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High School Proofs for Better Bounds on the
Quadratic van der Waerden Numbers

William Gasarch, Clyde Kruskal, Justin Kruskal, Zach Price

Abstract. A corollary of the polynomial van der Waerden theorem is that, for any polynomial
p(x) ∈ Z[x] with constant term 0, for any c ∈ N, there exists W ∈ N such that, for all c-
colorings of {1, . . . ,W} there exists a, d such that a and a + p(d) are the same color. The
proof of the polynomial van der Waerden theorem, and even of these corollaries, is difficult and
gives enormous upper bounds for W . We consider just quadratic polynomials. For c = 2, 3
we obtain reasonable bounds, and for c = 4 for some quadratics we obtain reasonable bounds,
using simple methods.

1. INTRODUCTION We use the following standard definition.

Definition. Let Z be the set of integers, N be the set of non-negative integers, and N+

be the set of positive integers. Let [W ] be the set {1, . . . ,W} (where W ∈ N).

In this paper we will give High School Proofs (HS Proof) of theorems. The term
High School Proof is not a formal term. We use it to mean a proof that can be explained
to a bright high school student. We use the term High School Proof since (1) the term
elementary is ambiguous, and (2) the term Combinatorial is not quite right since (a)
the rather difficult proof of Szemerédi’s Theorem is combinatorial, and (b) the rather
difficult proof of Gower’s bound is mostly combinatorial.

Recall van der Waerden’s Theorem [1, 2] (see also the books by Graham-Rothchild-
Spencer [3] and Landman-Robertson [4]).

Theorem 1. For any k ∈ N, for any c ∈ N, there exists W = W (k, c), such that for
any c-coloring of [W ], there exists a, d ∈ N, d 6= 0, such that a, a+ d, . . . , a+ (k −
1)d are all the same color.

The original proof by van der Waerden was HS but yielded bounds on W that were
not primitive recursive [3]. Shelah [5] gave a HS proof that yielded primitive recursive
bounds on W . These bounds were still quite large in that they really cannot be written
down nicely. Gowers [6] gave a non-HS proof that yielded bounds that can be written
down:

W (k, c) ≤ 22
c2

2k+9

We discuss a known generalization of van der Waerden’s theorem. Note that the
conclusion of van der Waerden’s theorem is that

a, a+ d, a+ 2d, . . . , a+ (k − 1)d are the same color.

Can we replace d, 2d, . . . , (k − 1)d by other functions of d? Yes. We can replace
them with polynomials in Z[x] that have no constant term. Here is the Polynomial van
der Waerden Theorem:
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Theorem 2. Let p1, . . . , pk ∈ Z[x] such that, for 1 ≤ i ≤ k, pi(0) = 0. Let c ∈ N.
Then there exists W = W (p1, . . . , pk; c) such that, for any c-coloring of [W ], there
exists a, d ∈ N, d 6= 0, such that a, a+ p1(d), . . . , a+ pk(d) are all the same color.

For k = 1, this theorem was proven independently by Furstenberg [7] and Sárközy [8].
Bergelson and Leibman [9] proved the general result using ergodic methods (not a
HS proof). These proofs yielded no upper bounds on W (p1, . . . , pk; c). Walters [10]
obtained a HS proof of Theorem 2, but the bounds on W were not primitive recursive.
Shelah [11] gave a (non HS) proof that yielded primitive recursive bounds on W .
These bounds were still quite large in that they really cannot be written down nicely.
Nobody has obtained a proof that yields bounds one can write down.

Peluse [12] and Peluse and Prediville [13] proved density results that can be trans-
lated into bounds for some polynomial van der Waerden numbers.

1. Peluse and Prediville [13] showed that there exists a d such that for large n,
W (x, x2; (log log n)d) ≤ n.

2. Peluse [12] showed that if p1, . . . , pm ∈ Z[x] are polynomials of different de-
grees then there exists a constant d (which depends on p1, . . . , pm) such that, for
large n, W (p1(x), . . . , pm(x); (log log n)

d) ≤ n.
3. Peluse and Prediville [14] showed that there exists a d such that for large n,
W (x, x2; (log n)d) ≤ n.

These proofs are not HS.
We are interested in the case of W (ax2 + bx; c) where c = 2, 3, 4. Fursten-

berg’s proof showed that W (x2; c) exists; however, his proof gave no upper bounds.
Sárközy’s proof showed that W (x2; c) ≤ 2O(c3). Pintz, Steiger, and Szemerédi [15]
(see also [16] for exposition) showed that W (x2; c) ≤ 2O(c0.0001). The 0.0001 can be
replaced with any smaller constant; however, in that case the constant associated with
the big-O will increase. It is possible that either Sárközy’s proof ofW (x2; c) ≤ 2O(c3)

or Pintz, Steiger, and Szemerédi proof of W (x2; c) ≤ 2O(c0.0001) could be modified
with a fixed value of c such as 4. That may lead to an improvement on our bound on
W (x2; 4); however, such a proof would not be HS.

Harnel, Lyall, and Rice [17] showed that there exists a function f : Z × Z → N
such that

W (ax2 + bx; c) ≤ 2f(a,b)c
0.0001

(the 0.0001 can be replaced with any smaller constant; however, in that case the func-
tion f will be bigger).

Later Rice [16] showed that, for all k, there exists a function f : Zk → N such that

W (akx
k + · · ·+ a1x; c) ≤ 2f(ak,...,a1)c

0.0001

(the 0.0001 can be replaced with any smaller constant; however, in that case the func-
tion f will be bigger). Rice (personal communication) later obtained the following
more precise result: for all ε > 0, for all a1, . . . , ak ∈ Z, for J = |a1|+ · · ·+ |ak|:

W (akx
k + · · ·+ a1x; c) ≤ 22

22
100k2/ε

+ 22
2(100k

4 log J)100

+ 2c
ε
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In summary, the known bounds on W (ax2 + bx; c) are large.
In this paper we show that, for some p ∈ Z[x] and c = 2, 3, 4, one can obtain much

better bounds onW (p(x); c). Our proofs will be purely combinatorial and much easier
than those of Walters, Shelah, and Peluse. We hasten to point out that they proved the
full polynomial van der Waerden theorem whereas we only prove it in very special
cases.

We will show the following.
• For all a ∈ Z, W (ax; c) = |ac|+ 1. (Theorem 5)
• For all a, b ∈ Z, W (ax2 + bx; 2) ≤ 12|a|+ 6|b|. (Theorem 6 We actually obtain

more precise bounds than that depending on how a, b are related to each other. In
Appendix A is a table of some exact values of W (ax2 + bx; 2).

