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Today’s Lesson

We discuss

Well Quasi Orders.

The Kruskal Tree Theorem: the set of trees under minor is a wqo.

The finite forms of KTT that lead to fast growing functions.

Warning Part of this talk will be on the whiteboard.
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Well Quasi Orders

Def A set together with an ordering, (X ,�), is a
well quasi ordering (wqo) if

for any sequence x1, x2, . . .

there exists i , j such that i < j and xi�xj .
We call this i , j an uptick.

Note If (X ,�) is a wqo then its both well founded and has no
infinite antichains.
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Lemma About Well Quasi Orders

Lemma Let (X ,�) be a wqo. For any sequence x1, x2, . . . there
exists an infinite ascending subsequence.

Let x1, x2, . . . , be an infinite sequence.

Define the following coloring:
COL(i , j) =

I UP if xi�xj .
I DOWN if xj ≺ xi .

I INC if xi and xj are incomparable.

By RT ∃ homog set.

If color is DOWN or INC then the homog set violates wqo.
Hence color is UP and homog set is an ∞ increasing subsequence.
Will use this lemma without pointing it out.



Lemma About Well Quasi Orders

Lemma Let (X ,�) be a wqo. For any sequence x1, x2, . . . there
exists an infinite ascending subsequence.
Let x1, x2, . . . , be an infinite sequence.

Define the following coloring:
COL(i , j) =

I UP if xi�xj .
I DOWN if xj ≺ xi .

I INC if xi and xj are incomparable.

By RT ∃ homog set.

If color is DOWN or INC then the homog set violates wqo.
Hence color is UP and homog set is an ∞ increasing subsequence.
Will use this lemma without pointing it out.



Lemma About Well Quasi Orders

Lemma Let (X ,�) be a wqo. For any sequence x1, x2, . . . there
exists an infinite ascending subsequence.
Let x1, x2, . . . , be an infinite sequence.

Define the following coloring:

COL(i , j) =

I UP if xi�xj .
I DOWN if xj ≺ xi .

I INC if xi and xj are incomparable.

By RT ∃ homog set.

If color is DOWN or INC then the homog set violates wqo.
Hence color is UP and homog set is an ∞ increasing subsequence.
Will use this lemma without pointing it out.



Lemma About Well Quasi Orders

Lemma Let (X ,�) be a wqo. For any sequence x1, x2, . . . there
exists an infinite ascending subsequence.
Let x1, x2, . . . , be an infinite sequence.

Define the following coloring:
COL(i , j) =

I UP if xi�xj .
I DOWN if xj ≺ xi .

I INC if xi and xj are incomparable.

By RT ∃ homog set.

If color is DOWN or INC then the homog set violates wqo.
Hence color is UP and homog set is an ∞ increasing subsequence.
Will use this lemma without pointing it out.



Lemma About Well Quasi Orders

Lemma Let (X ,�) be a wqo. For any sequence x1, x2, . . . there
exists an infinite ascending subsequence.
Let x1, x2, . . . , be an infinite sequence.

Define the following coloring:
COL(i , j) =

I UP if xi�xj .

I DOWN if xj ≺ xi .

I INC if xi and xj are incomparable.

By RT ∃ homog set.

If color is DOWN or INC then the homog set violates wqo.
Hence color is UP and homog set is an ∞ increasing subsequence.
Will use this lemma without pointing it out.



Lemma About Well Quasi Orders

Lemma Let (X ,�) be a wqo. For any sequence x1, x2, . . . there
exists an infinite ascending subsequence.
Let x1, x2, . . . , be an infinite sequence.

Define the following coloring:
COL(i , j) =

I UP if xi�xj .
I DOWN if xj ≺ xi .

I INC if xi and xj are incomparable.

By RT ∃ homog set.

If color is DOWN or INC then the homog set violates wqo.
Hence color is UP and homog set is an ∞ increasing subsequence.
Will use this lemma without pointing it out.



Lemma About Well Quasi Orders

Lemma Let (X ,�) be a wqo. For any sequence x1, x2, . . . there
exists an infinite ascending subsequence.
Let x1, x2, . . . , be an infinite sequence.

Define the following coloring:
COL(i , j) =

I UP if xi�xj .
I DOWN if xj ≺ xi .

I INC if xi and xj are incomparable.

By RT ∃ homog set.

If color is DOWN or INC then the homog set violates wqo.
Hence color is UP and homog set is an ∞ increasing subsequence.
Will use this lemma without pointing it out.



Lemma About Well Quasi Orders

Lemma Let (X ,�) be a wqo. For any sequence x1, x2, . . . there
exists an infinite ascending subsequence.
Let x1, x2, . . . , be an infinite sequence.

