Application of PVDW: Constructing Graphs with High Chromatic Number and High Girth

December 31, 2024

Credit Where Credit is Due

The results are by **Paul O'Donnell**.

Credit Where Credit is Due

The results are by **Paul O'Donnell**.

My source for the material is **The Mathematical Coloring Book: Mathematics of Coloring and the Colorful life of its Creators** by **Alexander Soifer**

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Credit Where Credit is Due

The results are by **Paul O'Donnell**.

My source for the material is **The Mathematical Coloring Book: Mathematics of Coloring and the Colorful life of its Creators** by **Alexander Soifer** I reviewed this book in my Book Review Column:

ション ふゆ アメリア メリア しょうくしゃ

https://www.cs.umd.edu/~gasarch/bookrev/40-3.pdf

Def Let G = (V, E) be a graph.

Def Let G = (V, E) be a graph.

 Chromatic Number of G is the least c such that there exists COL: V → [c] such that no neighbors have the same color. We denote this by χ(G). This definition and notation are standard.

Def Let G = (V, E) be a graph.

- Chromatic Number of G is the least c such that there exists COL: V → [c] such that no neighbors have the same color. We denote this by χ(G). This definition and notation are standard.
- 2. Girth of G is the length of the shortest cycle. We denote this by g(G). This definition is standard, the notation is not.

Def Let G = (V, E) be a graph.

- Chromatic Number of G is the least c such that there exists COL: V → [c] such that no neighbors have the same color. We denote this by χ(G). This definition and notation are standard.
- 2. Girth of G is the length of the shortest cycle. We denote this by g(G). This definition is standard, the notation is not.

Examples

Def Let G = (V, E) be a graph.

- Chromatic Number of G is the least c such that there exists COL: V → [c] such that no neighbors have the same color. We denote this by χ(G). This definition and notation are standard.
- 2. Girth of G is the length of the shortest cycle. We denote this by g(G). This definition is standard, the notation is not.

Examples

1.
$$\chi(I_n) = 0$$
, $g(I_n) = 0$. Low χ , Low g .

Def Let G = (V, E) be a graph.

- Chromatic Number of G is the least c such that there exists COL: V → [c] such that no neighbors have the same color. We denote this by χ(G). This definition and notation are standard.
- 2. Girth of G is the length of the shortest cycle. We denote this by g(G). This definition is standard, the notation is not.

Examples

1.
$$\chi(I_n) = 0$$
, $g(I_n) = 0$. Low χ , Low g .

2. $\chi(K_n) = n$, $g(K_n) = 3$. High χ , Low g

Def Let G = (V, E) be a graph.

- Chromatic Number of G is the least c such that there exists COL: V → [c] such that no neighbors have the same color. We denote this by χ(G). This definition and notation are standard.
- 2. Girth of G is the length of the shortest cycle. We denote this by g(G). This definition is standard, the notation is not.

Examples

1.
$$\chi(I_n) = 0$$
, $g(I_n) = 0$. Low χ , Low g .
2. $\chi(K_n) = n$, $g(K_n) = 3$. High χ , Low g
3. $\chi(C_n) \in \{2,3\}$, $g(C_n) = n$. Low χ , High g .

Def Let G = (V, E) be a graph.

- Chromatic Number of G is the least c such that there exists COL: V → [c] such that no neighbors have the same color. We denote this by χ(G). This definition and notation are standard.
- 2. Girth of G is the length of the shortest cycle. We denote this by g(G). This definition is standard, the notation is not.

ション ふゆ アメリア メリア しょうくしゃ

Examples

1.
$$\chi(I_n) = 0$$
, $g(I_n) = 0$. Low χ , Low g .

- 2. $\chi(K_n) = n$, $g(K_n) = 3$. High χ , Low g
- 3. $\chi(C_n) \in \{2,3\}, g(C_n) = n$. Low χ , High g.

Are there graph with high χ and high g?

Def Let G = (V, E) be a graph.

- Chromatic Number of G is the least c such that there exists COL: V → [c] such that no neighbors have the same color. We denote this by χ(G). This definition and notation are standard.
- 2. Girth of G is the length of the shortest cycle. We denote this by g(G). This definition is standard, the notation is not.

Examples

1.
$$\chi(I_n) = 0$$
, $g(I_n) = 0$. Low χ , Low g .

- 2. $\chi(K_n) = n$, $g(K_n) = 3$. High χ , Low g
- 3. $\chi(C_n) \in \{2,3\}, g(C_n) = n$. Low χ , High g.

Are there graph with high χ and high g? Yes

Def Let G = (V, E) be a graph.

- Chromatic Number of G is the least c such that there exists COL: V → [c] such that no neighbors have the same color. We denote this by χ(G). This definition and notation are standard.
- 2. Girth of G is the length of the shortest cycle. We denote this by g(G). This definition is standard, the notation is not.

Examples

1.
$$\chi(I_n) = 0$$
, $g(I_n) = 0$. Low χ , Low g .

2.
$$\chi(K_n) = n$$
, $g(K_n) = 3$. High χ , Low g

3. $\chi(C_n) \in \{2,3\}, g(C_n) = n$. Low χ , High g.

Are there graph with high χ and high g? Yes Will we use PVDW's theorem?

Def Let G = (V, E) be a graph.

- Chromatic Number of G is the least c such that there exists COL: V → [c] such that no neighbors have the same color. We denote this by χ(G). This definition and notation are standard.
- 2. Girth of G is the length of the shortest cycle. We denote this by g(G). This definition is standard, the notation is not.

ション ふゆ アメリア メリア しょうくしゃ

Examples

1.
$$\chi(I_n) = 0$$
, $g(I_n) = 0$. Low χ , Low g .

- 2. $\chi(K_n) = n$, $g(K_n) = 3$. High χ , Low g
- 3. $\chi(C_n) \in \{2,3\}, g(C_n) = n$. Low χ , High g.

Are there graph with high χ and high g? Yes Will we use PVDW's theorem? Yes.

We will construct the following:

We will construct the following: For all $c \ge 3$:

We will construct the following: For all $c \ge 3$:

1. G_c with $\chi(G_c) = c$ and g(G) = 6. Uses Pigeonhole Principle.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We will construct the following: For all $c \ge 3$:

- 1. G_c with $\chi(G_c) = c$ and g(G) = 6. Uses Pigeonhole Principle.
- 2. G_c with $\chi(G_c) = c$ and g(G) = 9. Uses PVDW and Numb. Theory

We will construct the following: For all $c \ge 3$:

- 1. G_c with $\chi(G_c) = c$ and g(G) = 6. Uses Pigeonhole Principle.
- 2. G_c with $\chi(G_c) = c$ and g(G) = 9. Uses PVDW and Numb. Theory
- 3. G_c with $\chi(G_c) = c$ and g(G) = 12. Use PVDW and Harder Numb Theory.

We will construct the following: For all $c \ge 3$:

- 1. G_c with $\chi(G_c) = c$ and g(G) = 6. Uses Pigeonhole Principle.
- 2. G_c with $\chi(G_c) = c$ and g(G) = 9. Uses PVDW and Numb. Theory
- 3. G_c with $\chi(G_c) = c$ and g(G) = 12. Use PVDW and Harder Numb Theory.

Better results are known; however, the structure of our G is such that G_4 can be embedded as a unit graph in the plane:

We will construct the following: For all $c \ge 3$:

- 1. G_c with $\chi(G_c) = c$ and g(G) = 6. Uses Pigeonhole Principle.
- 2. G_c with $\chi(G_c) = c$ and g(G) = 9. Uses PVDW and Numb. Theory
- 3. G_c with $\chi(G_c) = c$ and g(G) = 12. Use PVDW and Harder Numb Theory.

Better results are known; however, the structure of our G is such that G_4 can be embedded as a unit graph in the plane:

 $(x,y) \in E \implies d(x,y) = 1.$ $(x,y) \notin E \implies d(x,y) \neq 1.$

We will construct the following: For all $c \ge 3$:

- 1. G_c with $\chi(G_c) = c$ and g(G) = 6. Uses Pigeonhole Principle.
- 2. G_c with $\chi(G_c) = c$ and g(G) = 9. Uses PVDW and Numb. Theory
- 3. G_c with $\chi(G_c) = c$ and g(G) = 12. Use PVDW and Harder Numb Theory.

