BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Kruskal's Tree Theorem and Two More Fast Growing Functions

Exposition by William Gasarch

February 27, 2025

ション ふゆ アメビア メロア しょうくしゃ

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

We discuss

We discuss Well Quasi Orders.

We discuss Well Quasi Orders.

The Kruskal Tree Theorem: the set of trees under minor is a wqo.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

We discuss Well Quasi Orders.

The Kruskal Tree Theorem: the set of trees under minor is a wqo.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

The finite forms of KTT that lead to fast growing functions.

We discuss Well Quasi Orders.

The Kruskal Tree Theorem: the set of trees under minor is a wqo. The finite forms of KTT that lead to fast growing functions. Warning Part of this talk will be on the whiteboard.

Def A set together with an ordering, (X, \preceq) , is a well quasi ordering (wqo) if

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Def A set together with an ordering, (X, \preceq) , is a well quasi ordering (wqo) if

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

for any sequence x_1, x_2, \ldots

```
Def A set together with an ordering, (X, \preceq), is a well quasi ordering (wqo) if
```

```
for any sequence x_1, x_2, \ldots
```

```
there exists i, j such that i < j and x_i \preceq x_j.
```

Def A set together with an ordering, (X, \preceq) , is a **well quasi ordering** (wqo) if for any sequence x_1, x_2, \ldots

there exists i, j such that i < j and $x_i \preceq x_j$.

We call this i, j an **uptick**.

Def A set together with an ordering, (X, \leq) , is a **well quasi ordering** (wqo) if

for any sequence x_1, x_2, \ldots

there exists i, j such that i < j and $x_i \preceq x_j$.

We call this i, j an **uptick**.

Note If (X, \leq) is a wqo then its both well founded and has no infinite antichains.

ション ふゆ アメビア メロア しょうくしゃ

Lemma Let (X, \preceq) be a wqo. For any sequence x_1, x_2, \ldots there exists an **infinite ascending subsequence.**

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Lemma Let (X, \preceq) be a wqo. For any sequence x_1, x_2, \ldots there exists an **infinite ascending subsequence**. Let x_1, x_2, \ldots , be an infinite sequence.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Lemma Let (X, \preceq) be a wqo. For any sequence x_1, x_2, \ldots there exists an **infinite ascending subsequence**. Let x_1, x_2, \ldots , be an infinite sequence. Define the following coloring:

Lemma Let (X, \preceq) be a wqo. For any sequence x_1, x_2, \ldots there exists an **infinite ascending subsequence**. Let x_1, x_2, \ldots , be an infinite sequence. Define the following coloring: COL(i,j) =

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lemma Let (X, \preceq) be a wqo. For any sequence x_1, x_2, \ldots there exists an **infinite ascending subsequence**. Let x_1, x_2, \ldots , be an infinite sequence. Define the following coloring: $\operatorname{COL}(i, j) =$ \triangleright UP if $x_i \preceq x_j$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lemma Let (X, \preceq) be a wqo. For any sequence x_1, x_2, \ldots there exists an **infinite ascending subsequence**. Let x_1, x_2, \ldots , be an infinite sequence. Define the following coloring:

 $\operatorname{COL}(i,j) =$

- ▶ UP if $x_i \preceq x_j$.
- **b** DOWN if $x_j \prec x_i$.

Lemma Let (X, \preceq) be a wqo. For any sequence x_1, x_2, \ldots there exists an **infinite ascending subsequence**. Let x_1, x_2, \ldots , be an infinite sequence.

Define the following coloring: COL(i, j) =

- ▶ UP if $x_i \preceq x_j$.
- ▶ DOWN if $x_j \prec x_i$.

• INC if x_i and x_j are incomparable.

Lemma Let (X, \preceq) be a wqo. For any sequence x_1, x_2, \ldots there exists an **infinite ascending subsequence**. Let x_1, x_2, \ldots , be an infinite sequence.

Define the following coloring: COL(i, j) =

- ▶ UP if $x_i \preceq x_j$.
- ▶ DOWN if $x_j \prec x_i$.
- INC if x_i and x_j are incomparable.

By RT \exists homog set.

