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Chromatic Number and Girth

Def Let G = (V ,E ) be a graph.

1. Chromatic Number of G is the least c such that there exists
COL : V → [c] such that no neighbors have the same color.
We denote this by χ(G ). This definition and notation are
standard.

2. Girth of G is the length of the shortest cycle. We denote this
by g(G ). This definition is standard, the notation is not.

Examples

1. χ(In) = 0, g(In) = 0. Low χ, Low g .

2. χ(Kn) = n, g(Kn) = 3. High χ, Low g

3. χ(Cn) ∈ {2, 3}, g(Cn) = n. Low χ, High g .

Are there graph with high χ and high g? Yes
Will we use PVDW’s theorem? Yes.
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We Will Construct. . .

We will construct the following:

For all c ≥ 3:

1. Gc with χ(Gc) = c and g(G ) = 6. Uses Pigeonhole Principle.

2. Gc with χ(Gc) = c and g(G ) = 9. Uses PVDW and Numb.
Theory

3. Gc with χ(Gc) = c and g(G ) = 12. Use PVDW and Harder
Numb Theory.

Better results are known; however, the structure of our G is such
that G4 can be embedded as a unit graph in the plane:
(x , y) ∈ E =⇒ d(x , y) = 1.
(x , y) /∈ E =⇒ d(x , y) 6= 1.

Such graphs are motivated by work on the
Chromatic Number of the Plane.

We may or may not discuss this later. That is a tautology.
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χ(Gc) = c, g(G) = 6

Thm For all c there exists graph Gc such that

I χ(Gc) = c , and

I g(Gc) = 6.

Pf

Base c = 2. Use C6, the cycle on 6 vertices.

Ind Hyp There exists Gc−1 such that

I χ(Gc−1) = c − 1, and

I g(Gc−1) = 6.

Let Mc−1 be the number of vertices in Gc−1.

Ind Step We construct Gc on next slide.
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Construction of Gc

1. Let L be a large number to be picked later. We call [L] the
base vertices. They will not be connected to each other.

2. For every A ∈
( [L]
Mc−1

)
:

a) Make a copy of Gc−1: GA
c−1. (GA

c−1 has Mc−1 verts.)

b) Put edges between A and the verts of GA
c−1 as a bijection.

GOTO WHITE BOARD TO LOOK AT G4

Construction is done.
We prove it works in the next few slides.
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χ(Gc) ≤ c

Assume inductively that χ(Gc−1) = c − 1.

Color each GA
c−1 with [c − 1].

Color all of the base vertices c .

Done!
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χ(Gc) ≥ c

Assume inductively that χ(Gc−1) = c − 1. We show χ(Gc) ≥ c.

Assume, BWOC, χ(Gc) ≤ c − 1.

Of the L base vertices, there exists
⌈

L
c−1

⌉
that are same color.

Choose L such that
⌈

L
c−1

⌉
≥ Mc−1.

Let A be a set of Mc−1 base vertices that are the same color.

There is a bijection from A to GA
c−1 and via edges.

The vertices in A must be a diff color than the c − 1 colors used
on the vertices of GA

c−1. Hence the coloring must use ≥ c colors.
Contradiction. Done!
GOTO WHITE BOARD
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g(Gc) ≤ 6

Inductively GA
c−1 has a cycle of size 6. Hence Gc does.



g(Gc) ≥ 6

Assume inductively that g(Gc−1) = 6.
Let C be a cycle in Gc . We show |C | ≥ 6.

0) If C has 0 base vertices then C is a cycle in GA
c−1, so |C | ≥ 6.

1) If C has 1 base vertex v then v has two edges coming out of it,
to GA1

c−1 and GA2
c−1. GOTO White Board!

Cycle goes from v to GA1
c−1 then leaves GA1

c−1 and has to goto a
base vertex that is not v .
This is impossible. So this case can’t happen.

2) Can it use exactly 2 base vertices, say 1,2. Yes.
GOTO WHITE BOARD
B1 is Base vertex 1, B2 is Base vertex 2.
C1 is 1 in a copy of Gc , C2 is 2 in that copy.
D1 is 1 in a copy of Gc , D2 is 2 in that copy.
Shortest cycle: (B1,C1,C2,B2,D2,D1,B1). Len 6.
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Cases 3,4,. . .

3) Can it use exactly 3 base vertices. Say 1,2,3. Yes.
GOTO WHITE BOARD
C1 is 1 in a copy of Gc , C2 is 2, C3 is 3.
D1 is 1 in a copy of Gc , D2 is 2, D3 is 3.
E1 is 1 in a copy of Gc , E2 is 2, E3 is 3.
Shortest cycle: (B1,C1,C2,B2,D2,D3,B3,E3,E1,B1). Len 9.

4) Note If cycle uses x ≥ 2 base vertices then shortest cycle is
length 3x . (Will use this later)
GOTO WHITE BOARD
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Upshot

We have
χ(Gc) = c
g(Gc) = 6.
So we are done.



Their Motivation, but Not Ours

Discuss Chromatic Number of the Plane GOTO BLACKBOARD

Soifer, O’Donnell, Others(?) wanted to find G that had
χ(G ) = G , g(G ) = g , G is unit graph in the plane.