Better results are known; however, the structure of our G is such that G_4 can be embedded as a unit graph in the plane:

$$(x,y) \in E \implies d(x,y) = 1.$$

 $(x,y) \notin E \implies d(x,y) \neq 1.$

Such graphs are motivated by work on the **Chromatic Number of the Plane.**

We will construct the following: For all $c \ge 3$:

- 1. G_c with $\chi(G_c) = c$ and g(G) = 6. Uses Pigeonhole Principle.
- 2. G_c with $\chi(G_c) = c$ and g(G) = 9. Uses PVDW and Numb. Theory
- 3. G_c with $\chi(G_c) = c$ and g(G) = 12. Use PVDW and Harder Numb Theory.

Better results are known; however, the structure of our G is such that G_4 can be embedded as a unit graph in the plane:

$$(x,y) \in E \implies d(x,y) = 1.$$

 $(x,y) \notin E \implies d(x,y) \neq 1.$

Such graphs are motivated by work on the **Chromatic Number of the Plane.**

We may or may not discuss this later.

We will construct the following: For all $c \ge 3$:

- 1. G_c with $\chi(G_c) = c$ and g(G) = 6. Uses Pigeonhole Principle.
- 2. G_c with $\chi(G_c) = c$ and g(G) = 9. Uses PVDW and Numb. Theory
- 3. G_c with $\chi(G_c) = c$ and g(G) = 12. Use PVDW and Harder Numb Theory.

Better results are known; however, the structure of our G is such that G_4 can be embedded as a unit graph in the plane:

$$(x,y) \in E \implies d(x,y) = 1.$$

 $(x,y) \notin E \implies d(x,y) \neq 1.$

Such graphs are motivated by work on the

Chromatic Number of the Plane.

We may or may not discuss this later. That is a tautology.

Application of Pigeonhole: Constructing Graphs with High Chromatic Number and Girth 6

December 31, 2024

Thm For all c there exists graph G_c such that

・ロト・日本・ヨト・ヨト・ヨー つへぐ

•
$$\chi(G_c) = c$$
, and

•
$$g(G_c) = 6.$$

Thm For all c there exists graph G_c such that

•
$$\chi(G_c) = c$$
, and
• $g(G_c) = 6$.

Ρf

Thm For all c there exists graph G_c such that

•
$$\chi(G_c) = c$$
, and
• $g(G_c) = 6$.

Pf

Base c = 2. Use C_6 , the cycle on 6 vertices.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm For all c there exists graph G_c such that

•
$$\chi(G_c) = c$$
, and

$$\blacktriangleright g(G_c) = 6.$$

Pf

Base c = 2. Use C_6 , the cycle on 6 vertices. Ind Hyp There exists G_{c-1} such that

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Thm For all c there exists graph G_c such that

•
$$\chi(G_c) = c$$
, and

$$\blacktriangleright g(G_c) = 6.$$

Pf

Base c = 2. Use C_6 , the cycle on 6 vertices.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Ind Hyp There exists G_{c-1} such that

•
$$\chi(G_{c-1}) = c - 1$$
, and

Thm For all c there exists graph G_c such that

•
$$\chi(G_c) = c$$
, and

$$\blacktriangleright g(G_c) = 6.$$

Pf

Base c = 2. Use C_6 , the cycle on 6 vertices.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Ind Hyp There exists G_{c-1} such that

•
$$\chi(G_{c-1}) = c - 1$$
, and

•
$$g(G_{c-1}) = 6.$$

Thm For all c there exists graph G_c such that

•
$$\chi(G_c) = c$$
, and
• $g(G_c) = 6$.

Base c = 2. Use C_6 , the cycle on 6 vertices.

Ind Hyp There exists G_{c-1} such that

•
$$\chi(G_{c-1}) = c - 1$$
, and

•
$$g(G_{c-1}) = 6.$$

Let M_{c-1} be the number of vertices in G_{c-1} .

ション ふゆ アメリア メリア しょうくしゃ

Thm For all c there exists graph G_c such that

•
$$\chi(G_c) = c$$
, and
• $g(G_c) = 6$.

Base c = 2. Use C_6 , the cycle on 6 vertices.

Ind Hyp There exists G_{c-1} such that

•
$$\chi(G_{c-1}) = c - 1$$
, and

•
$$g(G_{c-1}) = 6.$$

Let M_{c-1} be the number of vertices in G_{c-1} .

Ind Step We construct G_c on next slide.

Construction of G_c

(ロ) (司) (言) (言) 言 の()

Construction of G_c

 Let L be a large number to be picked later. We call [L] the base vertices. They will not be connected to each other.

Let L be a large number to be picked later. We call [L] the base vertices. They will not be connected to each other.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

2. For every $A \in {[L] \choose M_{c-1}}$:

 Let L be a large number to be picked later. We call [L] the base vertices. They will not be connected to each other.

2. For every
$$A \in {[L] \choose M_{c-1}}$$
:

a) Make a copy of G_{c-1} : G_{c-1}^A . (G_{c-1}^A has M_{c-1} verts.)

- Let L be a large number to be picked later. We call [L] the base vertices. They will not be connected to each other.
- 2. For every $A \in {[L] \choose M_{c-1}}$:
 - a) Make a copy of G_{c-1} : G_{c-1}^A . (G_{c-1}^A has M_{c-1} verts.)

b) Put edges between A and the verts of G_{c-1}^A as a bijection.

ション ふゆ アメリア メリア しょうくしゃ

 Let L be a large number to be picked later. We call [L] the base vertices. They will not be connected to each other.

2. For every
$$A \in {[L] \choose M_{c-1}}$$
:

a) Make a copy of G_{c-1} : G_{c-1}^A . (G_{c-1}^A has M_{c-1} verts.)

b) Put edges between A and the verts of G_{c-1}^A as a bijection. GOTO WHITE BOARD TO LOOK AT G_4

ション ふゆ アメリア メリア しょうくしゃ

 Let L be a large number to be picked later. We call [L] the base vertices. They will not be connected to each other.

2. For every
$$A \in {[L] \choose M_{c-1}}$$
:

a) Make a copy of G_{c-1} : G_{c-1}^A . (G_{c-1}^A has M_{c-1} verts.)

b) Put edges between A and the verts of G_{c-1}^A as a bijection. **GOTO WHITE BOARD TO LOOK AT** G_4 Construction is done.

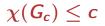
- Let L be a large number to be picked later. We call [L] the base vertices. They will not be connected to each other.
- 2. For every $A \in {[L] \choose M_{c-1}}$:
 - a) Make a copy of G_{c-1} : G_{c-1}^A . (G_{c-1}^A has M_{c-1} verts.)

b) Put edges between A and the verts of G_{c-1}^A as a bijection.

GOTO WHITE BOARD TO LOOK AT G4

Construction is done.

We prove it works in the next few slides.



Assume inductively that $\chi(G_{c-1}) = c - 1$.

Assume inductively that $\chi(G_{c-1}) = c - 1$.

Color each G_{c-1}^A with [c-1].

Assume inductively that $\chi(G_{c-1}) = c - 1$.

・ロト・日本・ヨト・ヨト・ヨー つへぐ

Color each G_{c-1}^A with [c-1].

Color all of the base vertices c.

Assume inductively that $\chi(G_{c-1}) = c - 1$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Color each G_{c-1}^A with [c-1].

Color all of the base vertices c.

Done!

Assume inductively that $\chi(G_{c-1}) = c - 1$. We show $\chi(G_c) \ge c$.

Assume inductively that $\chi(G_{c-1}) = c - 1$. We show $\chi(G_c) \ge c$. Assume, BWOC, $\chi(G_c) \le c - 1$.

・ロト・日本・ヨト・ヨト・ヨー つへぐ

Assume inductively that $\chi(G_{c-1}) = c - 1$. We show $\chi(G_c) \ge c$. Assume, BWOC, $\chi(G_c) \le c - 1$. Of the *L* base vertices, there exists $\left\lfloor \frac{L}{c-1} \right\rfloor$ that are same color.

Assume inductively that $\chi(G_{c-1}) = c - 1$. We show $\chi(G_c) \ge c$. Assume, BWOC, $\chi(G_c) \le c - 1$. Of the *L* base vertices, there exists $\left\lceil \frac{L}{c-1} \right\rceil$ that are same color. Choose *L* such that $\left\lceil \frac{L}{c-1} \right\rceil \ge M_{c-1}$.