• For all a ∈ N, a ≥ 1, W (ax2 + (a− 1)x; 2) = 8a− 3. (Theorem 8)
• W (x2; 3) = 29 and, for all a ∈ Z, W (ax2; 3) = 28a+ 1. (Theorem 10)
• For a, b ∈ Z, W (ax2 + bx; 3) = O(ab6 + a5b2). (Theorem 15) In Appendix B is

a table of some exact values of W (ax2 + bx; 3).
• W (x2; 4) ≤ 84,149,474,894,213,522. (Theorem 16) In Appendix C is a table of

some upper bounds on W (ax2 + bx; 4).

2. PRELIMINARIES

Definition. Let c ∈ N+ and W ∈ N+.

1. A c-coloring of [W ] is a mapping [W ]→ [c].
2. Let p ∈ Z[x]. A (p; c)-proper coloring of [W ] is a c-coloring of [W ] such that,

for all distinct x, y ∈ [W ], if y − x = p(d) for some d ∈ Z, then x and y have
different colors. When the context is clear, we will often write proper c-coloring
or simply proper coloring.

Note that the polynomial van der Waerden number, W = W (p(x); c), is the least
number such that there is no (p; c)-proper coloring of [W ].

Although we care about proper (p; c)-colorings, we need a more general notion:

Definition. Let F ⊆ Z, c ∈ N+, and W ∈ N+.
• An (F ; c)-proper coloring of [W ] is a c-coloring of [W ] such that, for all x, y ∈
[W ] with y − x ∈ F , x and y have different colors.

• W = W (F ; c) is the least number such that there is no (F ; c)-proper coloring of
[W ]. If no such number exists, we set W (F ; c) =∞.

• In the above definitions F is the set of forbidden distances. We will use this term for
polynomial van der Waerden numbers as well. For example, if looking atW (3x2; c)
the forbidden distances are 3× 12, 3× 22, . . ..

We leave the following easy lemma to the reader.

Lemma 3. Let c ∈ N+.

1. If 0 ∈ F then W (F ; c) = 1.
2. Assume f ∈ F . Let F ′ = F ∪ {−f}. Then W (F ; c) =W (F ′; c).

Lemma 4. Let p ∈ Z[x], a ∈ N+, and c ∈ N. Then

W (ap; c) = a(W (p; c)− 1) + 1.
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Proof.
1) W (ap; c) ≤ a(W (p; c)− 1) + 1:

Assume, by way of contradiction, that W (ap; c) ≥ a(W (p; c) − 1) + 2. Hence
there exists COL, an (ap; c)-proper coloring of [a(W (p; c)− 1) + 1]. Note that, for
all x, ap(x) is a forbidden distance for COL.

We use COL to define COL′, a proper (p; c)-coloring of [W (p; c)]; which contra-
dicts the definition of W (p; c).

For 1 ≤ i ≤W (p; c) let

COL′(i) = COL(a(i− 1) + 1).

Suppose j − i is a forbidden distance for COL′. Then there exists x such that
j − i = p(x). Then

a(j − 1) + 1− (a(i− 1) + 1) = a(j − i) = ap(x), a forbidden distance for COL.

Hence COL(a(j − 1) + 1) 6= COL(a(i− 1) + 1), so COL′(j) 6= COL′(i). There-
fore COL′ is a proper (p; c)-coloring of [W (p; c)].

2) W (ap; c) ≥ a(W (p; c)− 1) + 1:
To show W (ap; c) ≥ a(W (p; c) − 1) + 1 we need to give a proper (ap; c)-

coloring of [a(W (p; c)− 1)].
Let X be a number to be named later. Let COL′ be a proper (p; c)-coloring of [X].

The reader can easily verify that COL, defined below, is a proper (ap; c)-coloring of
[aX].
• Color 1, . . . , a with COL′(1).
• Color a+ 1, . . . , 2a with COL′(2).

•
...

• Color (X − 1)a+ 1, . . . , Xa with COL′(X).

Take X = W (p; c)− 1. By definition there exists COL′, a proper (p; c)-coloring
of [X]. Hence COL is a proper (ap; c)-coloring of [aX] = [a(W (p; c)− 1)] which
is what we need.

3. THE EXACT VALUE OF W (AX; 2)

For completeness we cover linear polynomials, for which we obtain a complete
solution. The proof is very similar to the proof of Lemma 4.

Theorem 5. Let a ∈ Z and c ∈ N+. Then

W (ax; c) = |ac|+ 1 .

Proof. By Lemma 3.1 we have the case of a = 0. We will assume a ≥ 1. The case
where a ≤ −1 is similar. By Lemma 3.2 we can assume that a is a forbidden distance.
W (ax; c) ≤ ac+ 1:

By setting x = 1, 2, . . . , c we get forbidden distances a, 2a, . . . , ca. So 1, a +
1, 2a+ 1, . . . , ca+ 1 must all be different colors, but there are only c colors.
W (ax; c) ≥ ac+ 1:

We can properly c-color [ca]:
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• Color 1, . . . , a with 1.
• Color a+ 1, . . . , 2a with 2.

•
...

• Color (c− 1)a+ 1, . . . , ca with c.

4. UPPER BOUNDS ON W (AX2 +BX; 2)

Theorem 6. Let a, b ∈ N.

1. W (ax2 + bx, 2) ≤ 12a+ 6b+ 1.
2. If b ≥ 3a then W (−ax2 + bx, 2) ≤ 6b− 12a+ 1.
3. If 2a ≤ b ≤ 3a then W (−ax2 + bx, 2) ≤ 3b− 3a+ 1.
4. If a ≤ b ≤ 2a then W (−ax2 + bx, 2) ≤ 9a− 3b+ 1.
5. If 0 ≤ b ≤ a then W (−ax2 + bx, 2) ≤ 12a− 6b+ 1.
6. One can obtain bounds for W (ax2 − bx, 2) easily since it equals W (−ax2 +
bx, 2).

7. One can obtain bounds for W (−ax2 − bx, 2) easily since it equals W (ax2 +
bx, 2).

8. For all a, b ∈ Z, W (ax2 + bx; 2) ≤ 12|a|+ 6|b|. (This follows from the other
parts.)

Proof. If a = 0 then Theorem 5 yields the results. Hence we assume a ≥ 1.
We will need the following claim.

Claim: If COL is a 2-coloring of an initial segment of N+. Let d be a forbidden
distance for COL. then 3d is a forbidden distance for COL.
Proof of Claim: Let y and y + 3d be in the domain of COL. Hence y + d, y + 2d
are also in the domain of COL. We can assume COL(y) = R. Then

COL(y) = R =⇒ COL(y+ d) = B =⇒ COL(y+ 2d) = R =⇒ COL(y+ 3d) = B.

