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In [2, 3], Chung and Liu introduce the following generalization of Ramsey Theory for graphs.
Choose ¢ colors, and integers d,.d,, ..., g, satisfying 1<d,<d,<-:-<d, <c. Order the ()
subsets of d, colors, (5)) subsets of d, colors, . .., () subsets of d,, colors and let t =3, (§). For
graphs G,.G,,...,G, the (d,.d,....,d,)-chromatic Ramsey pumber denoted by
R, a4, .. .a(G1. Gyl ..., G), is the smallest integer p such that if the edges of K|, are colored
with ¢ colors in any fashion, then for some i. the subgraph whose edges are colored with the ith
subset of colors contains G,. The numbers R%(G,, G,), simply denoted R(G,, G,), have been
surveyed in [1] and in particular if G,,G,,...,G. are complete graphs, then
R5(G,.Ga....,G,), denoted R(G,, G,, ..., G,), are the classical Ramsey numbers [7].

Chung and Liu have determined some numbers of the form R3(K, K. K,),
R} (K. K,....,K) and R} (K;,...,K,) In this paper we are mainly concerned with the
numbers R} (K, Ki,....K; ).

o

1. Introduction

In [2,3], Chung and Liu introduce the following generalization of Ramsey
Theory for graphs. Choose ¢ colors, and integers d,, d,, . . . , d, satisfying 1<d, <
d;<---<d,<c. Order the (§) subsets of d, colors, (j,) subsets of d,
colors, . . ., (§,) subsets of d, colors and let t =}, (§). For graphs G,, G, ..., G,
the (d,, d>, . .., d,)-chromatic Ramsey number denoted by
RS, a......a(G1, G ..., G), is the smallest integer p such that if the edges of K,
are colored with ¢ colors in any fashion, then for some i, the subgraph whose
edges are colored with the ith subset of colors contains G, The numbers
R3(G,, G,), simply denoted R(G,, G,), have been surveyed in [1] and in particu-
lar if G,, G,,..., G, are complete graphs, then R{(G,,C,, ..., G.). denoted
R(G,, G,, ..., G,), are the classic:! Ramsey numbers [7].

Chung and Liu have determined some numbers of the form R3(K, K;, K,,),
R} (K, Ki....,K,) and R (K. ...,K,). In this paper we are mainly con-
cerned with the numbers R} (K, K. ...K).

tio

2. General inequalities

For convenience, we designate colors by lower case Greek letters and establish
the following notational convention. The number

T.Z(Gh G2’ GI‘” G49 Gl;!, G?d’ Gl3’ (—;24s Gl49 623)
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is the smallest integer p so that if the edges of K, are 4-colored with a, 8.y and 6,
then K, contains at least one of the following: an a — Gy, B — G,, v~ G;, 8 — Gy,
af -Gz v8—Gsa, ay—Ga, B6— Gy, ad— Gy, o a By—G,s. For positive
integzrs s less than p, a coloring of K with «, 8, v and 8 containing none of the
prescribed subgraphs is called proper. Note that p—1 is the largest integer for
which a proper 4-coloring exists. Also it will be convenient to replace K, by n in
argument lists.

Theorem 2.1. R1,(G,, G,, Gi, Gy, iys, . . ., i23) < R(G,, Gs, G, G,). Furthermore
if iy = R{Gy, G,) for all pairs k. I, then equality holds.

Proof. If s=R(G,, G,, G;, G,), every 4-coloring of K, contains an a—-G,,
B—G,, v--G; or a 8 -Gy, so clearly R}.(G,, Ga, G3, G4, 12y . . ., i23)<5s. We
know there is a 4-coloring of K,_, containing no a—G,, B—G,, ¥ -G; nor
8 — G,. Clearly, such a coloring can contain no af—K;,, v6—K,,, etc., thus
completing the proof. []

As special cases, Theorem 2.1 yields:

R‘}.Z(P:h P3» p3, P3, 3’ 3a 3, 3a 37 3)=R(P3v P3$ P39 P3)=59
and

123,3,3,3,6,6,6,6,6,6)=3(3,3,3,3).
Theorem 2.2. If §= l'llin{R(Glz, G34), R(Gl:;, G?A), R(Gl4, 623)}, then
R‘:.Z(Gla G;, G;, G4, Gy, ..., Gy3)Ss.

Proof. Without loss of generality, let s = R(G,, Gi4). If we 4-color K, then by
considering a and 5 as one color and y and 8 as a second color there must exist

an af —G;, or a yd—Ga,, by the definition of R(G,;, G+,). The result now
follows immediately. [l

3. Exact results

In this section we determine the nu ders R} ,(iy, iz, i3, U4, Is, - . . - iyo) fOT Vari-
ous special cases.

Theorem 3.1

5 ifn=3,

R ,(3.3,3.....3. ={
2l 3M=\¢ ifn=a.

