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Shelah’s proof of the Hales–Jewett theorem revisited
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Université de Caen-CNRS, Mathématiques, BP 5186, 14032 Caen Cedex, France

Received 1 March 2005; accepted 22 June 2006
Available online 22 August 2006

Abstract

We present a variant of Shelah’s proof of the Hales–Jewett theorem.
c© 2006 Elsevier Ltd. All rights reserved.

In [1] Graham, Rothschild and Spencer compile a list of six major theorems in Ramsey
theory. These “super six” are (in the order of [1]) Ramsey’s theorem, van der Waerden’s theorem,
Schur’s theorem, Rado’s theorem, the Hales–Jewett theorem and the Graham–Leeb–Rothschild
theorem. Some of these results are related. For instance Schur’s theorem, which easily follows
from Ramsey’s theorem (for pairs), is actually a special case of Rado’s theorem. As for van der
Waerden’s theorem, it may be obtained as a corollary of the Hales–Jewett theorem. In the words
of [1], “the Hales–Jewett theorem strips van der Waerden’s theorem of its unessential elements
and reveals the heart of Ramsey theory. It provides a focal point from which many results can be
derived and acts as a cornerstone for much of the more advanced work”. The original proof of the
Hales–Jewett theorem [2] proceeded by double induction (on the number c of colors and the size
n of the monochromatic set). Shelah’s celebrated proof of the theorem [3] uses simple induction
(on n). It gives primitive recursive bounds for the Hales–Jewett theorem (and thus also for van
der Waerden’s theorem). Our proof follows that of Shelah. Simply, we replace what is sometimes
called Shelah’s pigeonhole lemma (and is proved in [3] by a brute force argument) by an appeal
to Ramsey’s theorem. We hope that this version of the proof will make the Hales–Jewett theorem
more accessible. Let us remark that our argument, like Shelah’s, provides a primitive recursive
bound for the Hales–Jewett function.

We start with some notation. Given two sets a and b, ab denotes the set of all functions from
a to b. We adopt the set-theoretic convention that each nonnegative integer n is the set of all
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nonnegative integers m < n. Given two positive integers � and n, G(�, n) denotes the set of all
functions g such that dom(g) � � and ran(g) ⊆ n. For g ∈ G(�, n), X (�, n, g) denotes the set
of all x ∈ �n such that x � dom(g) = g and x is constant on l \ dom(g).

The Hales–Jewett theorem asserts that given two positive integers n and c, there exists a
positive integer � with the property that for every V : �n −→ c, there is g ∈ G(�, n) such that V
is constant on X (�, n, g). We let HJ(n, c) denote the least such �.

Given a set b and a nonnegative integer r, [b]r denotes the set of all size r subsets of b.
Ramsey’s theorem states that given three positive integers t, r and k with t ≥ r , there exists

an integer m ≥ t with the property that for every F : [m]r −→ k, there is a ∈ [m]t such that F
is constant on [a]r . We let Rk(t, r) denote the least such m.

To make our proof of the Hales–Jewett theorem easier to follow, we will first see how it works
in the simplest nontrivial case, that is when n = 3 and c = 2. Thus let W : h3 → 2, where h
is some fixed positive integer. For 0 ≤ a1 < a2 < a3 < a4 ≤ h, define fa1a2a3a4 : 23 → h3
by

fa1a2a3a4(y) : p →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if 0 ≤ p < a1
y(0) if a1 ≤ p < a2
2 if a2 ≤ p < a3
y(1) if a3 ≤ p < a4
1 if a4 ≤ p < h.

For y ∈ 23, define ŷ ∈ 22 by ŷ(i) = min{y(i), 1}. Suppose for a while that for any y ∈ 23,
W ( fa1a2a3a4(y)) = W ( fa1a2a3a4(ŷ)). Then we are done. In fact, since HJ(2, 2) = 2, we can
find g ∈ G(2, 2) and m < 2 so that W ◦ fa1a2a3a4 is constantly m on X (2, 2, g). Then clearly,
W ◦ fa1a2a3a4 is constantly m on X (2, 3, g).

To find (a1, a2, a3, a4) as desired, we proceed as follows. For α = 0, 1, 2, let

sα : {(v, x, z) : 0 ≤ v < x < z ≤ h} → h3

be defined by

sα(v, x, z) : p 	−→

⎧⎪⎪⎨
⎪⎪⎩

1 if 0 ≤ p < v

2 if v ≤ p < x
α if x ≤ p < z
1 if z ≤ p < h.

Furthermore for β = 0, 1, let

tβ : {(v, x, z) : 0 ≤ v < x < z ≤ h} → h3

be defined by

tβ(v, x, z) : p 	−→

⎧⎪⎪⎨
⎪⎪⎩

1 if 0 ≤ p < v

β if v ≤ p < x
2 if x ≤ p < z
1 if z ≤ p < h.

Note that

fa1a2a3a4(y) = sy(1)(a3−y(0), a3, a4)
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if y(0) ∈ {1, 2}, and

fa1a2a3a4(y) = ty(0)(a1, a2, ay(1)+2)

if y(1) ∈ {1, 2} and y(0) 
= 2.
Define

F : {(v, x, z) : 0 ≤ v < x < z ≤ h} → 2 × 2 × 2 × 2 × 2

by

F(v, x, z) = ((W ◦ s0)(v, x, z), (W ◦ s1)(v, x, z), (W ◦ s2)(v, x, z), (W ◦ t1)(v, x, z),

(W ◦ t2)(v, x, z)).