End of Proof of Claim

1) W (ax2 + bx; 2). By plugging in x = 1, 2, 3 we find forbidden distances:

{a+ b, 4a+ 2b, 9a+ 3b}.

By the Claim the following are forbidden distances:

{3a+ 3b, 3(4a+ 2b), 9a+ 3b} = {3a+ 3b, 12a+ 6b, 9a+ 3b}.

Assume there is a proper W (x2; 2)-coloring of [12a+ 6b+ 1]. We will get a con-
tradiction. We can assume that COL(1) = R. Note that

COL(1) = R =⇒ COL(1+ (3a+ 3b)) = B =⇒ COL(1+ (3a+ 3b) + (9a+ 3b)) = R.

We simplify to obtain COL(12a+ 6b+ 1) = R.
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COL(12a+ 6b+ 1) = R =⇒ COL(12a+ 6b+ 1− (12a+ 6b)) = B.

We simplify to obtain COL(1) = B which is a contradiction.

The key to the last proof was that

• (3a+ 3b) + (9a+ 3b)− (12a+ 6b) = 0.
• COL is defined on (3a+ 3b) + (9a+ 3b) + 1 = 12a+ 6b+ 1.

For all later proofs we just give nonnegative forbidden distances d1, d2, d3 such
that d1 + d2 − d3 = 0, and conclude that the bound is d1 + d2 + 1. We abbreviate
Forbidden Distances by FD.

We now consider W (−ax2 + bx; 2):
2) b ≥ 3a. {3b− 3a, 6b− 12a, 3b− 9a} are FDs. Hence (3b− 3a) + (3b− 9a)−
(6b− 12a) = 0 is a FD.

3) 2a ≤ b ≤ 3a. {3b− 3a, 6b− 12a, 9a− 3b} are FDs. Hence (6b− 12a) + (9a−
3b)− (3b− 3a) = 0 is a FD.

4) a ≤ b ≤ 2a. {3b− 3a, 12a− 6b, 9a− 3b} are FDs. Hence (3b− 3a) + (12a−
6b)− (9a− 3b) = 0 is a FD.

5) 0 ≤ b ≤ a. {3a − 3b, 12a − 6b, 9a − 3b} are FDs. Hence (3a − 3b) + (9a −
3b)− (12a− 6b) = 0 is a FD.

Corollary 7. For all a, b ∈ Z, W (ax2 + bx; 2) ≤ 12|a|+ 6|b|+ 1.

The bounds on W (ax2 + bx; 2) (and the others) from Theorem 6 hold for all a, b;
however, for particular a, b better bounds can often be found. We give a class of ex-
amples.

Theorem 8. Let a ∈ N with a ≥ 1. Then W (ax2 + (a− 1)x; 2) = 8a− 3.

Proof.
1) W (ax2 + (a− 1)x; 2) ≤ 8a− 3.

Let COL: [8a− 3]→ {R,B}.
By plugging in x = 1, 2 we find forbidden distances: {2a − 1, 6a − 2}. Since

2a − 1 is a forbidden distance, so is 3(2a − 1) = 6a − 3. We will use forbidden
distances {6a− 3, 6a− 2}.

Let y ≤ 2a− 1. Assume COL(y) = R. Then

COL(y) = R =⇒ COL(y+ (6a− 2)) = B =⇒ COL(y+ (6a− 2)− (6a− 3)) = R.

Since y + (6a− 2)− (6a− 3) = y + 1 we have the following which is the keys
fact needed for our proof:

y ≤ 2a− 1 =⇒ COL(y) = COL(y + 1).

6 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Mathematical Assoc. of America American Mathematical Monthly 121:1 January 1, 2025 8:40 p.m. gkkp.tex page 7

(We needed y ≤ 2a− 1 since we needed y + (6a− 2) ≤ 8a− 3 so that y + (6a−
2) is in the domain of COL.)

Assume COL(1) = R. Then by applying the above we get COL(2) = R, . . .,
COL(2a) = R. However, since COL(1) = R and 2a − 1 is a forbidden distance,
COL(2a) = B. This is a contradiction.

2) W (ax2 + (a− 1)x; 2) ≥ 8a− 3.
We give a coloring COL of [8a− 4] such that, for all x, y ∈ [8a− 4] with |x−

y| ∈ {2a− 1, 6a− 2}, COL(x) 6= COL(y). All other forbidden distances are larger
than 8a− 4 and hence irrelevant.

Here is the coloring:

1. For 1 ≤ y ≤ 2a− 1, COL(y) = R.
2. For 2a ≤ y ≤ 4a− 2, COL(y) = B.
3. For 4a− 1 ≤ y ≤ 6a− 3, COL(y) = R.
4. For 6a− 2 ≤ y ≤ 8a− 4, COL(y) = B.

The reader can verify that this coloring suffices.

In Appendix A is a table of some exact values of W (ax2 + bx; 2).

5. W (AX2; 3) = 28A+ 1

In this section we will show that W (x2; 3) = 29 and then W (ax2; 3) = 28a+ 1.
We first show a weaker theorem which will be a good warm-up to our work on 4-
colorings in Section 7.

Theorem 9. W (x2; 3) ≤ 68.

Proof.

10

1

26

17

9 =
3
2

16 =
4 2

25 = 52

16 =
4 2

9 =
3
2

Figure 1. In any proper (x2, 3)-coloring, COL(10) = COL(17)

Assume, by way of contradiction, that COL is an (x2; 3)-proper coloring of [68].
Figure 1 shows some constraints on COL: COL restricted to {10, 1, 26, 17} has to be
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a proper 3-coloring of the graph (no vertices that have an edge between them are the
same color).

We can assume COL(10) = R and COL(1) = B. By looking at Figure 1 we see
that COL(26) /∈ {R,B}, hence COL(26) = G. Again by looking at Figure 1 we
have that COL(17) /∈ {B,G}, hence COL(17) = R.

Note that we have shown that COL(10) = COL(17). More generally we have
shown that, for all x, COL(x) = COL(x+ 7). Not quite. We need that (1) x− 9 is
in the domain of the coloring, so x ≥ 10, and x+ 16 is in the domain of the coloring,
so x ≤ 52. To restate: if 10 ≤ x ≤ 52 then COL(x) = COL(x+ 7).

COL(10) = COL(17) = COL(24) = COL(31) = COL(38) = COL(45) = COL(52) = COL(59).

Since 59− 10 = 49 = 72, this contradicts COL being an (x2; 3)-proper coloring.