Lemma Let (X, \preceq) be a wqo. For any sequence x_1, x_2, \ldots there exists an **infinite ascending subsequence**.

Let x_1, x_2, \ldots , be an infinite sequence.

Define the following coloring: COL(i, j) =

- ▶ UP if $x_i \preceq x_j$.
- ▶ DOWN if $x_j \prec x_i$.
- INC if x_i and x_j are incomparable.

By RT \exists homog set.

If color is DOWN or INC then the homog set violates wqo.

Lemma Let (X, \preceq) be a wqo. For any sequence x_1, x_2, \ldots there exists an **infinite ascending subsequence**.

Let x_1, x_2, \ldots , be an infinite sequence.

Define the following coloring: COL(i, j) =

- ▶ UP if $x_i \preceq x_j$.
- ▶ DOWN if $x_j \prec x_i$.
- INC if x_i and x_j are incomparable.

By RT \exists homog set.

If color is DOWN or INC then the homog set violates wqo. Hence color is UP and homog set is an ∞ increasing subsequence.

Lemma Let (X, \preceq) be a wqo. For any sequence x_1, x_2, \ldots there exists an **infinite ascending subsequence**.

Let x_1, x_2, \ldots , be an infinite sequence.

Define the following coloring: COL(i, j) =

- ▶ UP if $x_i \preceq x_j$.
- ▶ DOWN if $x_j \prec x_i$.
- INC if x_i and x_j are incomparable.

By RT \exists homog set.

If color is DOWN or INC then the homog set violates wqo. Hence color is UP and homog set is an ∞ increasing subsequence. Will use this lemma without pointing it out.

Def If (X, \leq_1) and (Y, \leq_2) are word then we define \leq on $X \times Y$ as $(x, y) \leq (x', y')$ if $x \leq_1 x'$ and $y \leq_2 y'$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Def If (X, \leq_1) and (Y, \leq_2) are word then we define \leq on $X \times Y$ as $(x, y) \leq (x', y')$ if $x \leq_1 x'$ and $y \leq_2 y'$.

Lemma If (X, \leq_1) and (Y, \leq_2) are work then $(X \times Y, \leq)$ is a work.

Def If (X, \leq_1) and (Y, \leq_2) are word then we define \leq on $X \times Y$ as $(x, y) \leq (x', y')$ if $x \leq_1 x'$ and $y \leq_2 y'$.

Lemma If (X, \leq_1) and (Y, \leq_2) are work then $(X \times Y, \leq)$ is a work.

ション ふゆ アメビア メロア しょうくしゃ

Let $(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots$ be an infinite sequence of elements from $A \times B$.

Def If (X, \leq_1) and (Y, \leq_2) are word then we define \leq on $X \times Y$ as $(x, y) \leq (x', y')$ if $x \leq_1 x'$ and $y \leq_2 y'$. **Lemma** If (X, \leq_1) and (Y, \leq_2) are word then $(X \times Y, \leq)$ is a word.

Let $(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots$ be an infinite sequence of elements from $A \times B$.

Define the following coloring:

Def If (X, \leq_1) and (Y, \leq_2) are work then we define \leq on $X \times Y$ as $(x, y) \leq (x', y')$ if $x \leq_1 x'$ and $y \leq_2 y'$.

Lemma If (X, \leq_1) and (Y, \leq_2) are work then $(X \times Y, \leq)$ is a work.

Let $(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots$ be an infinite sequence of elements from $A \times B$.

Define the following coloring: COL(i, j) =

- ▶ UP-UP if $x_i \preceq x_j$ and $y_i \preceq y_j$.
- ▶ UP-DOWN if $x_i \preceq x_j$ and $y_j \preceq y_i$.
- ▶ UP-INC if $x_i \preceq x_j$ and y_j, y_i are incomparable.
- DOWN-UP, DOWN-DOWN, DOWN-INC, INC-UP, INC-DOWN, INC-INC are defined similarly.

Def If (X, \leq_1) and (Y, \leq_2) are word then we define \leq on $X \times Y$ as $(x, y) \leq (x', y')$ if $x \leq_1 x'$ and $y \leq_2 y'$.

Lemma If (X, \leq_1) and (Y, \leq_2) are work then $(X \times Y, \leq)$ is a work.