Assume inductively that $\chi(G_{c-1}) = c - 1$. We show $\chi(G_c) \ge c$. Assume, BWOC, $\chi(G_c) \le c - 1$. Of the *L* base vertices, there exists $\left\lceil \frac{L}{c-1} \right\rceil$ that are same color. Choose *L* such that $\left\lceil \frac{L}{c-1} \right\rceil \ge M_{c-1}$. Let *A* be a set of M_{c-1} base vertices that are the same color.

Assume inductively that $\chi(G_{c-1}) = c - 1$. We show $\chi(G_c) \ge c$. Assume, BWOC, $\chi(G_c) \le c - 1$. Of the *L* base vertices, there exists $\left\lceil \frac{L}{c-1} \right\rceil$ that are same color. Choose *L* such that $\left\lceil \frac{L}{c-1} \right\rceil \ge M_{c-1}$. Let *A* be a set of M_{c-1} base vertices that are the same color. There is a bijection from *A* to G_{c-1}^A and via edges.

Assume inductively that $\chi(G_{c-1}) = c - 1$. We show $\chi(G_c) \ge c$. Assume, BWOC, $\chi(G_c) \leq c - 1$. Of the *L* base vertices, there exists $\left\lceil \frac{L}{c-1} \right\rceil$ that are same color. Choose *L* such that $\left\lceil \frac{L}{c-1} \right\rceil \ge M_{c-1}$. Let A be a set of M_{c-1} base vertices that are the same color. There is a bijection from A to G_{c-1}^A and via edges. The vertices in A must be a diff color than the c-1 colors used on the vertices of G_{c-1}^A . Hence the coloring must use $\geq c$ colors. Contradiction. Done!

Assume inductively that $\chi(G_{c-1}) = c - 1$. We show $\chi(G_c) \ge c$. Assume, BWOC, $\chi(G_c) \leq c - 1$. Of the *L* base vertices, there exists $\left\lceil \frac{L}{c-1} \right\rceil$ that are same color. Choose *L* such that $\left\lceil \frac{L}{c-1} \right\rceil \ge M_{c-1}$. Let A be a set of M_{c-1} base vertices that are the same color. There is a bijection from A to G_{c-1}^A and via edges. The vertices in A must be a diff color than the c - 1 colors used on the vertices of G_{c-1}^A . Hence the coloring must use $\geq c$ colors. Contradiction. Done! **GOTO WHITE BOARD**

Inductively G_{c-1}^A has a cycle of size 6. Hence G_c does.

Assume inductively that $g(G_{c-1}) = 6$. Let C be a cycle in G_c . We show $|C| \ge 6$.

Assume inductively that $g(G_{c-1}) = 6$. Let C be a cycle in G_c . We show $|C| \ge 6$. 0) If C has 0 base vertices then C is a cycle in G_{c-1}^A , so $|C| \ge 6$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Assume inductively that $g(G_{c-1}) = 6$. Let C be a cycle in G_c . We show $|C| \ge 6$. 0) If C has 0 base vertices then C is a cycle in G_{c-1}^A , so $|C| \ge 6$. 1) If C has 1 base vertex v then v has two edges coming out of it, to $G_{c-1}^{A_1}$ and $G_{c-1}^{A_2}$. GOTO White Board!

Assume inductively that $g(G_{c-1}) = 6$. Let C be a cycle in G_c . We show $|C| \ge 6$. 0) If C has 0 base vertices then C is a cycle in G_{c-1}^A , so $|C| \ge 6$. 1) If C has 1 base vertex v then v has two edges coming out of it, to $G_{c-1}^{A_1}$ and $G_{c-1}^{A_2}$. **GOTO White Board!** Cycle goes from v to $G_{c-1}^{A_1}$ then leaves $G_{c-1}^{A_1}$ and has to goto a base vertex that is not v. This is impossible. So this case can't happen.

Assume inductively that $g(G_{c-1}) = 6$. Let C be a cycle in G_c . We show $|C| \ge 6$. 0) If C has 0 base vertices then C is a cycle in G_{c-1}^A , so $|C| \ge 6$. 1) If C has 1 base vertex v then v has two edges coming out of it, to $G_{c-1}^{A_1}$ and $G_{c-1}^{A_2}$. **GOTO White Board!** Cycle goes from v to $G_{c_1}^{A_1}$ then leaves $G_{c_1}^{A_1}$ and has to goto a base vertex that is not v. This is impossible. So this case can't happen. 2) Can it use exactly 2 base vertices, say 1,2. Yes. **GOTO WHITE BOARD** B1 is Base vertex 1, B2 is Base vertex 2. C1 is 1 in a copy of G_c , C2 is 2 in that copy. D1 is 1 in a copy of G_c , D2 is 2 in that copy.

Assume inductively that $g(G_{c-1}) = 6$. Let C be a cycle in G_c . We show |C| > 6. 0) If C has 0 base vertices then C is a cycle in G_{c-1}^A , so $|C| \ge 6$. 1) If C has 1 base vertex v then v has two edges coming out of it, to $G_{c-1}^{A_1}$ and $G_{c-1}^{A_2}$. **GOTO White Board!** Cycle goes from v to $G_{c_1}^{A_1}$ then leaves $G_{c_1}^{A_1}$ and has to goto a base vertex that is not v. This is impossible. So this case can't happen. 2) Can it use exactly 2 base vertices, say 1,2. Yes. **GOTO WHITE BOARD** B1 is Base vertex 1, B2 is Base vertex 2. C1 is 1 in a copy of G_c , C2 is 2 in that copy. D1 is 1 in a copy of G_c , D2 is 2 in that copy. Shortest cycle: (B1, C1, C2, B2, D2, D1, B1). Len 6.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

3) Can it use exactly 3 base vertices. Say 1,2,3. Yes. **GOTO WHITE BOARD** C1 is 1 in a copy of G_c , C2 is 2, C3 is 3. D1 is 1 in a copy of G_c , D2 is 2, D3 is 3. E1 is 1 in a copy of G_c , E2 is 2, E3 is 3.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

3) Can it use exactly 3 base vertices. Say 1,2,3. Yes. **GOTO WHITE BOARD** C1 is 1 in a copy of G_c , C2 is 2, C3 is 3. D1 is 1 in a copy of G_c , D2 is 2, D3 is 3. E1 is 1 in a copy of G_c , E2 is 2, E3 is 3. Shortest cycle: (B1, C1, C2, B2, D2, D3, B3, E3, E1, B1). Len 9.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

3) Can it use exactly 3 base vertices. Say 1,2,3. Yes. GOTO WHITE BOARD

C1 is 1 in a copy of G_c , C2 is 2, C3 is 3.

D1 is 1 in a copy of G_c , D2 is 2, D3 is 3.

E1 is 1 in a copy of G_c , E2 is 2, E3 is 3.

Shortest cycle: (B1, C1, C2, B2, D2, D3, B3, E3, E1, B1). Len 9.

4) Note If cycle uses $x \ge 2$ base vertices then shortest cycle is length 3x. (Will use this later) GOTO WHITE BOARD

Upshot

We have $\chi(G_c) = c$ $g(G_c) = 6$. So we are done.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Discuss Chromatic Number of the Plane GOTO BLACKBOARD

Discuss Chromatic Number of the Plane **GOTO BLACKBOARD** Soifer, O'Donnell, Others(?) wanted to find G that had $\chi(G) = G$, g(G) = g, G is unit graph in the plane.

Discuss Chromatic Number of the Plane GOTO BLACKBOARD

Soifer, O'Donnell, Others(?) wanted to find G that had $\chi(G) = G$, g(G) = g, G is unit graph in the plane.

The construction we did for $\chi(G_c) = c$, $g(G_c) = 6$, credited to **Blanch Descartes**, yields such a graph when c = 4.

Discuss Chromatic Number of the Plane GOTO BLACKBOARD

Soifer, O'Donnell, Others(?) wanted to find G that had $\chi(G) = G$, g(G) = g, G is unit graph in the plane. The construction we did for $\chi(G_c) = c$, $g(G_c) = 6$, credited to **Blanch Descartes**, yields such a graph when c = 4.

This construction yields unit graphs when c = 4.