The bound in Theorem 9 is not tight. The next theorem gives a tight bound.
The following theorem was proven by Matthew Jordan and William Gasarch.

Theorem 10.

1. W (x2; 3) = 29.
2. For all a ∈ Z, W (ax2; 3) = 28a+ 1. This follows from Part 1 and Lemma 4.

Proof. W (x2; 3) ≤ 29: Assume, by way of contradiction, that there exists COL, a
proper (x2, 3)-coloring of {1, . . . , 29}. Figure 1 shows some constraints on COL:
COL restricted to {1, 10, 17, 26} has to be a proper 3-coloring of the graph (no ver-
tices that have an edge between them are the same color).

By Figure 1, COL(10) = COL(17). By similar reasoning one can show that

(∀x)[10 ≤ x ≤ 13 =⇒ COL(x) = COL(x+ 7)].

We refer to this fact as FORCE-SEVEN since the value of COL(x) forces the value
of COL(x+ 7).

We can assume COL(10) = R. Since 11 − 10 = 12 we know that COL(10) 6=
COL(11), so we can assume COL(11) = B.
17: By FORCE-SEVEN COL(17) = COL(10) = R

18: By FORCE-SEVEN COL(18) = COL(11) = B.

10 11 12 13 14 15 16 17 18 19 20
R B R B

19: Since COL(10) = R, COL(19) = COL(10 + 32) 6= R. Since COL(18) = B,
COL(19) = COL(18 + 12) 6= B. Hence COL(19) /∈ {R,B}, so COL(19) = G.
12: By FORCE-SEVEN COL(12) = COL(19) = G.

10 11 12 13 14 15 16 17 18 19 20
R B G R B G

20: Since COL(11) = B and COL(19) = G, COL(20) = R.
13: By FORCE-SEVEN COL(13) = COL(20) = R.
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10 11 12 13 14 15 16 17 18 19 20
R B G R R B G R

Now we have that COL(17) = COL(13) = R. But 17− 13 = 22. This is a con-
tradiction.

W (x2, 3) ≥ 29:
We present a proper 3-coloring:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
B G R G R B G B G R B G B G

15 16 17 18 19 20 21 22 23 24 25 26 27 28
R B R B G R B R B G R G R B

We can assume COL(10) = R. Since 11 − 10 = 12 we know that COL(10) 6=
COL(11), so we can assume COL(11) = B.
17: By FORCE-SEVEN COL(17) = COL(10) = R

18: By FORCE-SEVEN COL(18) = COL(11) = B.

10 11 12 13 14 15 16 17 18 19 20
R B R B

19: Since COL(10) = R, COL(19) = COL(10 + 32) 6= R. Since COL(18) = B,
COL(19) = COL(18 + 12) 6= B. Hence COL(19) /∈ {R,B}, so COL(19) = G.
12: By FORCE-SEVEN COL(12) = COL(19) = G.

10 11 12 13 14 15 16 17 18 19 20
R B G R B G

20: Since COL(11) = B and COL(19) = G, COL(20) = R.
13: By FORCE-SEVEN COL(13) = COL(20) = R.

10 11 12 13 14 15 16 17 18 19 20
R B G R R B G R

Now we have that COL(17) = COL(13) = R. But 17− 13 = 22. This is a con-
tradiction.

W (x2, 3) ≥ 29:
We present a proper 3-coloring:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
B G R G R B G B G R B G B G
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15 16 17 18 19 20 21 22 23 24 25 26 27 28
R B R B G R B R B G R G R B

6. UPPER BOUNDS ON W (AX2 +BX; 3)

We will obtain upper bounds on W (ax2 + bx; 3) in the case where a ∈ N+ and
b ∈ Z − {0}. For b = 0, Theorem 10.3 yields W (ax2; 3) = 28a + 1. For a = 0,
Theorem 5 yields W (bx; 3) = bc + 1. For a ≤ −1 we can use W (ax2 + b; 3) =
W (−ax2 − b; 3).

Definition.

(a) A coloring of [w] has repeat distance r if x and x+ r have the same color, for
all 1 ≤ x ≤ w − r.

(b) A coloring of [w] has repeat distance r under one-sided boundary condition b if
x and x+ r have the same color, for all 1 ≤ x ≤ w − r − b.

(c) A coloring of [w] has repeat distance r under two-sided boundary condition b if
x and x+ r have the same color, for all b+ 1 ≤ x ≤ w − r − b.

Lemma 11. In any 3-coloring of [w] with forbidden distances s, t, s+ t, where 0 <
s < t:

(a) 2s+ t is a repeat distance.
(b) t− s is a repeat distance under two-sided boundary condition s.
(c) 3s is a repeat distance under one-sided boundary condition t.

Proof. Let u = s+ t.

(a) Consider a 3-coloring satisfying the conditions of the lemma. Let

1 ≤ x ≤ w − (2s+ t).

Without loss of generality, we can assume that x is R. Then x + s is not R,
say B, and x + u = (x + s) + t cannot be R or B so it must be G. Then
(x + s) + u = (x + u) + s cannot be B or G so it must be R. Since x and
x+ u+ s are both R,

(x+ u+ s)− x = u+ s = 2s+ t

is a repeat distance.
(b) Consider a 3-coloring satisfying the conditions of the lemma. Let

s < x ≤ w − (t− s)− s.

Without loss of generality, we can assume that x is R. Then x − s is not R,
say B, and (x − s) + u = x + t cannot be R or B so it must be G. Then
(x − s) + t = (x + t) − s cannot be B or G, so it must be R. This process
requires that x− s > 0 and x+ t ≤ w. So (x+ t− s)− x = t− s is a repeat
distance under two-sided boundary condition s.

10 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121
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(c) Take 2s+ t from part (a) and subtract t− s from part (b). The repeat distance is
(2s+ t)− (t− s) = 3s. There is a one-sided boundary of size (t− s) + s = t
from one side of part (b).

Lemma 12. Assume [w] has a proper 3-coloring COL where s is a forbidden distance
and r is repeat distance under either one-sided or two-sided boundary condition b. If
r|s then

w ≤ s+ 2b+ 1 .

Proof. We prove the lemma for 2-sided boundary condition. The case of 1-sided
boundary condition follows immediately.

Assume, by way of contradiction, that w ≥ s + 2b + 2. By (a) the definition of
repeat distance under two sided boundary condition, (b) r|s, and (c) b + 1 + ( s

r
−

1)r ≤ w − r − b (this is equivalent to w ≥ 2b + s + 1 which follows from w ≥
2b+ s+ 2) we have:

COL(b+ 1) = COL(b+ 1 + r) = COL(b+ 1 + 2r) = · · ·

= COL

(
b+ 1 +

(
s

r
− 1

)
r

)
= COL

(
b+ 1 +

(
s

r

)
r

)
= COL(b+ 1 + s).