The construction we did for χ(Gc) = c , g(Gc) = 6, credited to
Blanch Descartes, yields such a graph when c = 4.
This construction yields unit graphs when c = 4.
Hence they want to do that kind of construction.

Our interest Some of the constructions used VDW and PVDW!
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Known: (∀c)(∃G)[χ(G) = c and . . .]

g(G ) Math who

6 PHP Folklore
9 VDW, Messy O’Donnell

12 PVDW & Hard Number Theory O’Donnell
g Hard Hypergraph Erdos-Hajnal-O’Donnell

1. Don’t want to show you messy OR Hard NT.

2. Want to show you app of VDW or Poly VDW.

Hence I came up with the following:
g(G ) Math who

9 PVDW & Easy Number Theory Gasarch
We will do it the Gasarch Way!
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Base Points and Cycles

Recall that we said earlier:

If a cycle uses 1 base vertices then this cannot happen!

If a cycle uses 2 base vertices then cycle is ≥ 6

If a cycle uses 3 base vertices then it must have length ≥ 9

We make sure that a cycle cannot connect to 2 base points.

Lets look at cycles that connected to 2 base points.
GOTO WHITE BOARD

Because there exists A1,A2 ∈
( [L]
Mc−1

)
with |A1 ∩ A2| ≥ 2.

We want the following:

I Fewer sets A so that for all A1,A2, |A1 ∩ A2| ≤ 1.

I Enough sets A so that can do the χ(Gc) ≥ c proof.
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We will use k-AP’s

Our set A will be a set of k-AP’s (k = Mc−1) with diff dm.

We take k = 5 for our running examples. Diff is dm.
Take two 5-APs with different differences, both powers of m.

a1, a1 + dm
1 , a1 + 2dm

1 , a1 + 3dm
1 , a1 + 4dm

1

a2, a2 + dm
2 , a2 + 2dm

2 , a2 + 3dm
2 , a2 + 4dm

2

Is there an m such that they cannot intersect in two places?
Next Slide
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a1 + ydm
1 = a2 + zdm

2 where w , x , y , z ∈ {0, 1, 2, 3, 4}.

(w − y)dm
1 = (x − z)dm

2 so w−y
x−z = (d2d1 )m

w−y
x−z ∈ {1, 2, 3, 4,

1
2 ,

1
3 ,

1
4 ,

2
3 ,

3
2 ,

3
4 ,

4
3}

If m = 2 then w−y
x−z ∈ {

1
4 , 1, 4}.

Solution w = 4, y = 3, x = 4, z = 0, d1 = 2, d2 = 1.

If m = 3 then w−y
x−z = 1, so dm

1 = dm
2 , so d1 = d2. No solution.

Upshot If A1,A2 are two 5-APs with different differences, both
cubes, then |A1 ∩ A2| ≤ 1.
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A Lemma and a Thm

Lemma Let k ≥ 3. (∃m) such that the the following holds:
For all α, β ∈ {1, . . . , k} there is no (d1, d2) with d1 6= d2 such that

αdm
1 = βdm

2 .

Thm Let k ≥ 3. (∃m = m(k)) such that the following holds:
If A1 is a k-AP with diff dm

1 and A2 is a k-AP with diff dm
2 , with

d1 6= d2, then |A1 ∩ A2| ≤ 1.
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Our Set of k-APs

Given k let m = m(k). Let D = {dm : d ≥ 1}.

Good news If A1 and A2 are k-APs with diffs in D, then
|A1 ∩ A2| ≤ 1.

Bad News If A1 and A2 are k-APs with same diff in D, could have
|A1 ∩ A2| ≥ 2.

Example k = 5. d = 4.

|{1, 5, 9, 13, 17} ∩ {13, 17, 21, 25, 29}| = 2

What to do Next Slide.
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We Can Use the Following

Note that the following do not intersect in ≥ 2 places:
(1, 5, 9, 13, 17)
(2, 6, 10, 14, 18)
(3, 7, 11, 15, 19)
(4, 8, 12, 16, 20)
Do we need to stop here? No.

(21, 25, 29, 33, 37)
(22, 26, 30, 34, 38)
(23, 27, 31, 35, 39)
(24, 28, 32, 36, 40)

So can start with any a ≡ 1, 2, 3, 4 (mod 20).
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Starting Points a

More generally we can do the following for k-APs and d ∈ D.

Only use a such that a ≡ 1, . . . , d (mod kd).

With this restriction on a, all k-APs with diff d intersect ≤ 1.

Easy to prove, but we won’t do that.
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Final Upshot for k-APs

Given k

Let m = m(k).

Let D = {dm : d ≥ 1}.
Let S(k) be all k-APs such that

I Difference is dm ∈ D.

I Starting point is a ≡ 1, . . . , d (mod kdm).

Lemma If A1 and A2 are in S(k) then |A1 ∩ A2| ≤ 1.

We won’t prove this but its easy.
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Lemma on Starting Points

Start Lemma Consider the numbers

a, a + d , . . . , a + (k − 1)d .