Discuss Chromatic Number of the Plane GOTO BLACKBOARD

Soifer, O'Donnell, Others(?) wanted to find G that had $\chi(G) = G$, g(G) = g, G is unit graph in the plane. The construction we did for $\chi(G_c) = c$, $g(G_c) = 6$, credited to **Blanch Descartes**, yields such a graph when c = 4. This construction yields unit graphs when c = 4. Hence they want to do that kind of construction.

Discuss Chromatic Number of the Plane GOTO BLACKBOARD

Soifer, O'Donnell, Others(?) wanted to find G that had $\chi(G) = G$, g(G) = g, G is unit graph in the plane. The construction we did for $\chi(G_c) = c$, $g(G_c) = 6$, credited to **Blanch Descartes**, yields such a graph when c = 4. This construction yields unit graphs when c = 4. Hence they want to do that kind of construction.

Our interest Some of the constructions used VDW and PVDW!

g(G)	Math	who	
6	PHP	Folklore	
9	VDW, Messy	O'Donnell	
12	PVDW & Hard Number Theory	O'Donnell	
g	Hard Hypergraph	Erdos-Hajnal-O'Donnell	

g(G)	Math	who	
6	PHP	Folklore	
9	VDW, Messy	O'Donnell	
12	PVDW & Hard Number Theory	O'Donnell	
g	Hard Hypergraph	Erdos-Hajnal-O'Donnell	

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

1. Don't want to show you messy OR Hard NT.

g(G)	Math	who	
6	PHP	Folklore	
9	VDW, Messy	O'Donnell	
12	PVDW & Hard Number Theory	O'Donnell	
g	Hard Hypergraph	Erdos-Hajnal-O'Donnell	

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

1. Don't want to show you messy OR Hard NT.

2. Want to show you app of VDW or Poly VDW.

g(G)	Math	who	
6	PHP	Folklore	
9	VDW, Messy	O'Donnell	
12	PVDW & Hard Number Theory	O'Donnell	
g	Hard Hypergraph	Erdos-Hajnal-O'Donnell	

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

1. Don't want to show you messy OR Hard NT.

2. Want to show you app of VDW or Poly VDW.

Hence I came up with the following:

g(G)	Math	who
9	PVDW & Easy Number Theory	Gasarch

g(G)	Math	who	
6	PHP	Folklore	
9	VDW, Messy	O'Donnell	
12	PVDW & Hard Number Theory	O'Donnell	
g	Hard Hypergraph	Erdos-Hajnal-O'Donnell	

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

1. Don't want to show you messy OR Hard NT.

2. Want to show you app of VDW or Poly VDW.

Hence I came up with the following:

g(G)	Math	who
9	PVDW & Easy Number Theory	Gasarch
We will do it the Gasarch Way!		

Recall that we said earlier:

Recall that we said earlier:

If a cycle uses 1 base vertices then this cannot happen!

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recall that we said earlier:

If a cycle uses 1 base vertices then this cannot happen! If a cycle uses 2 base vertices then cycle is ≥ 6

Recall that we said earlier:

If a cycle uses 1 base vertices then this cannot happen!

If a cycle uses 2 base vertices then cycle is ≥ 6

If a cycle uses 3 base vertices then it must have length \geq 9

Recall that we said earlier:

If a cycle uses 1 base vertices then this cannot happen! If a cycle uses 2 base vertices then cycle is ≥ 6 If a cycle uses 3 base vertices then it must have length ≥ 9 We make sure that a cycle cannot connect to 2 base points.

Recall that we said earlier:

If a cycle uses 1 base vertices then this cannot happen!

If a cycle uses 2 base vertices then cycle is ≥ 6

If a cycle uses 3 base vertices then it must have length \geq 9

We make sure that a cycle cannot connect to 2 base points.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Lets look at cycles that connected to 2 base points. GOTO WHITE BOARD

Recall that we said earlier:

If a cycle uses 1 base vertices then this cannot happen!

If a cycle uses 2 base vertices then cycle is ≥ 6

If a cycle uses 3 base vertices then it must have length \geq 9

We make sure that a cycle cannot connect to 2 base points.

Lets look at cycles that connected to 2 base points. GOTO WHITE BOARD

Because there exists $A_1, A_2 \in {[L] \choose M_{c-1}}$ with $|A_1 \cap A_2| \ge 2$.

Recall that we said earlier:

If a cycle uses 1 base vertices then this cannot happen!

If a cycle uses 2 base vertices then cycle is ≥ 6

If a cycle uses **3** base vertices then it must have length \geq 9

We make sure that a cycle cannot connect to 2 base points.

Lets look at cycles that connected to 2 base points. GOTO WHITE BOARD

Because there exists $A_1, A_2 \in {\binom{[L]}{M_{c-1}}}$ with $|A_1 \cap A_2| \ge 2$. We want the following:

Recall that we said earlier:

If a cycle uses 1 base vertices then this cannot happen!

If a cycle uses 2 base vertices then cycle is ≥ 6

If a cycle uses 3 base vertices then it must have length \geq 9

We make sure that a cycle cannot connect to 2 base points.

Lets look at cycles that connected to 2 base points. GOTO WHITE BOARD

Because there exists $A_1, A_2 \in {[L] \choose M_{c-1}}$ with $|A_1 \cap A_2| \geq 2$.

We want the following:

Fewer sets A so that for all $A_1, A_2, |A_1 \cap A_2| \le 1$.

Recall that we said earlier:

If a cycle uses 1 base vertices then this cannot happen!

If a cycle uses 2 base vertices then cycle is ≥ 6

If a cycle uses 3 base vertices then it must have length \geq 9

We make sure that a cycle cannot connect to 2 base points.

Lets look at cycles that connected to 2 base points. GOTO WHITE BOARD

Because there exists $A_1, A_2 \in {[L] \choose M_{c-1}}$ with $|A_1 \cap A_2| \geq 2$.

We want the following:

- Fewer sets A so that for all $A_1, A_2, |A_1 \cap A_2| \leq 1$.
- Enough sets A so that can do the $\chi(G_c) \ge c$ proof.

Our set A will be a set of k-AP's $(k = M_{c-1})$ with diff d^m .

Our set A will be a set of k-AP's $(k = M_{c-1})$ with diff d^m . We take k = 5 for our running examples. Diff is d^m .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

Our set A will be a set of k-AP's ($k = M_{c-1}$) with diff d^m . We take k = 5 for our running examples. Diff is d^m . Take two 5-APs with **different** differences, both powers of m.

Our set A will be a set of k-AP's ($k = M_{c-1}$) with diff d^m . We take k = 5 for our running examples. Diff is d^m . Take two 5-APs with **different** differences, both powers of m. $a_1, a_1 + d_1^m, a_1 + 2d_1^m, a_1 + 3d_1^m, a_1 + 4d_1^m$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()・

Our set A will be a set of k-AP's ($k = M_{c-1}$) with diff d^m . We take k = 5 for our running examples. Diff is d^m . Take two 5-APs with **different** differences, both powers of m. $a_1, a_1 + d_1^m, a_1 + 2d_1^m, a_1 + 3d_1^m, a_1 + 4d_1^m$ $a_2, a_2 + d_2^m, a_2 + 2d_2^m, a_2 + 3d_2^m, a_2 + 4d_2^m$ Is there an m such that they **cannot** intersect in two places? **Next Slide**

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $a_1, a_1 + d_1^m, a_1 + 2d_1^m, a_1 + 3d_1^m, a_1 + 4d_1^m$

 $a_{1}, a_{1} + d_{1}^{m}, a_{1} + 2d_{1}^{m}, a_{1} + 3d_{1}^{m}, a_{1} + 4d_{1}^{m}$ $a_{2}, a_{2} + d_{2}^{m}, a_{2} + 2d_{2}^{m}, a_{2} + 3d_{2}^{m}, a_{2} + 4d_{2}^{m}$

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

$$a_{1}, a_{1} + d_{1}^{m}, a_{1} + 2d_{1}^{m}, a_{1} + 3d_{1}^{m}, a_{1} + 4d_{1}^{m}$$

$$a_{2}, a_{2} + d_{2}^{m}, a_{2} + 2d_{2}^{m}, a_{2} + 3d_{2}^{m}, a_{2} + 4d_{2}^{m}$$

$$a_{1} + wd_{1}^{m} = a_{2} + xd_{2}^{m}$$

$$a_{1} + yd_{1}^{m} = a_{2} + zd_{2}^{m}$$
 where $w, x, y, z \in \{0, 1, 2, 3, 4\}.$