But s is a forbidden distance so b+ 1 and s+ b+ 1 cannot have the same color.
Contradiction.

We use Lemma 12 to get upper bounds on several quadratic van der Waerden num-
bers. For one of them we have an exact value.

Theorem 13.

1. For a, b > 0 and a|b, W (ax2 + bx; 3) ≤ 72b2

a
+ 1.

2. W (x2 + x; 3) = 73.

Proof.
1) Let p(x) = ax2 + bx. Let

x =
5b

a
, y =

6b

a
, z =

8b

a
.

Then

p(x) =
30b2

a
, p(y) =

42b2

a
, p(z) =

72b2

a
.

Since p(x) + p(y) = p(z), by Lemma 11b, p(y)− p(x) = 12b2

a
is a repeat distance

under two-sided boundary condition 30b2

a
. But p( 3b

a
) = 12b2

a
is a forbidden distance.

Thus, by Lemma 12, W (ax2 + bx; 3) ≤ 12b2

a
+ 2 · 30b2

a
+ 1 = 72b2

a
+ 1.

2) By Part 1 W (x2 + x; 3) ≤ 73. We show W (x2 + x; 3) ≥ 73 by giving a (x2 +
x; 3)-proper coloring of {1, . . . , 72}.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
R R G G R R B B R R B B G G B B G G

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
R R G G R R B B R R B B G G B B G G

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
R R G G R R B B R R B B G G B B G G

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
R R G G R R B B R R B B G G B B G G

We need one more lemma before getting an upper bound for W (p(x); 3) where
p(x) = ax2 + bx.

Lemma 14. Let

q(a, b) = (4a3 + 4a2 + 3a+ 1)b2 and r(a, b) = (4a5 + 8a4 + 8a3 + 6a2 + 3a+ 1)b2.

Then, for all a ∈ N+, b ∈ Z− {0}, gcd(2q(a, b) + r(a, b), 3q(a, b)) divides 18b2.

Proof.
The only values of (a, b) for which q(a, b) = 0 either involve a /∈ N+ or b = 0.
Hence, for the domain we are concerned with, q(a, b) 6= 0. The only values of (a, b)
for which r(a, b) = 0 either involve a /∈ R, a = −1, or b = 0. Hence, for the domain
we are concerned with, r(a, b) 6= 0. Therefore gcd(q(a, b), r(a, b)) always exists. We
use this implicitly.
1) We examine gcd(q(a, b), r(a, b)).

Let a ∈ N+ and b ∈ Z− {0}. Let d1 = gcd(q(a, b), r(a, b)).
The reader can verify the following equation:

(−20a4 − 12a3 − 4a2 − 10a− 1)q(a, b) + (20a2 − 8a+ 7)r(a, b) = 6b2.

Since d1 divides the LHS, d1 divides the RHS. Hence d1 divides 6b2.

2) We examine gcd(2q(a, b) + r(a, b), 3q(a, b)).
Let a ∈ N+ and b ∈ Z− {0}. Let d = gcd(2q(a, b) + r(a, b), 3q(a, b)).
The reader can verify the following equation:

3(2q(a, b) + r(a, b))− 2(3q(a, b)) = 3r(a, b).

Since d divides the LHS, d divides the RHS, hence d divides 3r(a, b). Since d also
divides 3q(a, b), d divides

12 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121
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gcd(3r(a, b), 3q(a, b)) = 3 gcd(r(a, b), q(a, b)) = 3d1.

Since d1 divides 6b2, d divides 18b2.

Theorem 15. Let a ∈ N+ and b ∈ Z− {0}. Let p(x) = ax2 + bx. ThenW (p(x); 3) =
O(ab6 + a5b2).

Proof. Let w be such that there is a proper (p; 3)-coloring COL: [w]→ [3]. We will
show that w = O(ab6 + a5b2).

Let

x0 = (2a+ 1)b, y0 = (2a2 + 2a+ 1)b, z0 = (2a2 + 2a+ 2)b .

Then

p(x0) = (4a3 + 4a2 + 3a+ 1)b2

p(y0) = (4a5 + 8a4 + 8a3 + 6a2 + 3a+ 1)b2

p(z0) = (4a5 + 8a4 + 12a3 + 10a2 + 6a+ 2)b2

Thus p(x0) + p(y0) = p(z0). Note that p(x0), p(y0), and p(z0) are (1) positive since
a ∈ N+ and the only occurence of b is in b2, and (2) forbidden distances.

1) By Lemma 11a, 2p(x0) + p(y0) is a repeat distance.
2) By Lemma 11c, 3p(x0) is a repeat distance under one-sided boundary condition
p(y0).

3) By Lemma 14 gcd(2p(x0) + p(y0), 3p(x0)) = d ≤ 18b2.

Claim: Let a ∈ N+ and b ∈ Z− {0}.
1. 3p(x0) does not divide 2p(x0) + p(y0).
2. 2p(x0) + p(y0) does not divide 3p(x0).
3. There is a linear combination over Z of 2p(x0) + p(y0) and 3p(x0) that sums

to d where one coefficient is < 0 and the other coefficient is > 0.

Proof of Claim
Note that

2p(x0) + p(y0) = (4a5 + 8a4 + 16a3 + 14a2 + 9a+ 3)b2

3p(x0) = (12a3 + 12a2 + 9a+ 3)b2

1) For all a ∈ N+, for all b ∈ Z− {0}, 3p(x0) does not divide 2p(x0) + p(y0).
If we divide 3p(x0) into 2p(x0) + p(y0) as polynomials in a, b we get the follow-

ing:

(4a5 + 8a4 + 16a3 + 14a2 + 9a+ 3)b2 =

(
a2

3
+
a

3
+

3

4

)
(12a3 + 12a2 + 9a+ 3)b2 +

(
a2 +

5a

4
+

3

4

)
b2.
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Since for all a ∈ N+, b ∈ Z− {0}, (a2 + 5a
4
+ 3

4
)b2 6= 0, 3p(x0) does not divide

2p(x0) + p(y0).

2) For all a ∈ N+, b ∈ Z− {0}, 2p(x0) + p(y0) does not divide 3p(x0).
For all a ∈ N+, 3p(x0) < 2p(x0) + p(y0), hence 2p(x0) + p(y0) does not divide

3p(x0).