Proof. If r. =3, then a proper 4-coloring of Ks contains no monochromatic nor
bichromatic trianglzs. 1 1ws no point can be incident with more than one edge of
any one cclor. But this mplies that each point must be incident with exactly one



On a generalization of Ramsey theory 193

edge of each color, which contradicts the fact that each color must have an even
valence sum. Fig. ia illustrates a proper coloring of K,; thus R} ,(3,3,...,3,3)=
S.

If n=4, we know from Theorem 2.2 that R},(3,3,...,3,n)<<R(3,3)=6, and
equality fo.lows from tae proper coloring of K in Fig. 1b. [

Theorem 2.2 also yields the fc lowing simple extension:
R$.(3,3.3,.3,3,3,1,, 15, 13, 1) = 6,
if any one of t,,1,. t;, or t, is greater than 3.
Theorem 3.2. R1~(3.3.3.3,3,4,1,, 15,15, 1,) =9 when t,=3 and 1, t; and t, are
all greater than 3.
Proof. By Theorem 2.2,
R?‘2(3, 3.. 3, 3, 3, 4, tp tg. t3, [4)$ R(3, 4) = 9

and equality follows from the proper coloring of K in Fig. 2. [

In [3] Chung and Liu show that R3,(3, 3, 3,4, 4,4)=8. Clearly we can con-
clude, by omitting a color, that R{,(3, 3, 3, 3, 3,4, 3,4, 3,4)=8. Since the proof
to show that this number is less than 9 is a tedious case-by-case analysis using
standard techniques, we merely state the result:

Theorem 3.3 [6]. R1,(3,3,3,3,3,4,3,4,3,4)=8.

From Theorem 2.2 we have the following three inequalities:

. ' W, X, y,2=3,
(a) 1.2(3’3*3’3’3’5’ ¥y X, Y, Z)S14{w+x,y+z>8,

b) R%.(3.3.3,3.3.6 )<1s{ W%y, 2>3,
( 1203, 3.3, 3, 3.0, W, % 3 2)S A0 ey 220,

w,X,y,z=4,

Y
(c R1,(3,3,3.3,4,4.w,x,y,2)< 18 wxy+z=8.

o = o o m- -

rig. 1. Solid lines are a-edges, dashed lines are B-edges, dotted lines are y and ali others a:¢ 8.
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Fig. 2. Solid lines are v-edges, dashed lines are B-edges, dotted lines are vy and all others are 8.

In some cases, equality holds;
Theorem 3.4. R},(3,3,3,3,3,5,w,x,y,2)=14 for w,y=3, x, z=5.

Proof. Clcarly whenever w, y=3 and x, z=5 we can conclude
R1(3,3,3,3,3,5, w,x,5,2)=R}{x(3,3,3,5,5,5=14. O

Definition (Sabidussi [8]). Let G be a group, and let H be a subset of G such that
the identity element of G is not in H and H = H™'. By the Cayley graph, denoted
X(G, H), of G with respect to H we mean the graph given by V(X(G, H)) = G,
and E(X(G, H))={[g, gh]| g€ G, he H}.

Tkeorem 3.5. R%,(3,3,3,3,3,5, w,x,y,2)=14 for w, x, y, z=4.

Proof. Let H, ={+2}, H, ={£3}, H,={x1, +4} and H; ={+5, +6}. Color the
edges of Cayley graphs X(z.5, H,), X(Z,3, Hg), X(Z,3, H,), X(Z,3, H;) in colors
a, B, v and 8 respectively. Clearly this is a well defined 4-coloring of the edges of
K3, and it is easy to see it is proper. Theorem 2.2 implies equality.

Theorem 3.6. If w,y=3 and x, z, =6, then
R1:(3,3,3,3,3,6,w,x,v,2)=17.

Proof. Since 1,3,3,3,6.6,6)=17 we can conclude that
R1:(3,3,3,3,3,6,w,x.v,2)= 17 under the given hypothesis.

Suppose that there exists a proper coloring of \he edges of K,,. By coasiaering
a and B as one color * ‘e produce a 3-coloring of K,,. Since R(3, 3, 3)=17 we can
conclude that there m st exist either an aff — K3, vy —K; or 8 — Kj in this coloring.
In any case this cortradicts the assumption of the existence of a proper 4-coloring
o{ K,5. The theorem follows. [
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Theorem 3.7. R} (3,3,3,3,4,4,w,x,v,2)=18 for w,x,y, z=¢.

Proof. Let H, ={x1, +4}, Hg ={+2, 8} H, ={+3, 25}, and H; = {6, £7}. Con-
struct Cayley graphs as before, the result follows. [J

Conclusion

Almost untouched is the extension to the numbers of the form R}(G,, G,,...)
in which G, is not necessarily complete. The numbers R3(K,,, K, ,, K, ,) have
been established [4], and the author has attained R} ,(3,3,3, K, ,. K, ,, K, ,) (see
()

Acknowledgement

I would like to express my thanks to Professor Henry Sharp, Jr. for his most
valuable conversations and suggestions. Also thanks are due to the referee whose
suggestions aided in the clarity of the exposition.