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

$$a_{1}, a_{1} + d_{1}^{m}, a_{1} + 2d_{1}^{m}, a_{1} + 3d_{1}^{m}, a_{1} + 4d_{1}^{m}$$

$$a_{2}, a_{2} + d_{2}^{m}, a_{2} + 2d_{2}^{m}, a_{2} + 3d_{2}^{m}, a_{2} + 4d_{2}^{m}$$

$$a_{1} + wd_{1}^{m} = a_{2} + xd_{2}^{m}$$

$$a_{1} + yd_{1}^{m} = a_{2} + zd_{2}^{m} \text{ where } w, x, y, z \in \{0, 1, 2, 3, 4\}.$$

$$(w - y)d_{1}^{m} = (x - z)d_{2}^{m} \text{ so } \frac{w - y}{x - z} = (\frac{d_{2}}{d_{1}})^{m}$$

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

$$a_{1}, a_{1} + d_{1}^{m}, a_{1} + 2d_{1}^{m}, a_{1} + 3d_{1}^{m}, a_{1} + 4d_{1}^{m}$$

$$a_{2}, a_{2} + d_{2}^{m}, a_{2} + 2d_{2}^{m}, a_{2} + 3d_{2}^{m}, a_{2} + 4d_{2}^{m}$$

$$a_{1} + wd_{1}^{m} = a_{2} + zd_{2}^{m} \text{ where } w, x, y, z \in \{0, 1, 2, 3, 4\}.$$

$$(w - y)d_{1}^{m} = (x - z)d_{2}^{m} \text{ so } \frac{w - y}{x - z} = (\frac{d_{2}}{d_{1}})^{m}$$

$$\frac{w - y}{x - z} \in \{1, 2, 3, 4, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{3}{4}, \frac{4}{3}\}$$

$$a_{1}, a_{1} + d_{1}^{m}, a_{1} + 2d_{1}^{m}, a_{1} + 3d_{1}^{m}, a_{1} + 4d_{1}^{m}$$

$$a_{2}, a_{2} + d_{2}^{m}, a_{2} + 2d_{2}^{m}, a_{2} + 3d_{2}^{m}, a_{2} + 4d_{2}^{m}$$

$$a_{1} + wd_{1}^{m} = a_{2} + xd_{2}^{m}$$
where $w, x, y, z \in \{0, 1, 2, 3, 4\}$.
$$(w - y)d_{1}^{m} = (x - z)d_{2}^{m} \text{ so } \frac{w - y}{x - z} = (\frac{d_{2}}{d_{1}})^{m}$$

$$\frac{w - y}{x - z} \in \{1, 2, 3, 4, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{3}{4}, \frac{4}{3}\}$$
If $m = 2$ then $\frac{w - y}{x - z} \in \{\frac{1}{4}, 1, 4\}$.
Solution $w = 4, y = 3, x = 4, z = 0, d_{1} = 2, d_{2} = 1$.

.....

$$\begin{aligned} a_1, a_1 + d_1^{m}, a_1 + 2d_1^{m}, a_1 + 3d_1^{m}, a_1 + 4d_1^{m} \\ a_2, a_2 + d_2^{m}, a_2 + 2d_2^{m}, a_2 + 3d_2^{m}, a_2 + 4d_2^{m} \\ a_1 + wd_1^{m} &= a_2 + xd_2^{m} \\ a_1 + yd_1^{m} &= a_2 + zd_2^{m} \text{ where } w, x, y, z \in \{0, 1, 2, 3, 4\}. \\ (w - y)d_1^{m} &= (x - z)d_2^{m} \text{ so } \frac{w - y}{x - z} = (\frac{d_2}{d_1})^{m} \\ \frac{w - y}{x - z} \in \{1, 2, 3, 4, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{3}{4}, \frac{4}{3}\} \\ \text{If } m &= 2 \text{ then } \frac{w - y}{x - z} \in \{\frac{1}{4}, 1, 4\}. \\ \text{Solution } w &= 4, y = 3, x = 4, z = 0, d_1 = 2, d_2 = 1. \\ \text{If } m &= 3 \text{ then } \frac{w - y}{x - z} = 1, \text{ so } d_1^{m} = d_2^{m}, \text{ so } d_1 = d_2. \text{ No solution.} \end{aligned}$$

◆□ ▶ < 個 ▶ < 目 ▶ < 目 ▶ < 回 ▶ < 回 ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □

$$\begin{array}{l} a_1, a_1 + d_1^m, a_1 + 2d_1^m, a_1 + 3d_1^m, a_1 + 4d_1^m \\ a_2, a_2 + d_2^m, a_2 + 2d_2^m, a_2 + 3d_2^m, a_2 + 4d_2^m \\ a_1 + wd_1^m = a_2 + xd_2^m \\ a_1 + yd_1^m = a_2 + zd_2^m \text{ where } w, x, y, z \in \{0, 1, 2, 3, 4\}. \\ (w - y)d_1^m = (x - z)d_2^m \text{ so } \frac{w - y}{x - z} = (\frac{d_2}{d_1})^m \\ \frac{w - y}{x - z} \in \{1, 2, 3, 4, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{3}{4}, \frac{4}{3}\} \\ \text{If } m = 2 \text{ then } \frac{w - y}{x - z} \in \{\frac{1}{4}, 1, 4\}. \\ \text{Solution } w = 4, y = 3, x = 4, z = 0, d_1 = 2, d_2 = 1. \\ \text{If } m = 3 \text{ then } \frac{w - y}{x - z} = 1, \text{ so } d_1^m = d_2^m, \text{ so } d_1 = d_2. \text{ No solution.} \\ \text{Upshot If } A_1, A_2 \text{ are two 5-APs with different differences, both cubes, then } |A_1 \cap A_2| \leq 1. \end{array}$$

A Lemma and a Thm

Lemma Let $k \ge 3$. $(\exists m)$ such that the the following holds: For all $\alpha, \beta \in \{1, ..., k\}$ there is **no** (d_1, d_2) with $d_1 \ne d_2$ such that

 $\alpha d_1^m = \beta d_2^m.$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

A Lemma and a Thm

Lemma Let $k \ge 3$. $(\exists m)$ such that the the following holds: For all $\alpha, \beta \in \{1, ..., k\}$ there is **no** (d_1, d_2) with $d_1 \ne d_2$ such that

$$\alpha d_1^m = \beta d_2^m.$$

Thm Let $k \ge 3$. $(\exists m = m(k))$ such that the following holds: If A_1 is a k-AP with diff d_1^m and A_2 is a k-AP with diff d_2^m , with $d_1 \ne d_2$, then $|A_1 \cap A_2| \le 1$.

ション ふゆ アメリア メリア しょうくしゃ

Given k let m = m(k). Let $D = \{d^m : d \ge 1\}$.

Given k let m = m(k). Let $D = \{d^m : d \ge 1\}$. Good news If A_1 and A_2 are k-APs with diffs in D, then $|A_1 \cap A_2| \le 1$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Given k let m = m(k). Let $D = \{d^m : d \ge 1\}$. **Good news** If A_1 and A_2 are k-APs with diffs in D, then $|A_1 \cap A_2| \le 1$. **Bad News** If A_1 and A_2 are k-APs with same diff in D, could have $|A_1 \cap A_2| \ge 2$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Given k let m = m(k). Let $D = \{d^m : d \ge 1\}$. Good news If A_1 and A_2 are k-APs with diffs in D, then $|A_1 \cap A_2| \le 1$. Bad News If A_1 and A_2 are k-APs with same diff in D, could have $|A_1 \cap A_2| \ge 2$. Example k = 5. d = 4. $|\{1, 5, 9, 13, 17\} \cap \{13, 17, 21, 25, 29\}| = 2$

Given k let m = m(k). Let $D = \{d^m : d \ge 1\}$. Good news If A_1 and A_2 are k-APs with diffs in D, then $|A_1 \cap A_2| \le 1$. Bad News If A_1 and A_2 are k-APs with same diff in D, could have $|A_1 \cap A_2| \ge 2$. Example k = 5. d = 4. $|\{1, 5, 9, 13, 17\} \cap \{13, 17, 21, 25, 29\}| = 2$

What to do Next Slide.