3) Since gcd(2p(x0) + p(y0), 3p(x0)) = d, there is a linear combination over Z of
these two quantifies that sums to d. Since both of these quantities are ≥ d one coeffi-
cient must be ≤ 0 and one must be ≥ 0. By Part 1 and 2, neither coefficient can be 0.
Hence one coefficient is < 0 and the other is > 0.
End of Proof of Claim

By Claim (part 3) there exists j, k ∈ N such that

j(2p(x0) + p(y0))− k(3p(x0)) = d.

By starting at 1 and adding repeat distance 2p(x0) + p(y0) j times and subtracting
repeat distance 3p(x0) k times, we see that d is a repeat distance; however, we need
to be careful about the boundary condition. By interspersing the adds and subtracts
so that we subtract whenever the sum is greater than 2p(x0) + p(y0), the one-sided
boundary condition is (2p(x0) + p(y0)) + p(y0) = 2(p(x0) + p(y0)). Hence

4) d is a repeat distance with one-sided boundary condition

(2p(x0) + p(y0)) + p(y0) = 2(p(x0) + p(y0)).

5) p(db) = ad2b2 + b2d = (ad + 1)db2 = O(ad2b2) = O(ab6) is a forbidden
distance. (We use d ≤ 18b2.)

By Lemma 12 with s = p(db) = (ad+ 1)db2, r = d, b = 2(p(x0) + p(y0)) we
get

w ≤ s+ 2b+ 1 = (ad+ 1)db2 + 4(p(x0) + p(y0)) + 1.

Since p(x0) = O(a3b2) and p(y0) = O(a5b2), 4(p(x0) + p(y0)) + 1 = O(a5b2).
Hence

w ≤ s+ 2b+ 1 = (ad+ 1)db2 + 4(p(x0) + p(y0)) + 1 = O(ab6 + a5b2).

In Appendix B is a table of some exact values of W (ax2 + bx; 3).

7. UPPER BOUNDS ON W (X2; 4)

Recall that Figure 1 was the key to showing W (x2; 3) ≤ 68. We now derive pa-
rameters for a new figure that will be the key to an upper bound on W (x2; 4).

We need to find a, b, c, d, e, f, x, y, z ∈ N+ such that the following figure can be
drawn:

Hence we need to find solutions in N+ to the following system of equations:
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1

x2 + 1

y2 + 1

z2 + 1 w + 1

x
2

y 2

z2
a2

b 2

d 2

c
2

e
2

f2

Figure 2. In any (x2; 4)-proper coloring, COL(1) = COL(1 + w)

x2 + a2 = y2

x2 + b2 = z2

y2 + c2 = z2

x2 + d2 = w
y2 + e2 = w
z2 + f2 = w

The first three equations are overlapping Pythagorean triples—we have three num-
bers (x, y, z) whose squares have all square pairwise differences. From the first three
equations one can derive the following:

c2 + f2 = e2

b2 + f2 = d2

a2 + c2 = b2

We give one example by deriving c2 + f2 = e2 algebraically. From y2 + c2 = z2 and
z2 + f2 = w we get y2 + c2 = w − f2, and hence

c2 + f2 = w − y2.

From y2 + e2 = w we get that the left hand side is e2. Hence

c2 + f2 = e2.

Since the first three equations are Pythagorean triples, they can be generated by us-
ing Euclid’s formula: all Pythagorean triples are of the form (k(m2 − n2), k(2mn), k(m2 +
n2)) where gcd(m,n) = 1 and m 6≡ n (mod 2). We can use the Farey sequence
as an efficient algorithm to generate coprime pairs m,n. (See Routledge [18] or the
Wikipedia entry on Farey sequences for the definition of Farey sequences and the
algorithm.)

We used a computer program and obtained the following:

Theorem 16. W (x2; 4) ≤ 1 + (290,085,289)2 = 84,149,474,894,213,522
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Proof.

1

112,529,665

171,819,665

260,273,690 290,085,290

7,7002

12,155 2

10
,6
08
2

13,325 2

9,
40
5
2

13,108 2

10,
875

2

16,1332 5,4602

Figure 3. In any (x2; 4)-proper coloring, COL(1) = COL(1 + 290, 085, 290)

Assume, by way of contradiction, that there exists COL, a proper (x2; 4)-coloring
of [1 + (290,085,289)2]. Figure 3 shows some constraints on COL: COL restricted
to the numbers on the vertices has to be a proper 4-coloring of the graph (no vertices
that have an edge between them are the same color).

By Figure 3 we know that

COL(1) = COL(1 + 290,085,2892).

More generally we have shown that, for all x,

COL(x) = COL(x+ 290,085,2892).

Hence

COL(1) = COL(1+ 290,085,289)) = COL(1 + 2× 290,085,289)) = · · · = COL(1+ (290,085,289)2).

This contradicts COL being an (x2; 4)-proper coloring.

Theorem 16 gave an enormous upper bound on W (x2; 4). The proof was found
by a computer program; however, it is a HS proof and human-verifiable. Four colors
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seems to be at the limit of what computers can find. That is, we have been unable to
use a program to find a human-verifiable proof for a bound on W (x2; 5).

Usually a HS proof gives better bounds than a proof that uses advanced mathemat-
ics. However, our HS proof of a bound on W (x2; 4) gives such a large bound that
its possible a proof using more advanced mathematics would yield a better result. In
particular, its possible that if the proofs of the results of Sarkozy [8], Pintz-Steiger-
Szemerédi [15], or Harnel-Lyall-Rice [17] were looked at more carefully then one
could obtain better bounds for W (x2; c) for some small values of c. However, these
would not be HS proofs.

8. UPPER BOUNDS ON W (AX2 +BX; 4)

To find upper bounds on W (Ax2 +Bx; 4) we have several overlapping equations
of the form

(Ax2 +Bx) + (Ay2 +By) = (Az2 +Bz).

We need a way to generate such triples (x, y, z)much like the generation of Pythagorean
triples. First, we use the quadratic formula to express z in terms of x and y.

z =
−B +

√
4A2(x2 + y2) + 4AB(x+ y) +B2

2A

We rewrite as

4A2(x2 + y2) + 4AB(x+ y) +B2 = (2Az +B)2.

Simple algebra allows us to rewrite this as:

(2Ax+B)2 + (2Ay +B)2 = (2Az +B)2 +B2.