One of them is ≡ 1, . . . , d (mod kd).
Pf View {1, . . . , kd} in chunks as follows:

{1, . . . , d}, {d + 1, . . . , 2d}, · · · , {(k − 1)d + 1, . . . , kd}

Assume a is in the ith chunk.

Then a + d is in the i + 1st chunk (count mod k).

a + d , a + 2d , . . . , a + (k − 1)d hits every chunk, including 1st one.
End of Pf
Note We will be applying this with k = Mc−1 and d = dm.
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χ(Gc) = c, g(G) = 9

Thm For all c ≥ 3 there exists graph Gc such that

I χ(Gc) = c , and

I g(Gc) = 9.

Pf

Base c = 3. Use C9, the cycle on 9 vertices.

Ind Hyp There exists Gc−1 such that

I χ(Gc−1) = c − 1, and

I g(Gc−1) = 9.

Let Mc−1 be the number of vertices in Gc−1.

Ind Step We construct Gc on next slide.
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Construction of Gc

1. Let L be a large number to be picked later. We call [L] the
base vertices. They will not be connected to each other.

2. For every A ∈
( [L]
Mc−1

)
∩ S(Mc−1):

a) Make a copy of Gc−1: GA
c−1. (GA

c−1 has Mc−1 verts.)

b) Put edges between A and the verts of GA
c−1 as a bijection.

GOTO WHITE BOARD TO LOOK AT G4

Construction is done.
We prove it works in the next few slides.
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χ(Gc) ≤ c

Assume inductively that χ(Gc−1) = c − 1.

Color each GA
c−1 with [c − 1].

Color all of the base vertices c .

Done!
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χ(Gc) ≥ c (This uses PVDW!)

Assume inductively that χ(Gc−1) = c − 1. We show χ(Gc) ≥ c.

Assume, BWOC, χ(Gc) ≤ c − 1 via COL.

L is a c − 1-colored sequence of integers.

Choose L = W (xm, 2xm, . . . ,�xm; c − 1) where we choose � later.

There exists d such that

a, a + dm, a + 2dm, . . . , a +�dm same color.

Want to obtain an Mc−1-AP in S(Mc−1) that is same color

We are halfway there since diff is an mth power.
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Need a Good Start Point

(∃a, d)[a, a + dm, a + 2dm, . . . , a +�dm same color ].

Want to obtain an Mc−1-AP in S(Mc−1) that is same color.

We are halfway there since diff that is an mth power.

By Start Lemma there exists 0 ≤ x ≤ Mc−1 − 1 such that
a + xdm ≡ 1, . . . , d (mod Mc−1d

m).

If we start out sequence there we get

(a + xdm, a + (x + 1)dm, . . . , a + (Mc−1 + x − 1)dm) ∈ S(Mc−1).

Need all of these to be ≤ �dm.

Mc−1 + x − 1 ≤ Mc−1 + Mc−1 − 1 = 2Mc−1 − 1.

Set � = 2Mc−1. (Could have made it 2Mc−1 − 1 but bad for
slides.)
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Back to χ(Gc) ≥ c

We want to prove χ(Gc) ≥ c .

We assume, BWOC, that χ(Gc) ≤ c − 1 via COL.
Look at COL on the L base points.
L is chosen to be W (xm, 2xm, . . . , 2Mc−1x

m; c − 1), so that there
will be a mono A ∈ S(Mc−1).

So we have a mono A ∈ S(Mc−1). Look at GA
c−1.

GA
c−1 requires c − 1 colors.

None of them can be the color of A.
Hence χ(Gc) ≥ c . Done
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g(Gc) ≥ 9: Familiar Cases

Assume inductively that g(Gc−1) = 9.
Let C be a cycle in Gc . We show |C | ≥ 9.
Familiar Cases

1) C has 0 base points. Then C is a cycle in GA
c−1, so |C | ≥ 9.

2) C has 1 base point v . Then v has two edges coming out of it,
to GA1

c−1 and GA2
c−1.

Cycle goes from v to GA1
c−1 then leaves GA1

c−1 and has to goto a
base vertex that is not v .
This is impossible. So this case can’t happen.
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g(Gc) ≥ 9: The New Case

3) C has 2 base points u, v .
GOTO WHITE BOARD
Will show that u, v must be in the same A ∈ S(Mk−1).

Recall that S(Mk−1) was constructed so that no two APs in it
intersected in ≥ 2 points.
Hence this cannot happen.

4) C has ≥ 3 base points. Can show that C has length ≥ 9.
Touched on this earlier in the proof for χ(Gc) = c , g(Gc) = 6.
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Base Points and Cycles

Recall that we said earlier:

If a cycle use 1 base vertices then this cannot happen!

If a cycle use 2 base vertices then cycle is ≥ 6

If a cycle use 3 base vertices then it must have length ≥ 9

If a cycle use 4 base vertices then it must have length ≥ 12

So lets try to make sure that a cycle cannot have 3 base points.

The same construction I did for g(Gc) = 9 actually shows
g(Gc) = 12 but uses harder Number Theory.
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