We Can Use the Following

Note that the following do not intersect in ≥ 2 places: (1, 5, 9, 13, 17) (2, 6, 10, 14, 18) (3, 7, 11, 15, 19) (4, 8, 12, 16, 20) Do we need to stop here? No.

We Can Use the Following

```
Note that the following do not intersect in \geq 2 places:
(1, 5, 9, 13, 17)
(2, 6, 10, 14, 18)
(3, 7, 11, 15, 19)
(4, 8, 12, 16, 20)
Do we need to stop here? No.
```

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

```
(21, 25, 29, 33, 37)
(22, 26, 30, 34, 38)
(23, 27, 31, 35, 39)
(24, 28, 32, 36, 40)
```

We Can Use the Following

```
Note that the following do not intersect in \geq 2 places:
(1, 5, 9, 13, 17)
(2, 6, 10, 14, 18)
(3, 7, 11, 15, 19)
(4, 8, 12, 16, 20)
Do we need to stop here? No.
```

```
(21, 25, 29, 33, 37)
(22, 26, 30, 34, 38)
(23, 27, 31, 35, 39)
(24, 28, 32, 36, 40)
```

So can start with any $a \equiv 1, 2, 3, 4 \pmod{20}$.

ション ふぼう メリン メリン しょうくしゃ

Starting Points *a*

More generally we can do the following for k-APs and $d \in D$.

(ロト (個) (E) (E) (E) (E) のへの

More generally we can do the following for k-APs and $d \in D$.

Only use a such that $a \equiv 1, \ldots, d \pmod{kd}$.

More generally we can do the following for k-APs and $d \in D$. Only use a such that $a \equiv 1, ..., d \pmod{kd}$.

With this restriction on *a*, all *k*-APs with diff *d* intersect ≤ 1 .

More generally we can do the following for k-APs and $d \in D$.

Only use a such that $a \equiv 1, \ldots, d \pmod{kd}$.

With this restriction on *a*, all *k*-APs with diff *d* intersect ≤ 1 .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Easy to prove, but we won't do that.

Given k

Given kLet m = m(k).

Given k Let m = m(k). Let $D = \{d^m : d \ge 1\}$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Given k Let m = m(k). Let $D = \{d^m : d \ge 1\}$. Let S(k) be all k-APs such that \blacktriangleright Difference is $d^m \in D$. \blacktriangleright Starting point is $a \equiv 1, \dots, d \pmod{kd^m}$.

Lemma If A_1 and A_2 are in S(k) then $|A_1 \cap A_2| \le 1$.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Given k Let m = m(k). Let $D = \{d^m : d \ge 1\}$. Let S(k) be all k-APs such that \blacktriangleright Difference is $d^m \in D$. \blacktriangleright Starting point is $a \equiv 1, \dots, d \pmod{kd^m}$. Lemma If A_1 and A_2 are in S(k) then $|A_1 \cap A_2| \le 1$. We won't prove this but its easy.

Start Lemma Consider the numbers

$$a, a+d, \ldots, a+(k-1)d.$$

One of them is $\equiv 1, \dots, d \pmod{kd}$. **Pf** View $\{1, \dots, kd\}$ in chunks as follows:

$$\{1,\ldots,d\}, \{d+1,\ldots,2d\}, \cdots, \{(k-1)d+1,\ldots,kd\}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Start Lemma Consider the numbers

$$a, a+d, \ldots, a+(k-1)d$$

One of them is $\equiv 1, ..., d \pmod{kd}$. **Pf** View $\{1, ..., kd\}$ in chunks as follows:

$$\{1,\ldots,d\}, \{d+1,\ldots,2d\}, \cdots, \{(k-1)d+1,\ldots,kd\}$$

ション ふゆ アメリア メリア しょうくしゃ

Assume a is in the *i*th chunk.

Start Lemma Consider the numbers

$$a, a+d, \ldots, a+(k-1)d$$

One of them is $\equiv 1, \ldots, d \pmod{kd}$. **Pf** View $\{1, \ldots, kd\}$ in chunks as follows:

$$\{1,\ldots,d\}, \{d+1,\ldots,2d\}, \cdots, \{(k-1)d+1,\ldots,kd\}$$

ション ふゆ アメリア メリア しょうくしゃ

Assume *a* is in the *i*th chunk.

Then a + d is in the i + 1st chunk (count mod k).

Start Lemma Consider the numbers

$$a, a+d, \ldots, a+(k-1)d$$

One of them is $\equiv 1, ..., d \pmod{kd}$. **Pf** View $\{1, ..., kd\}$ in chunks as follows:

$$\{1,\ldots,d\}, \{d+1,\ldots,2d\}, \cdots, \{(k-1)d+1,\ldots,kd\}$$

Assume *a* is in the *i*th chunk.

Then a + d is in the i + 1st chunk (count mod k).

 $a + d, a + 2d, \ldots, a + (k - 1)d$ hits every chunk, including 1st one.

ション ふゆ アメリア メリア しょうくしゃ

Start Lemma Consider the numbers

$$a, a+d, \ldots, a+(k-1)d$$

One of them is $\equiv 1, ..., d \pmod{kd}$. **Pf** View $\{1, ..., kd\}$ in chunks as follows:

$$\{1,\ldots,d\}, \{d+1,\ldots,2d\}, \cdots, \{(k-1)d+1,\ldots,kd\}$$

Assume *a* is in the *i*th chunk.

Then a + d is in the i + 1st chunk (count mod k).

a + d, a + 2d, ..., a + (k - 1)d hits every chunk, including 1st one. End of Pf

ション ふゆ アメリア メリア しょうくしゃ

Start Lemma Consider the numbers

$$a, a+d, \ldots, a+(k-1)d$$

One of them is $\equiv 1, \ldots, d \pmod{kd}$. **Pf** View $\{1, \ldots, kd\}$ in chunks as follows:

$$\{1,\ldots,d\}, \{d+1,\ldots,2d\}, \cdots, \{(k-1)d+1,\ldots,kd\}$$

Assume *a* is in the *i*th chunk.

Then a + d is in the i + 1st chunk (count mod k).

 $a + d, a + 2d, \dots, a + (k - 1)d$ hits every chunk, including 1st one. End of Pf

Note We will be applying this with $k = M_{c-1}$ and $d = d^m$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへで

Thm For all $c \ge 3$ there exists graph G_c such that

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

$$\chi(G_c) = c, \text{ and}$$
$$g(G_c) = 9.$$

Thm For all $c \ge 3$ there exists graph G_c such that

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

•
$$\chi(G_c) = c$$
, and
• $g(G_c) = 9$.

Ρf

Thm For all $c \ge 3$ there exists graph G_c such that

•
$$\chi(G_c) = c$$
, and
• $g(G_c) = 9$.

Pf

Base c = 3. Use C_9 , the cycle on 9 vertices.

Thm For all $c \ge 3$ there exists graph G_c such that

•
$$\chi(G_c) = c$$
, and
• $g(G_c) = 9$.

Pf

Base c = 3. Use C_9 , the cycle on 9 vertices. Ind Hyp There exists G_{c-1} such that

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm For all $c \ge 3$ there exists graph G_c such that

•
$$\chi(G_c) = c$$
, and
• $g(G_c) = 9$.

Ρf

Base c = 3. Use C_9 , the cycle on 9 vertices.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Ind Hyp There exists G_{c-1} such that

•
$$\chi(G_{c-1}) = c - 1$$
, and

Thm For all $c \ge 3$ there exists graph G_c such that

Pf

Base c = 3. Use C_9 , the cycle on 9 vertices.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Ind Hyp There exists G_{c-1} such that

•
$$\chi(G_{c-1}) = c - 1$$
, and

•
$$g(G_{c-1}) = 9.$$

Thm For all $c \ge 3$ there exists graph G_c such that

Pf

Base c = 3. Use C_9 , the cycle on 9 vertices.

Ind Hyp There exists G_{c-1} such that

•
$$\chi(G_{c-1}) = c - 1$$
, and

•
$$g(G_{c-1}) = 9.$$

Let M_{c-1} be the number of vertices in G_{c-1} .

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm For all $c \ge 3$ there exists graph G_c such that

Pf

Base c = 3. Use C_9 , the cycle on 9 vertices.