If m = 2Ax+ B, n = 2Ay + B, and k = (2Az + B) then we can rewrite this
as m2 + n2 = k2 + B2. A parameterization of m2 + n2 = k2 + B2 would imply
one for (x, y, z), and luckily this equation is easier. Using the Bramagupta-Fibonacci
identity with bc− ad = B, we get:

(ac− bd)2 + (ad+ bc)2 = (ac+ bd)2 +B2

So, with parameters a, b, c, d and some tedious algebra we get

x =
ac− bd−B

2A
, y =

ad+ bc−B
2A

, z =
ac+ bd−B

2A

with constraints bc− ad = B, ac− bd > B, 2A|ac− bd−B, 2A|ad+ bc−B.
Rather than searching all (a, b, c, d), we can eliminate parts of the parameter space

that do not contain solutions. For fixed a and d, the first constraint implies that bc is
some factorization of ad+ B. We can pre-compute a table of factorizations and use
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that to cut the search space down to almost O(n2). You can see the code for this on
GitHub at https://github.com/zaprice/polyvdw

We can get bounds forW (x2 +Bx; 4) with this method with rather large values of
B, but only a few bounds for the more general Ax2 +Bx case; if such configurations
exist, it seems the numbers involved are much larger. See Appendix C for some of the
upper bounds we have. We note two things about these upper bounds:

1. The largest upper bound on W (x2 + Bx; 4) that we found was when B = 0.
Note that these are just the upper bounds we found. It is not clear how the real
values compares.

2. For W (2x2 + Bx; 4) and W (3x2 + Bx; 4) the B for which we could find an
upper bound seem scattered and arbitrary. For example, we were not able to find
an upper bound for any of W (2x2 + Bx; 4) for 0 ≤ B ≤ 56, but were able
to for 57. And then not again until B = 95. Again, this may be a limit to our
methods and not a statement about the actual values of W (2x2 +Bx; 4).
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6. W. Gowers, A new proof of Szemerédi’s theorem, Geometric and Functional Analysis 11 (2001) 465–
588,
http://www.dpmms.cam.ac.uk/~wtg10/papers/html.

7. H. Fürstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi’s on arithmetic
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A. SOME EXACT VALUES OF W (AX2 +BX; 2)

We present a table of W (p(x); 2) for p(x) = ax2 + bx for 0 ≤ a ≤ 10 and
−10 ≤ b ≤ 10.
The values for a, b ≥ 0 were obtained by using our formulas for an upper bound and
then searching for a 2-coloring for the lower bound.

a
0 1 2 3 4 5 6 7 8 9 10

-10 21 1 1 9 9 1 25 11 13 17 1
-9 19 1 9 1 7 5 7 37 15 1 23
-8 17 1 1 7 1 7 9 13 1 21 25
-7 15 1 7 5 5 25 11 1 19 61 29
-6 13 1 1 1 5 9 1 17 21 25 73
-5 11 1 5 13 7 1 15 49 25 29 31
-4 9 1 1 5 1 13 17 23 25 33 37
-3 7 1 3 1 11 37 19 25 31 73 41
-2 5 1 1 9 13 19 49 29 33 39 41
-1 3 1 7 25 17 21 27 61 37 41 47

b 0 1 5 9 13 17 21 25 29 33 37 41
1 3 13 13 17 23 49 33 37 43 85 53
2 5 11 25 21 25 31 33 41 45 51 97
3 7 13 19 37 29 33 37 73 49 49 59
4 9 17 21 27 49 37 41 47 49 57 61
5 11 25 25 29 35 61 45 49 55 97 61
6 13 23 25 31 37 43 73 53 57 61 65
7 15 25 31 49 41 45 51 85 61 65 71
8 17 29 33 39 41 49 53 59 97 69 73
9 19 37 37 37 47 73 55 61 67 109 77

10 21 35 49 45 49 51 57 65 69 75 121

The numbers tend to increase with increasing a and |b|. Some of the diagonals have
patterns which likely can be used to make conjectures that are almost surely true. For
example:

(∀a ≥ 0)[W (ax2 − (a− 1)x; 2) = 2a+ 3].

B. SOME EXACT VALUES OF W (AX2 +BX; 3)

We present a table of W (p(x); 3) for p(x) = ax2 + bx for 0 ≤ a ≤ 5 and −5 ≤
b ≤ 5.
The values were obtained by computer.
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a
0 1 2 3 4 5

-5 16 1 64 61 217 1
-4 13 1 1 91 1 289
-3 10 1 10 1 135 171
-2 7 1 1 68 97 171
-1 4 1 49 105 190 183

b 0 1 29 57 85 113 141
1 4 73 76 65 156 253
2 7 64 145 123 151 ?
3 10 37 95 217 ? ?
4 13 65 127 ? 289 ?
5 16 55 ? 109 ? 361

C. SOME UPPER BOUNDS ON W (AX2 +BX; 4)

We give bounds for W (g; 4) where g is of the form Ax2 + Bx. Only bounds for
coprime coefficients (A,B) are presented. Each row of the table gives g, x, y, z, w (as
in Figure 4), and the bound. We give four such tables.

1

g(x) + 1

g(y) + 1

g(z) + 1 w + 1

g(
x)

g(y)

g(z)
g(a)

g(b)
g(d)

g(
c)

g(e
)

g(f)

Figure 4. In any (g(x); 4)-proper coloring, COL(1) = COL(1 + w)
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Table for x2 +Bx where 0 ≤ B ≤ 20.

g x y z w W (g(x); 4) ≤
x2 10,608 13,108 16,133 290,085,289 84,149,474,894,213,522
x2 + x 299 302 327 113,262 12,828,393,907
x2 + 2x 91 127 211 257,463 66,287,711,296
x2 + 3x 35 43 53 3,308 10,952,789
x2 + 4x 80 84 92 10,197 104,019,598
x2 + 5x 70 81 100 11,250 126,618,751
x2 + 6x 70 86 106 13,232 175,165,217
x2 + 7x 638 785 923 988,338 976,818,920,611
x2 + 8x 160 168 184 40,788 1,663,987,249
x2 + 9x 35 37 44 3,242 10,539,743
x2 + 10x 144 150 165 36,075 1,301,766,376
x2 + 11x 364 472 727 1,263,252 1,595,819,511,277
x2 + 12x 140 172 212 52,928 2,802,008,321
x2 + 13x 119 129 143 38,016 1,445,710,465
x2 + 14x 66 96 135 25,395 645,261,556
x2 + 15x 120 138 215 54,364 2,956,259,957
x2 + 16x 75 99 141 45,177 2,041,684,162
x2 + 17x 123 165 255 232,908 54,250,095,901
x2 + 18x 70 74 88 12,968 168,402,449
x2 + 19x 65 66 69 6,852 47,080,093
x2 + 20x 84 96 115 24,261 589,081,342
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Table for x2 +Bx where 1980 ≤ B ≤ 2000.