References

[1] S.A. Burr, Geneialized Ramsey theory for graphs - A survey, in: Graphs and Combinatorics
(Springer-Verlag, Berlin, 1974) 52-75.

[2] K.M. Chung and C.L. Liu, A generalization oi Ramsey theory for graphs, Discrete Math. 21
(1978) 117-127.

[3] K.M. Chung and C.L. Liu, A generalization of Kamsey theory for graphs, Preprint.

{4] K.M. Chung, M.L. Chung and C.L. Liu, A generalization of Ramsey theory for graphs - with stars
and complete graphs as forbidden subgraphs, Pruc. of the Eighth Southeastern Conference cn
Combinatorics, Graph Theory and Computing, 155-161.

{5] J.E. Graver and J. Yaeckel, Some graph theoretic results associated with Ramsey's theorem, J.
Combin. Theory 4 (1968) 125-175.

[6] M.S. Jacobson, On various extensions of Ramsey theory, Ph.D. Dissertation, Emory Universitv,
1980.

[7] F.P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930) 264-286.

[8] G. Satidussi, On a class of fixed point free graphs, Proc. A.M.S. 9 (1958) 800-804.


https://www.researchgate.net/publication/229352776_Some_Graph_Theoretic_Results_Associated_with_Ramsey's_Theorem?el=1_x_8&enrichId=rgreq-36287235-c233-4ca7-92d4-15b88c385cff&enrichSource=Y292ZXJQYWdlOzIyMDE5MTg2ODtBUzoxOTA2MTEzODAzMzQ2MDlAMTQyMjQ1NjcwMzAwMA==
https://www.researchgate.net/publication/229352776_Some_Graph_Theoretic_Results_Associated_with_Ramsey's_Theorem?el=1_x_8&enrichId=rgreq-36287235-c233-4ca7-92d4-15b88c385cff&enrichSource=Y292ZXJQYWdlOzIyMDE5MTg2ODtBUzoxOTA2MTEzODAzMzQ2MDlAMTQyMjQ1NjcwMzAwMA==
https://www.researchgate.net/publication/243763641_On_a_Class_of_Fixed-Point-Free_Graphs?el=1_x_8&enrichId=rgreq-36287235-c233-4ca7-92d4-15b88c385cff&enrichSource=Y292ZXJQYWdlOzIyMDE5MTg2ODtBUzoxOTA2MTEzODAzMzQ2MDlAMTQyMjQ1NjcwMzAwMA==
https://www.researchgate.net/publication/241010750_On_a_Problem_of_Formal_Logic?el=1_x_8&enrichId=rgreq-36287235-c233-4ca7-92d4-15b88c385cff&enrichSource=Y292ZXJQYWdlOzIyMDE5MTg2ODtBUzoxOTA2MTEzODAzMzQ2MDlAMTQyMjQ1NjcwMzAwMA==
https://www.researchgate.net/publication/266051671_A_generalization_of_Ramsey_theory_for_graphs-with_stars_and_complete_graphs_as_forbidden_subgraphs?el=1_x_8&enrichId=rgreq-36287235-c233-4ca7-92d4-15b88c385cff&enrichSource=Y292ZXJQYWdlOzIyMDE5MTg2ODtBUzoxOTA2MTEzODAzMzQ2MDlAMTQyMjQ1NjcwMzAwMA==
https://www.researchgate.net/publication/266051671_A_generalization_of_Ramsey_theory_for_graphs-with_stars_and_complete_graphs_as_forbidden_subgraphs?el=1_x_8&enrichId=rgreq-36287235-c233-4ca7-92d4-15b88c385cff&enrichSource=Y292ZXJQYWdlOzIyMDE5MTg2ODtBUzoxOTA2MTEzODAzMzQ2MDlAMTQyMjQ1NjcwMzAwMA==
https://www.researchgate.net/publication/266051671_A_generalization_of_Ramsey_theory_for_graphs-with_stars_and_complete_graphs_as_forbidden_subgraphs?el=1_x_8&enrichId=rgreq-36287235-c233-4ca7-92d4-15b88c385cff&enrichSource=Y292ZXJQYWdlOzIyMDE5MTg2ODtBUzoxOTA2MTEzODAzMzQ2MDlAMTQyMjQ1NjcwMzAwMA==
https://www.researchgate.net/publication/248825038_A_generalization_of_Ramsey_theory_for_graphs?el=1_x_8&enrichId=rgreq-36287235-c233-4ca7-92d4-15b88c385cff&enrichSource=Y292ZXJQYWdlOzIyMDE5MTg2ODtBUzoxOTA2MTEzODAzMzQ2MDlAMTQyMjQ1NjcwMzAwMA==
https://www.researchgate.net/publication/248825038_A_generalization_of_Ramsey_theory_for_graphs?el=1_x_8&enrichId=rgreq-36287235-c233-4ca7-92d4-15b88c385cff&enrichSource=Y292ZXJQYWdlOzIyMDE5MTg2ODtBUzoxOTA2MTEzODAzMzQ2MDlAMTQyMjQ1NjcwMzAwMA==