Now if h+1 ≥ R32(4, 3), we can find a ∈ [h+1]4 so that F is constant on {(v, x, z) ∈ a×a×a :
v < x < z}. Let a1 < a2 < a3 < a4 be the elements of a. Then (a1, a2, a3, a4) is as desired.

To prove the Hales–Jewett theorem in full generality, we fix c and proceed by induction on n.
It is easy to see that HJ(1, c) = 1. Given � = H J (n, c), set w = (n + 1)� − n�, k = cw and
q = Rk(2�, 2� − 1). We will show that HJ(n + 1, c) < q .

Let D be the set of all d ∈ (2�+2)q such that

0 = d(0) ≤ d(1) ≤ · · · ≤ d(2�) ≤ d(2� + 1) = q − 1.

Define f : �(n + 1)×D −→ (q−1)
(n + 1) so that for each j ≤ 2�, f (y, d) is constant on the

set {v : d( j) ≤ v < d( j + 1)} with value n − 1 if j ≡ 0 mod 4, n if j ≡ 2 mod 4, and y(
j−1

2 )

otherwise. For 0 ≤ i < �, let Yi be the set of all y ∈ �(n + 1) such that y(i) = n and y( j) < n

for every j < i , and define si : Yi × [q]2�−1 −→ (q−1)
(n + 1) by si (y, b) = f (y, db,i), where

db,i is the unique element d of D such that b = {d( j) : 1 ≤ j ≤ 2�} and d(2i + 1) = d(2i + 2).
Note that the set

⋃
0≤i<� Yi has cardinality

∑�−1
i=0 (ni · (n + 1)�−1−i) = (n + 1)� − n�.

Now fix W : (q−1)
(n + 1) −→ c. Define F : [q]2�−1 −→ (

⋃
0≤i<� Yi )

c so that (F(b))(y) =
W (si (y, b)) whenever y ∈ Yi . There is a ∈ [q]2� such that F is constant on [a]2�−1. Let e ∈ D
be such that a = {e( j) : 1 ≤ j ≤ 2�}.

For y ∈ �(n + 1), define ŷ ∈ �n by ŷ(i) = min{y(i), n − 1}. We claim that W ( f (y, e)) =
W ( f (ŷ, e)). Suppose u 
= φ, where u = {i < � : y(i) = n}, and let u1, . . . , ur be the increasing
enumeration of the elements of u. Set y0 = y and define y1, . . . , yr ∈ �(n + 1) so that for
1 ≤ j ≤ r, y j (u j ) = n − 1 and y j and y j−1 agree on �\{u j }. Note that yr = ŷ. For 1 ≤ j ≤ r ,

{ f (y j−1, e), f (y j , e)} = {su j (y j−1, a\{e(2u j + 1)}), su j (y j−1, a\{e(2u j + 2)})}
(with su j (y j−1, a \ {e(2u j + 1)}) being equal to f (y j , e) if u j is even, and to f (y j−1, e)
otherwise), so W ( f (y j−1, e)) = W ( f (y j , e)). It follows that W ( f (y0, e)) = W ( f (yr , e)).

Now define V : �n −→ c by V (y) = W ( f (y, e)). Select g ∈ G(�, n) and m < c so that
V takes the constant value m on X (�, n, g). Then for every y ∈ X (�, n + 1, g), W ( f (y, e)) =
W ( f (ŷ, e)) = V (ŷ) = m, so we are done.

Note that the proof gives HJ(2, c) < c + 1 (which is optimal).
It should be clear from the proof that the full strength of Ramsey’s theorem is not needed.
For positive integers k and �, let Sk(�) denote the least m ≥ 2� such that for any F :

[m]2�−1 → k, there is a ∈ [m]2� with the property that for every i < �, F(a \ {e(2i + 1)}) =
F(a \ {e(2i + 2)}), where e(1), . . . , e(2�) is the increasing enumeration of the elements of a.
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The proof above shows that HJ(n + 1, c) < Sk(�), where � = H J (n, c) and k = c((n+1)�−n�).
It is simple to see that Sk(1) = k + 1. To conclude this paper, let us show that Sk(� + 1) ≤
Sk′ (�) + k + 1, where k ′ = k

(
k + 1

2

)
. Thus let K : [m′]2�+1 → k, where m′ = Sk′ (�) + k + 1. Set

Z = {z : S′
k(�) ≤ z < m′}. Define F : [Sk(�)]2�−1 → [Z ]2

k by F(d) : v 	−→ K (d ∪ v). Pick
b ∈ [Sk(�)]2� so that for any r < �, F(b\{e(2r+1)}) = F(b\{e(2r+2)}), where e(1), . . . , e(2�)

is the increasing enumeration of the elements of b. There must be Sk′ (�) ≤ x < y < m′ such
that K (b ∪ {x}) = K (b ∪ {y}). Now set a = b ∪ {x, y}, e(2� + 1) = x and e(2� + 2) = y. Then
for any i < � + 1, K (a\{e(2i + 1)}) = K (a\{e(2i + 2)}).
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