g x y z w W (g(x); 4) ≤
x2 + 1,980x 1,683 2,145 2,915 25,524,829 651,567,434,640,662
x2 + 1,981x 1,674 1,735 2,026 14,236,652 202,710,462,976,717
x2 + 1,982x 1,248 1,495 1,731 6,882,723 47,385,517,451,716
x2 + 1,983x 3,498 3,549 3,664 24,967,678 623,434,455,617,159
x2 + 1,984x 860 975 2,585 12,424,497 154,392,775,905,058
x2 + 1,985x 867 1,098 2,365 11,200,200 125,466,712,437,001
x2 + 1,986x 1,900 2,432 2,908 19,712,552 388,623,855,480,977
x2 + 1,987x 3,048 3,393 3,987 39,165,018 1,533,976,455,831,091
x2 + 1,988x 508 738 1,194 6,489,996 42,132,950,192,065
x2 + 1,989x 2,023 2,288 3,094 18,950,528 359,160,204,078,977
x2 + 1,990x 1,364 1,610 2,100 13,163,856 173,313,300,862,177
x2 + 1,991x 1,330 1,519 1,814 7,817,030 61,121,521,727,631
x2 + 1,992x 975 1,065 1,871 10,120,498 102,444,639,800,021
x2 + 1,993x 1,985 2,349 4,373 68,596,488 4,705,614,878,734,729
x2 + 1,994x 1,246 1,350 1,716 8,551,440 73,144,177,644,961
x2 + 1,995x 891 1,185 1,464 10,543,450 111,185,372,085,251
x2 + 1,996x 705 995 1,793 7,390,317 54,631,536,433,222
x2 + 1,997x 1,081 1,136 1,391 8,040,026 64,658,074,012,599
x2 + 1,998x 1,292 1,732 3,704 39,649,768 1,572,183,322,690,289
x2 + 1,999x 1,235 1,757 2,789 14,633,322 214,163,364,766,363
x2 + 2,000x 184 280 984 5,592,000 31,281,648,000,001
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Table for 2x2 +Bx for assorted B.

g x y z w W (g(x); 4) ≤
2x2 + 57x 3,969 4,035 4,295 38,199,155 2,918,353,062,779,886
2x2 + 95x 707 758 1,008 14,365,638 412,744,475,029,699
2x2 + 171x 11,907 12,105 12,885 343,792,395 236,386,480,508,171,596
2x2 + 285x 2,121 2,274 3,024 129,290,742 33,432,228,781,682,599
2x2 + 399x 27,783 28,245 30,065 1,871,758,595 7,006,961,222,744,427,456
2x2 + 455x 3,320 3,663 4,170 39,229,128 3,077,866,816,534,009
2x2 + 511x 2,772 3,367 6,282 131,899,720 34,795,139,672,913,721
2x2 + 627x 43,659 44,385 47,245 4,622,097,755 5,834,090,064,188,269,204
2x2 + 805x 1,210 1,303 2,920 87,446,025 15,293,684,970,651,376
2x2 + 855x 5,548 7,087 13,262 530,042,423 561,890,393,545,693,524
2x2 + 1,011x 5,164 6,568 9,889 318,517,859 202,907,575,025,443,212
2x2 + 1,153x 12,705 12,726 12,970 352,488,525 248,496,726,932,620,576
2x2 + 1,199x 8,245 8,710 9,748 221,108,291 97,778,017,806,722,272
2x2 + 1,295x 14,030 14,355 22,244 1,162,712,925 2,703,804,197,637,349,126
2x2 + 1,301x 25,622 26,105 28,172 1,638,880,116 5,371,858,201,423,377,829
2x2 + 1,365x 9,960 10,989 12,510 353,062,152 249,306,248,279,579,689
2x2 + 1,459x 954 1,174 1,379 58,465,486 6,836,511,407,576,467
2x2 + 1,545x 11,298 11,815 12,860 425,440,418 361,999,755,841,475,259
2x2 + 1,685x 10,695 10,968 11,570 289,144,125 167,209,137,251,881,876
2x2 + 1,753x 3,586 5,236 8,232 181,967,394 66,224,583,947,144,155
2x2 + 1,851x 50,031 51,441 55,164 6,379,649,159 7,612,882,297,751,201,408
2x2 + 1,913x 2,261 3,366 5,324 81,424,299 13,259,988,699,966,790
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Table for 3x2 +Bx for assorted B.

g x y z w W (g(x); 4) ≤
3x2 + x 42,273 42,660 43,375 5,738,872,934 6,570,267,294,984,419,923
3x2 + 143x 13,244 13,332 13,442 554,651,696 922,915,590,942,221,777
3x2 + 172x 4,452 4,712 5,189 88,862,311 23,689,546,233,099,656
3x2 + 200x 1,896 2,204 5,004 115,177,723 39,797,746,661,938,788
3x2 + 235x 11,155 11,270 11,610 583,594,418 1,021,747,471,306,964,403
3x2 + 274x 9,322 11,610 16,903 1,125,018,929 3,797,003,080,080,107,670
3x2 + 344x 8,904 9,424 10,378 355,449,244 379,032,617,455,054,545
3x2 + 361x 3,540 4,658 7,703 397,333,094 473,620,906,200,085,443
3x2 + 400x 3,792 4,408 10,008 460,710,892 636,763,762,306,663,793
3x2 + 407x 2,806 3,401 6,131 122,898,626 45,312,266,837,804,411
3x2 + 412x 2,077 2,829 5,839 392,773,686 462,813,667,064,838,421
3x2 + 520x 7,616 9,244 12,716 515,261,395 796,483,183,467,963,476
3x2 + 556x 9,400 9,408 9,451 273,674,799 224,693,838,986,259,448
3x2 + 592x 15,744 16,472 17,944 994,061,387 2,964,474,711,857,432,412
3x2 + 643x 50,932 51,357 52,351 8,273,167,696 2,421,731,687,255,606,001
3x2 + 688x 17,808 18,848 20,756 1,421,796,976 6,064,520,901,084,553,217
3x2 + 725x 3,172 3,185 3,278 34,869,750 3,647,723,675,756,251
3x2 + 728x 16,744 17,360 18,928 1,174,742,491 4,140,060,615,695,188,692
3x2 + 797x 2,847 3,082 3,524 148,907,272 66,520,245,642,541,737
3x2 + 814x 5,612 6,802 12,262 491,594,504 724,995,869,246,944,305
3x2 + 932x 1,820 2,229 2,799 37,745,311 4,274,160,686,090,016
3x2 + 1,085x 1,190 1,344 1,540 10,401,450 324,581,771,880,751
3x2 + 1,087x 9,800 9,909 11,434 604,108,526 1,094,841,990,223,645,791
3x2 + 1,112x 18,800 18,816 18,902 1,094,699,196 3,595,100,206,474,645,201
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