Let $(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots$ be an infinite sequence of elements from $A \times B$.

Define the following coloring: COL(i, j) =

- ▶ UP-UP if $x_i \preceq x_j$ and $y_i \preceq y_j$.
- ▶ UP-DOWN if $x_i \preceq x_j$ and $y_j \preceq y_i$.
- ▶ UP-INC if $x_i \preceq x_j$ and y_j, y_i are incomparable.
- DOWN-UP, DOWN-DOWN, DOWN-INC, INC-UP, INC-DOWN, INC-INC are defined similarly.

By RT \exists a homog set.

Def If (X, \leq_1) and (Y, \leq_2) are word then we define \leq on $X \times Y$ as $(x, y) \leq (x', y')$ if $x \leq_1 x'$ and $y \leq_2 y'$.

Lemma If (X, \leq_1) and (Y, \leq_2) are wdo then $(X \times Y, \leq)$ is a wdo.

Let $(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots$ be an infinite sequence of elements from $A \times B$.

Define the following coloring: COL(i, j) =

- ▶ UP-UP if $x_i \preceq x_j$ and $y_i \preceq y_j$.
- ▶ UP-DOWN if $x_i \preceq x_j$ and $y_j \preceq y_i$.
- ▶ UP-INC if $x_i \preceq x_j$ and y_j, y_i are incomparable.
- DOWN-UP, DOWN-DOWN, DOWN-INC, INC-UP, INC-DOWN, INC-INC are defined similarly.

By RT \exists a homog set.

If color has DOWN or INC in it then violates wqo.

Def If (X, \leq_1) and (Y, \leq_2) are word then we define \leq on $X \times Y$ as $(x, y) \leq (x', y')$ if $x \leq_1 x'$ and $y \leq_2 y'$.

Lemma If (X, \leq_1) and (Y, \leq_2) are wdo then $(X \times Y, \leq)$ is a wdo.

Let $(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots$ be an infinite sequence of elements from $A \times B$.

Define the following coloring: COL(i, j) =

- ▶ UP-UP if $x_i \preceq x_j$ and $y_i \preceq y_j$.
- ▶ UP-DOWN if $x_i \preceq x_j$ and $y_j \preceq y_i$.
- ▶ UP-INC if $x_i \preceq x_j$ and y_j, y_i are incomparable.
- DOWN-UP, DOWN-DOWN, DOWN-INC, INC-UP, INC-DOWN, INC-INC are defined similarly.

By RT \exists a homog set.

If color has DOWN or INC in it then violates wqo.

The color must be UP-UP. This shows that there is an infinite ascending sequence.

Thm Let (X, \preceq) be a well quasi order.

Thm Let (X, \preceq) be a well quasi order. Let 2^{finX} be the set of FINITE subsets of X.

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

Thm Let (X, \preceq) be a well quasi order. Let $2^{\text{fin}X}$ be the set of FINITE subsets of X. We order $2^{\text{fin}X}$:

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm Let (X, \preceq) be a well quasi order. Let 2^{finX} be the set of FINITE subsets of X. We order 2^{finX} : $A \preceq' B$ if there is an injection f from A to B such that $x \preceq f(x)$.

Thm Let (X, \preceq) be a well quasi order. Let $2^{\text{fin}X}$ be the set of FINITE subsets of X. We order $2^{\text{fin}X}$: $A \preceq' B$ if there is an injection f from A to B such that $x \preceq f(x)$. Then $(2^{\text{fin}X}, \preceq')$ is a wqo.

Thm Let (X, \preceq) be a well quasi order. Let 2^{finX} be the set of FINITE subsets of X. We order 2^{finX} : $A \preceq' B$ if there is an injection f from A to B such that $x \preceq f(x)$. Then $(2^{finX}, \preceq')$ is a wqo. I WILL DO PROOF ON THE WHITEBOARD, BUT IT IS ALSO IN THE NOTES.

Thm Consider the following partial order.

Thm Consider the following partial order. *X* is the set of all finite rooted trees.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thm Consider the following partial order.

X is the set of all finite rooted trees.