Ind Hyp There exists G_{c-1} such that

•
$$\chi(G_{c-1}) = c - 1$$
, and

•
$$g(G_{c-1}) = 9.$$

Let M_{c-1} be the number of vertices in G_{c-1} .

Ind Step We construct G_c on next slide.

(ロ) (司) (言) (言) 言 の()

 Let L be a large number to be picked later. We call [L] the base vertices. They will not be connected to each other.

 Let L be a large number to be picked later. We call [L] the base vertices. They will not be connected to each other.

2. For every $A \in {[L] \choose M_{c-1}} \cap S(M_{c-1})$:

- Let L be a large number to be picked later. We call [L] the base vertices. They will not be connected to each other.
- 2. For every $A \in {[L] \choose M_{c-1}} \cap S(M_{c-1})$:
 - a) Make a copy of G_{c-1} : G_{c-1}^A . (G_{c-1}^A has M_{c-1} verts.)

ション ふゆ アメリア メリア しょうくしゃ

- Let L be a large number to be picked later. We call [L] the base vertices. They will not be connected to each other.
- 2. For every $A \in {[L] \choose M_{c-1}} \cap S(M_{c-1})$:
 - a) Make a copy of G_{c-1} : G_{c-1}^A . (G_{c-1}^A has M_{c-1} verts.)

b) Put edges between A and the verts of G_{c-1}^A as a bijection.

- Let L be a large number to be picked later. We call [L] the base vertices. They will not be connected to each other.
- 2. For every $A \in {[L] \choose M_{c-1}} \cap S(M_{c-1})$:
 - a) Make a copy of G_{c-1} : G_{c-1}^A . (G_{c-1}^A has M_{c-1} verts.)

b) Put edges between A and the verts of G_{c-1}^A as a bijection. GOTO WHITE BOARD TO LOOK AT G_4

- Let L be a large number to be picked later. We call [L] the base vertices. They will not be connected to each other.
- 2. For every $A \in {[L] \choose M_{c-1}} \cap S(M_{c-1})$:
 - a) Make a copy of G_{c-1} : G_{c-1}^A . (G_{c-1}^A has M_{c-1} verts.)

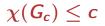
b) Put edges between A and the verts of G_{c-1}^A as a bijection. **GOTO WHITE BOARD TO LOOK AT** G_4 Construction is done.

- Let L be a large number to be picked later. We call [L] the base vertices. They will not be connected to each other.
- 2. For every $A \in {[L] \choose M_{c-1}} \cap S(M_{c-1})$:
 - a) Make a copy of G_{c-1} : G_{c-1}^A . (G_{c-1}^A has M_{c-1} verts.)
 - b) Put edges between A and the verts of G_{c-1}^A as a bijection.

GOTO WHITE BOARD TO LOOK AT G₄

Construction is done.

We prove it works in the next few slides.



Assume inductively that $\chi(G_{c-1}) = c - 1$.

$\chi(G_c) \leq c$

Assume inductively that $\chi(G_{c-1}) = c - 1$.

Color each G_{c-1}^A with [c-1].

$\chi(G_c) \leq c$

Assume inductively that $\chi(G_{c-1}) = c - 1$.

・ロト・日本・ヨト・ヨト・ヨー つへぐ

Color each G_{c-1}^A with [c-1].

Color all of the base vertices c.

$\chi(G_c) \leq c$

Assume inductively that $\chi(G_{c-1}) = c - 1$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Color each G_{c-1}^A with [c-1].

Color all of the base vertices c.

Done!

Assume inductively that $\chi(G_{c-1}) = c - 1$. We show $\chi(G_c) \ge c$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

Assume inductively that $\chi(G_{c-1}) = c - 1$. We show $\chi(G_c) \ge c$. Assume, BWOC, $\chi(G_c) \le c - 1$ via COL.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Assume inductively that $\chi(G_{c-1}) = c - 1$. We show $\chi(G_c) \ge c$. Assume, BWOC, $\chi(G_c) \le c - 1$ via COL. *L* is a c - 1-colored sequence of integers.

Assume inductively that $\chi(G_{c-1}) = c - 1$. We show $\chi(G_c) \ge c$. Assume, BWOC, $\chi(G_c) \le c - 1$ via COL. L is a c - 1-colored sequence of integers. Choose $L = W(x^m, 2x^m, \dots, \Box x^m; c - 1)$ where we choose \Box later.

Assume inductively that $\chi(G_{c-1}) = c - 1$. We show $\chi(G_c) \ge c$. Assume, BWOC, $\chi(G_c) \le c - 1$ via COL. L is a c - 1-colored sequence of integers. Choose $L = W(x^m, 2x^m, \dots, \Box x^m; c - 1)$ where we choose \Box later. There exists d such that

 $a, a + d^m, a + 2d^m, \ldots, a + \Box d^m$ same color.

Want to obtain an M_{c-1} -AP in $S(M_{c-1})$ that is same color

Assume inductively that $\chi(G_{c-1}) = c - 1$. We show $\chi(G_c) \ge c$. Assume, BWOC, $\chi(G_c) \le c - 1$ via COL. L is a c - 1-colored sequence of integers. Choose $L = W(x^m, 2x^m, \dots, \Box x^m; c - 1)$ where we choose \Box later. There exists d such that

 $a, a + d^m, a + 2d^m, \ldots, a + \Box d^m$ same color.

Want to obtain an M_{c-1} -AP in $S(M_{c-1})$ that is same color We are halfway there since diff is an *m*th power.

 $(\exists a, d)[a, a + d^m, a + 2d^m, \dots, a + \Box d^m \text{ same color }].$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 $(\exists a, d)[a, a + d^m, a + 2d^m, \dots, a + \Box d^m \text{ same color }].$ Want to obtain an M_{c-1} -AP in $S(M_{c-1})$ that is same color.

 $(\exists a, d)[a, a + d^m, a + 2d^m, \dots, a + \Box d^m \text{ same color }].$ Want to obtain an M_{c-1} -AP in $S(M_{c-1})$ that is same color. We are halfway there since diff that is an *m*th power.

 $(\exists a, d)[a, a + d^m, a + 2d^m, \dots, a + \Box d^m$ same color]. Want to obtain an M_{c-1} -AP in $S(M_{c-1})$ that is same color. We are halfway there since diff that is an *m*th power. By **Start Lemma** there exists $0 \le x \le M_{c-1} - 1$ such that $a + xd^m \equiv 1, \dots, d \pmod{M_{c-1}d^m}$.

 $(\exists a, d)[a, a + d^m, a + 2d^m, \dots, a + \Box d^m$ same color]. Want to obtain an M_{c-1} -AP in $S(M_{c-1})$ that is same color. We are halfway there since diff that is an *m*th power. By **Start Lemma** there exists $0 \le x \le M_{c-1} - 1$ such that $a + xd^m \equiv 1, \dots, d \pmod{M_{c-1}d^m}$. If we start out sequence there we get

$$(a + xd^m, a + (x + 1)d^m, \dots, a + (M_{c-1} + x - 1)d^m) \in S(M_{c-1}).$$

 $(\exists a, d)[a, a + d^m, a + 2d^m, \dots, a + \Box d^m$ same color]. Want to obtain an M_{c-1} -AP in $S(M_{c-1})$ that is same color. We are halfway there since diff that is an *m*th power. By **Start Lemma** there exists $0 \le x \le M_{c-1} - 1$ such that $a + xd^m \equiv 1, \dots, d \pmod{M_{c-1}d^m}$. If we start out sequence there we get

$$(a + xd^m, a + (x + 1)d^m, \dots, a + (M_{c-1} + x - 1)d^m) \in S(M_{c-1}).$$

Need all of these to be $\leq \Box d^m$.