Define the following coloring:
COL(i , j) =

I UP if xi�xj .
I DOWN if xj ≺ xi .

I INC if xi and xj are incomparable.

By RT ∃ homog set.

If color is DOWN or INC then the homog set violates wqo.
Hence color is UP and homog set is an ∞ increasing subsequence.
Will use this lemma without pointing it out.



Lemma About Well Quasi Orders

Lemma Let (X ,�) be a wqo. For any sequence x1, x2, . . . there
exists an infinite ascending subsequence.
Let x1, x2, . . . , be an infinite sequence.

Define the following coloring:
COL(i , j) =

I UP if xi�xj .
I DOWN if xj ≺ xi .

I INC if xi and xj are incomparable.

By RT ∃ homog set.

If color is DOWN or INC then the homog set violates wqo.

Hence color is UP and homog set is an ∞ increasing subsequence.
Will use this lemma without pointing it out.



Lemma About Well Quasi Orders

Lemma Let (X ,�) be a wqo. For any sequence x1, x2, . . . there
exists an infinite ascending subsequence.
Let x1, x2, . . . , be an infinite sequence.

Define the following coloring:
COL(i , j) =

I UP if xi�xj .
I DOWN if xj ≺ xi .

I INC if xi and xj are incomparable.

By RT ∃ homog set.

If color is DOWN or INC then the homog set violates wqo.
Hence color is UP and homog set is an ∞ increasing subsequence.

Will use this lemma without pointing it out.



Lemma About Well Quasi Orders

Lemma Let (X ,�) be a wqo. For any sequence x1, x2, . . . there
exists an infinite ascending subsequence.
Let x1, x2, . . . , be an infinite sequence.

Define the following coloring:
COL(i , j) =

I UP if xi�xj .
I DOWN if xj ≺ xi .

I INC if xi and xj are incomparable.

By RT ∃ homog set.

If color is DOWN or INC then the homog set violates wqo.
Hence color is UP and homog set is an ∞ increasing subsequence.
Will use this lemma without pointing it out.



wqo’s Closed Under ×
Def If (X ,�1) and (Y ,�2) are wqo then we define � on X × Y
as (x , y)�(x ′, y ′) if x�1x

′ and y�2y
′.

Lemma If (X ,�1) and (Y ,�2) are wqo then (X ×Y ,�) is a wqo.

Let (x1, y1), (x2, y2), (x3, y3), . . . be an infinite sequence of
elements from A× B.
Define the following coloring:
COL(i , j) =

I UP-UP if xi�xj and yi�yj .
I UP-DOWN if xi�xj and yj�yi .
I UP-INC if xi�xj and yj , yi are incomparable.

I DOWN-UP, DOWN-DOWN, DOWN-INC, INC-UP,
INC-DOWN, INC-INC are defined similarly.

By RT ∃ a homog set.
If color has DOWN or INC in it then violates wqo.
The color must be UP-UP. This shows that there is an infinite
ascending sequence.
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wqo Closed Under Finite Power Set

Thm Let (X ,�) be a well quasi order.

Let 2finX be the set of FINITE subsets of X .
We order 2finX :
A �′ B if there is an injection f from A to B such that x � f (x).

Then (2finX ,�′) is a wqo.

I WILL DO PROOF ON THE WHITEBOARD, BUT IT IS ALSO
IN THE NOTES.
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The Kruskal Tree Theorem

Thm Consider the following partial order.

X is the set of all finite rooted trees.

T � T ′ if you can remove vertices, remove edges, contract edges,
from T ′ and get T . (Called minor ordering)

(X ,�) is a well quasi ordering.

I WILL DO PROOF ON THE WHITEBOARD, BUT IT IS ALSO
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The Color Version of Kruskal Tree Theorem

Thm Let n ∈ N It will be the number of colors.
Consider the following partial order.

X is the set of all n-colored finite rooted trees (the color does not
have any constraints).

T � T ′ if you can remove vertices, remove edges, contract edges,
from T ′ and get T .

(X ,�) is a well quasi ordering.
THIS IS SIMILAR TO THE KTT. MIGHT BE A HW.
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tree: A Fast Growing Functions

HW Proof that ∃ function tree(n) such that:
tree(n) is largest number such that ∃ a sequence of trees
T1,T2, . . . ,Ttree(n)

with the following properties.

1) Ti has at most i + n vertices
2) There is no uptick.

Known:

tree(1) = 1 tree(2) = 5 tree(3) ≥ 844, 424, 930, 181, 960
tree(4)� GN (Grahams Number)

tree grows much faster than Ackermann’s function.
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TREE

TREE might be the faster growing natural function in
mathematics.