 $T \preceq T'$ if you can remove vertices, remove edges, contract edges, from T' and get T. (Called **minor ordering**)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Thm Consider the following partial order.

X is the set of all finite rooted trees.

 $T \preceq T'$ if you can remove vertices, remove edges, contract edges, from T' and get T. (Called **minor ordering**)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 (X, \preceq) is a well quasi ordering.

Thm Consider the following partial order. *X* is the set of all finite rooted trees.

 $T \preceq T'$ if you can remove vertices, remove edges, contract edges, from T' and get T. (Called **minor ordering**)

 (X, \preceq) is a well quasi ordering.

I WILL DO PROOF ON THE WHITEBOARD, BUT IT IS ALSO IN THE NOTES.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thm Let $n \in \mathbb{N}$ It will be the number of colors. Consider the following partial order.

Thm Let $n \in \mathbb{N}$ It will be the number of colors. Consider the following partial order. X is the set of all *n*-colored finite rooted trees (the color does not have any constraints).

Thm Let $n \in \mathbb{N}$ It will be the number of colors. Consider the following partial order. X is the set of all *n*-colored finite rooted trees (the color does not have any constraints).

 $T \preceq T'$ if you can remove vertices, remove edges, contract edges, from T' and get T.

ション ふゆ アメビア メロア しょうくしゃ

Thm Let $n \in \mathbb{N}$ It will be the number of colors. Consider the following partial order. X is the set of all *n*-colored finite rooted trees (the color does not have any constraints).

 $T \preceq T'$ if you can remove vertices, remove edges, contract edges, from T' and get T.

ション ふゆ アメビア メロア しょうくしゃ

 (X, \preceq) is a well quasi ordering.

Thm Let $n \in \mathbb{N}$ It will be the number of colors. Consider the following partial order. X is the set of all *n*-colored finite rooted trees (the color does not have any constraints).

 $T \preceq T'$ if you can remove vertices, remove edges, contract edges, from T' and get T.

ション ふゆ アメビア メロア しょうくしゃ

 (X, \preceq) is a well quasi ordering. THIS IS SIMILAR TO THE KTT. MIGHT BE A HW.

HW Proof that \exists function tree(*n*) such that: tree(*n*) is largest number such that \exists a sequence of trees $T_1, T_2, \ldots, T_{\text{tree}(n)}$ with the following properties.

HW Proof that \exists function tree(*n*) such that: tree(*n*) is largest number such that \exists a sequence of trees $T_1, T_2, \ldots, T_{\text{tree}(n)}$ with the following properties. 1) T_i has at most i + n vertices

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

HW Proof that \exists function tree(*n*) such that: tree(*n*) is largest number such that \exists a sequence of trees $T_1, T_2, \ldots, T_{\text{tree}(n)}$ with the following properties. 1) T_i has at most i + n vertices 2) There is no uptick.

ション ふゆ アメビア メロア しょうくしゃ

HW Proof that \exists function tree(*n*) such that: tree(*n*) is largest number such that \exists a sequence of trees $T_1, T_2, \ldots, T_{\text{tree}(n)}$ with the following properties. 1) T_i has at most i + n vertices 2) There is no uptick. Known:

```
HW Proof that \exists function tree(n) such that:
tree(n) is largest number such that \exists a sequence of trees
T_1, T_2, \ldots, T_{\text{tree}(n)}
with the following properties.
1) T_i has at most i + n vertices
2) There is no uptick.
Known:
```

ション ふゆ アメリア メリア しょうくしゃ

 $\operatorname{tree}(1) = 1$

```
HW Proof that \exists function tree(n) such that:
tree(n) is largest number such that \exists a sequence of trees
T_1, T_2, \ldots, T_{\text{tree}(n)}
with the following properties.
1) T_i has at most i + n vertices
2) There is no uptick.
Known:
```

ション ふゆ アメリア メリア しょうくしゃ

```
tree(1) = 1 tree(2) = 5
```

```
HW Proof that \exists function tree(n) such that:
tree(n) is largest number such that \exists a sequence of trees
T_1, T_2, \ldots, T_{\text{tree}(n)}
with the following properties.
1) T_i has at most i + n vertices
2) There is no uptick.
Known:
```