 $(\exists a, d)[a, a + d^m, a + 2d^m, \dots, a + \Box d^m$ same color]. Want to obtain an M_{c-1} -AP in $S(M_{c-1})$ that is same color. We are halfway there since diff that is an *m*th power. By **Start Lemma** there exists $0 \le x \le M_{c-1} - 1$ such that $a + xd^m \equiv 1, \dots, d \pmod{M_{c-1}d^m}$. If we start out sequence there we get

$$(a + xd^m, a + (x + 1)d^m, \dots, a + (M_{c-1} + x - 1)d^m) \in S(M_{c-1}).$$

ション ふゆ アメリア メリア しょうくしゃ

Need all of these to be $\leq \Box d^m$. $M_{c-1} + x - 1 \leq M_{c-1} + M_{c-1} - 1 = 2M_{c-1} - 1.$

 $(\exists a, d)[a, a + d^m, a + 2d^m, \dots, a + \Box d^m$ same color]. Want to obtain an M_{c-1} -AP in $S(M_{c-1})$ that is same color. We are halfway there since diff that is an *m*th power. By **Start Lemma** there exists $0 \le x \le M_{c-1} - 1$ such that $a + xd^m \equiv 1, \dots, d \pmod{M_{c-1}d^m}$. If we start out sequence there we get

$$(a + xd^m, a + (x + 1)d^m, \dots, a + (M_{c-1} + x - 1)d^m) \in S(M_{c-1}).$$

Need all of these to be $\leq \Box d^m$.

 $M_{c-1} + x - 1 \le M_{c-1} + M_{c-1} - 1 = 2M_{c-1} - 1.$ Set $\Box = 2M_{c-1}$. (Could have made it $2M_{c-1} - 1$ but bad for slides.)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ ・ 日 ・

Back to $\chi(G_c) \geq c$

We want to prove $\chi(G_c) \geq c$.

Back to $\chi(G_c) \geq c$

We want to prove $\chi(G_c) \ge c$. We assume, BWOC, that $\chi(G_c) \le c - 1$ via COL.

Back to $\chi(G_c) > c$

We want to prove $\chi(G_c) \ge c$. We assume, BWOC, that $\chi(G_c) \le c - 1$ via COL. Look at COL on the *L* base points.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

We want to prove $\chi(G_c) \ge c$. We assume, BWOC, that $\chi(G_c) \le c - 1$ via COL. Look at COL on the *L* base points. *L* is chosen to be $W(x^m, 2x^m, \dots, 2M_{c-1}x^m; c-1)$, so that there will be a mono $A \in S(M_{c-1})$.

ション ふゆ アメリア メリア しょうくしゃ

We want to prove $\chi(G_c) \ge c$. We assume, BWOC, that $\chi(G_c) \le c - 1$ via COL. Look at COL on the *L* base points. *L* is chosen to be $W(x^m, 2x^m, \dots, 2M_{c-1}x^m; c-1)$, so that there will be a mono $A \in S(M_{c-1})$.

So we have a mono $A \in S(M_{c-1})$. Look at G_{c-1}^A .

We want to prove $\chi(G_c) \ge c$. We assume, BWOC, that $\chi(G_c) \le c - 1$ via COL. Look at COL on the *L* base points. *L* is chosen to be $W(x^m, 2x^m, \dots, 2M_{c-1}x^m; c-1)$, so that there will be a mono $A \in S(M_{c-1})$.

ション ふぼう メリン メリン しょうくしゃ

So we have a mono $A \in S(M_{c-1})$. Look at G_{c-1}^A . G_{c-1}^A requires c-1 colors.

We want to prove $\chi(G_c) \ge c$. We assume, BWOC, that $\chi(G_c) \le c - 1$ via COL. Look at COL on the *L* base points. *L* is chosen to be $W(x^m, 2x^m, \dots, 2M_{c-1}x^m; c-1)$, so that there will be a mono $A \in S(M_{c-1})$.

So we have a mono $A \in S(M_{c-1})$. Look at G_{c-1}^A . G_{c-1}^A requires c-1 colors. None of them can be the color of A.

We want to prove $\chi(G_c) \ge c$. We assume, BWOC, that $\chi(G_c) \le c - 1$ via COL. Look at COL on the *L* base points. *L* is chosen to be $W(x^m, 2x^m, \dots, 2M_{c-1}x^m; c-1)$, so that there will be a mono $A \in S(M_{c-1})$.

So we have a mono $A \in S(M_{c-1})$. Look at G_{c-1}^A . G_{c-1}^A requires c-1 colors. None of them can be the color of A. Hence $\chi(G_c) \ge c$. Done

Assume inductively that $g(G_{c-1}) = 9$. Let C be a cycle in G_c . We show $|C| \ge 9$. Familiar Cases

Assume inductively that $g(G_{c-1}) = 9$. Let C be a cycle in G_c . We show $|C| \ge 9$. Familiar Cases

1) C has 0 base points. Then C is a cycle in G_{c-1}^A , so $|C| \ge 9$.

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ うへつ

Assume inductively that $g(G_{c-1}) = 9$. Let C be a cycle in G_c . We show $|C| \ge 9$. Familiar Cases

1) C has 0 base points. Then C is a cycle in G_{c-1}^A , so $|C| \ge 9$.

2) C has 1 base point v. Then v has two edges coming out of it, to $G_{c-1}^{A_1}$ and $G_{c-1}^{A_2}$.

ション ふゆ アメリア メリア しょうくしゃ

Assume inductively that $g(G_{c-1}) = 9$. Let C be a cycle in G_c . We show $|C| \ge 9$. Familiar Cases

1) C has 0 base points. Then C is a cycle in G_{c-1}^A , so $|C| \ge 9$.

2) C has 1 base point v. Then v has two edges coming out of it, to $G_{c-1}^{A_1}$ and $G_{c-1}^{A_2}$. Cycle goes from v to $G_{c-1}^{A_1}$ then leaves $G_{c-1}^{A_1}$ and has to goto a base vertex that is not v. This is impossible. So this case can't happen.

$g(G_c) \ge 9$: The New Case

3) *C* has 2 base points *u*, *v*. **GOTO WHITE BOARD**

Will show that u, v must be in the same $A \in S(M_{k-1})$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$g(G_c) \ge 9$: The New Case

3) *C* has 2 base points *u*, *v*. **GOTO WHITE BOARD**

Will show that u, v must be in the same $A \in S(M_{k-1})$. Recall that $S(M_{k-1})$ was constructed so that no two APs in it intersected in ≥ 2 points.

$g(G_c) \ge 9$: The New Case

3) *C* has 2 base points *u*, *v*. **GOTO WHITE BOARD**

Will show that u, v must be in the same $A \in S(M_{k-1})$. Recall that $S(M_{k-1})$ was constructed so that no two APs in it intersected in ≥ 2 points. Hence this cannot happen.

ション ふゆ アメリア メリア しょうくしゃ

3) *C* has 2 base points *u*, *v*. **GOTO WHITE BOARD**

Will show that u, v must be in the same $A \in S(M_{k-1})$. Recall that $S(M_{k-1})$ was constructed so that no two APs in it intersected in ≥ 2 points. Hence this cannot happen.

4) C has \geq 3 base points. Can show that C has length \geq 9. Touched on this earlier in the proof for $\chi(G_c) = c$, $g(G_c) = 6$.

Application of VDW: **Constructing Graphs with High Chromatic Number** and Girth 12

December 31, 2024

Recall that we said earlier:

Recall that we said earlier:

If a cycle use 1 base vertices then this cannot happen!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Recall that we said earlier:

If a cycle use 1 base vertices then this cannot happen!

If a cycle use **2** base vertices then cycle is ≥ 6

Recall that we said earlier:

If a cycle use 1 base vertices then this cannot happen!

If a cycle use **2** base vertices then cycle is ≥ 6

If a cycle use 3 base vertices then it must have length \geq 9

Recall that we said earlier:

If a cycle use 1 base vertices then this cannot happen!

If a cycle use **2** base vertices then cycle is ≥ 6

- If a cycle use 3 base vertices then it must have length ≥ 9
- If a cycle use 4 base vertices then it must have length ≥ 12

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Recall that we said earlier:

If a cycle use 1 base vertices then this cannot happen! If a cycle use 2 base vertices then cycle is ≥ 6 If a cycle use 3 base vertices then it must have length ≥ 9

If a cycle use 4 base vertices then it must have length ≥ 12

So lets try to make sure that a cycle cannot have 3 base points.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Recall that we said earlier:

If a cycle use 1 base vertices then this cannot happen!

If a cycle use **2** base vertices then cycle is ≥ 6

If a cycle use 3 base vertices then it must have length ≥ 9

If a cycle use 4 base vertices then it must have length ≥ 12

So lets try to make sure that a cycle cannot have 3 base points.

ション ふゆ アメリア メリア しょうくしゃ

The same construction I did for $g(G_c) = 9$ actually shows $g(G_c) = 12$ but uses harder Number Theory.