q ∈ N, 47 | p and gcd(p, q) = 1. Let g be the inverse of q in Z/47pZ

considered as an integer in [0, 47p − 1] and N ∈ Z≥0 such that gq = 47pN + 1. Then

(p + 1)g
q
p

=
(p + 1)(47pN + 1)

p
= 1 +

1
p

+ 47N(p + 1).

Now, since 47 ∤ (p + 1)g and 0 ≤ 1/p ≤ 1/2, our construction does not contain any red copy
of αredℓ3 and no blue copy of αblueℓm for αred :=

√
(p + 1)gq/p and αblue :=

√
(p + 1)g , which

proves Theorem 2 for α = αblue/αred.

4.4. Irrationals

Let α2 be irrational. Then the sequence ((47k + 1)/(47α2))k∈N (mod 1) is uniformly distributed
see e.g. [10, Theorem 3.2]) and equivalently ((47k + 1)/α2)k∈N (mod 47) is uniformly distributed.
n particular there exist p, q ∈ N with p ≡ q ≡ 1 (mod 47) and such that

q <
p
α2 < q +

1
2
.

Now let αred :=
√
p/α2 and αblue :=

√
p. Then our construction does not contain any red copy of

redℓ3 and no blue copy of αblueℓm which proves Theorem 2 for α = αblue/αred.

Remarks

We believe that the bound 1177 in Theorem 1 is far from optimal. Let m3 be the largest integer
or which En

→ (ℓ3, ℓm3 ) holds for every n ≥ 2, or equivalently, E2
→ (ℓ3, ℓm3 ) holds. Erdős

t al. [7] showed that E2
→ (ℓ4, ℓ2), and recently Currier et al. [3] showed that E2

→ (ℓ3, ℓ3),
herefore, m3 ≥ 3. We cannot rule out the possibility that m3 = 3.

Similarly, let m4 (resp. m5) be the largest integer for which En
→ (ℓ4, ℓm4 ) (resp. E

n
→ (ℓ5, ℓm5 ))

olds for every n ≥ 2. Clearly, m5 ≤ m4 ≤ m3. Improving the above result of Erdős et al.
Tsaturian [13] showed that E2

→ (ℓ5, ℓ2), consequently, m4 ≥ m5 ≥ 2.
For ℓ6, the situation is different. Define m6 analogously. It is not known, whether m6 ≥ 2, on the

ther hand, Erdős et al. [6] proved that En ↛ (ℓ6, ℓ6) for every n ≥ 2, therefore, m6 ≤ 5.
For Theorem 2 we also believe that the bound 8649 is far from optimal and the conditions for α

an be dropped. It is clear that by using different primes in the proof we get a finite bound on m for
every value of α: The Pólya–Vinogradov inequality (see e.g. [5, p. 135]) guarantees that the length
of gaps in the squares is sub-linear in p. We can therefore use the construction in Section 4.3 with
ny high enough prime that does not divide q. This will however not give a uniform bound for m.
During the review progress of this manuscript Currier, Moore and Yip published a preprint [4]

n the same problem. In particular it contains an improvement to Theorem 1.
9
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