 $\mathrm{tree}(1) = 1 \qquad \mathrm{tree}(2) = 5 \qquad \mathrm{tree}(3) \geq 844, 424, 930, 181, 960$

```
HW Proof that \exists function tree(n) such that:
tree(n) is largest number such that \exists a sequence of trees
T_1, T_2, \ldots, T_{\text{tree}(n)}
with the following properties.
1) T_i has at most i + n vertices
2) There is no uptick.
Known:
```

 $\begin{array}{ll} \mathrm{tree}(1)=1 & \mathrm{tree}(2)=5 & \mathrm{tree}(3) \geq 844, 424, 930, 181, 960 \\ \mathrm{tree}(4) \gg \mathrm{GN} \mbox{ (Grahams Number)} \end{array}$

ション ふぼう メリン メリン しょうくしゃ

```
HW Proof that \exists function tree(n) such that:
tree(n) is largest number such that \exists a sequence of trees
T_1, T_2, \ldots, T_{\text{tree}(n)}
with the following properties.
1) T_i has at most i + n vertices
2) There is no uptick.
Known:
```

 $\begin{array}{ll} \mathrm{tree}(1)=1 & \mathrm{tree}(2)=5 & \mathrm{tree}(3)\geq 844,424,930,181,960 \\ \mathrm{tree}(4)\gg \mathrm{GN} \mbox{ (Grahams Number)} \end{array}$

tree grows much faster than Ackermann's function.

HW Show that there is a function TREE(n) such that the following holds:

TREE(n) is the largest number such that there exists a sequence of *n*-colored trees

 $T_1, T_2, \ldots, T_{\text{tree}(n)}$ with the following properties.

HW Show that there is a function TREE(n) such that the following holds:

TREE(n) is the largest number such that there exists a sequence of *n*-colored trees

 $T_1, T_2, \ldots, T_{\text{tree}(n)}$ with the following properties. 1) T_i has at most *i* vertices

HW Show that there is a function TREE(n) such that the following holds:

TREE(n) is the largest number such that there exists a sequence of *n*-colored trees

ション ふゆ アメリア メリア しょうくしゃ

 $T_1, T_2, \ldots, T_{\text{tree}(n)}$ with the following properties. 1) T_i has at most *i* vertices 2) There is no **uptick**.

HW Show that there is a function TREE(n) such that the following holds:

TREE(n) is the largest number such that there exists a sequence of *n*-colored trees

 $T_1, T_2, \ldots, T_{\text{tree}(n)}$ with the following properties. 1) T_i has at most *i* vertices 2) There is no **uptick**.

Known:

TREE(1) = 1

HW Show that there is a function TREE(n) such that the following holds:

TREE(n) is the largest number such that there exists a sequence of *n*-colored trees

ション ふゆ アメリア メリア しょうくしゃ

 $T_1, T_2, \ldots, T_{\text{tree}(n)}$ with the following properties. 1) T_i has at most *i* vertices 2) There is no **uptick**.

Known:

TREE(1) = 1 TREE(2) = 3

HW Show that there is a function TREE(n) such that the following holds:

TREE(n) is the largest number such that there exists a sequence of *n*-colored trees

 $T_1, T_2, \ldots, T_{\text{tree}(n)}$ with the following properties. 1) T_i has at most *i* vertices 2) There is no **uptick**.

Known:

TREE(1) = 1 TREE(2) = 3 TREE(3): See Next Slide.

tree vs TREE

・ロト・国ト・ヨト・ヨー シック

$\mathrm{TREE}(3) \geq$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - わへで

$\operatorname{tree}^{\operatorname{tree}^{\operatorname{tree}^{\operatorname{tree}^{\operatorname{tree}^{8}(7)}(7)}(7)}(7)}(7)$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$\operatorname{tree}^{\operatorname{tree}^{\operatorname{tree}^{\operatorname{tree}^{\operatorname{tree}^{8}(7)}(7)}(7)}(7)}(7)$

ション ふゆ アメリア メリア しょうくしゃ

Suffice to say that TREE(n) grows much faster than tree(n).

 $\ensuremath{\mathrm{TREE}}$ might be the faster growing **natural** function in mathematics.

