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In [2.3], Chung and Liu introduce the following generalization of Ramsey Theory for graphs. 

Choose c colors, and integers d Ir d,, . . . , a,, satisfying 1 s d, < d, < - - * ( d, < c. Order the G,, 

subsets of d, colors, (i,) subsets of dz colors, . . . , (;,,) subsets of d, colors and let t =C, 6,). For 

graphs G,, Gz, . . . , G,, the (d,, dZ, . . * , d,,)-chromatic Ramsey number denoted by 

K,,&. .d_(G,* G*-  * * -  ’ G,), is the smallest integer p such that if the edges of I$, are colored 

with c colors in any fashion, then for some i. the subgraph whose edges are colored wjth the ith 

subset of colors contains G,. The numbers R:(G,, G,), simply denoted R(G,, G,), have been 

surveyed in [l] and in particular if G,, G,, . . . , G, are complete graphs, then 

R;(G,, G?,. . . , G,). denoted R(G,, GZ,. . . , G,), are the classical Ramsey numbers [7]. 

Chung and Liu have determined some numbers of the form Rz(Ki, Ki, K,,,), 

R:.,(Ki,, Ki,, . . . , K&j and R:.3(K,,, -  -  -  , 

numbers R$.,(K,,, Ki:, . . . 9 I&,,,)- 

Kill) In this paper we are mainl:, concerned with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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In [2,3], Chung and Liu introduce the following gener&zation of Ramsey 
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is the smallest integer p so that if the edges of I$, are 4-colored with cy, & y and 6, 

then KP contains at least one of the following: an c11- - 62, 3’ - 63, 6 - Gq, 

afi -G,2, yS-- G34, cuy-.-G13, @S-Gz4, a&G,, or a y - 623x For positive 

integers s less than rp, a coloring of KS with (Y, p, y and 6 containing none of the 

prescribed subgraphs is (called proper. Note that p - 1 is the largest integer for 

which a proper 4-coloring exists. Also it will be convenient to replace K, by n in 

argument lists. 

R; AGl, ‘32, Gs, G, in,. . 
if ikl 2 R(G,,*G,) 

. , iz3) 6 R (G,, G2, Gg, GJ. Furthermore 

for all pairs k., P, then equality holds. 

. If s = R(G1, G2., G3, GJ, every 4-coloring of KS contains an ar -G,, 

P - G2, y -- G3 or a 6 -- Gq, so clearly R’: ,(G,, G2, G3, Gq, i12, . . . , i&s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. We 

know there is a 4-coloring of KS_, containing no (X -G,, p - Gz, y -- G3 nor 

8 - GS. Clearly, such a coloring can contain no arp - Ki12, ~6 - Kii,*, etc., thus 

completing the proof. 0 

AS special cases, Theorem 2. l yields : 

G(k bP’3, P?, 3,3,3,3,3,3) = I?(&, P?, Ps, P3) = 5, 

and 

%.,(3,3,3,3,6,6,6,6,6,6) = ?(3,3,3,3). 

1,‘s = rnin{R(G12, G&, R(G13, G2J, R(G14, G&}, then 

&(Gl, GzZ, G3, G4, Gn, . . . , G,J-. 

Without loss of generality, let s = R(G12, GS4). If we 4-color KS, then by 

considering (Y and /S as one color and y and S as a second color there must exist 

an CY~ - Gr2 or a $3 - GS4, by the definition of R(G12, G3J. The result now 

follows immediately. Cl 

In this section we: determine the nu 3ers Rt,&, iz, i3, id, is, . . . 1 ilO) for vari- 

ous special cases. 

f E. = 3, then a proper 4-coloring of KS contains not mono 

o point can be incident with more tha 

eat nci 
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diets the fxt that each color must have an even 

proper coloring of K4; thus R;,J3,3, . . . ,3,3) = 

If II 24, we know from Theorem 2.2 that R;‘.,(3,3,. . . ,3, n)~ R(3,3) = 6, and 

uality fo,tows from tPle proper coloring of KS in Fig. lb. D 

Theorem 2.2 also yields the fc lowing sim 

R:.,(3,3. 3.3,3,3, tl, 22, t3, t) = 6, 

if any one of t Ir f,., f3, or tj is greater than 3. 

rellp 3,2. I?:,-(3. 3, 3, 3, 3.4, t, = ( tz, tl, tJ 9 when t, 2 3 md tz, t3 and t4 are 

all greater than 3. 

. By Theorem 2.2. 

R;,J3,3.3,3,3,4, t,, tz, r3, t,) 6 R(3,4) = 9 

and equality follows from the proper coloring of Kg in Fig. 2. q 

In [3] Chung and Liu show that R:,*(3,3,3,4,4,4) = 8. Clearly we can con- 

clude, by omitting a color, that &(3,3,3,3,3,4,3,4,3,4) 3 8. Since the proof 

to show that this number is less than 9 is a tedious case-by-case analysis using 

standard techniques, we merely state the result: 

.3 [6]. R:,2(3,3,3,3,3,4,3, 4,3,4) = 8. 

From Theorem 2.1 we have the following three inequalities: 

(a) R;,,(3, 3,3, 3,3, 5, k”‘, x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, 2)s 14 w, x, y, 2 a 3, 

w+x,y-~~8, 

w,x,y,za3, 

(W R4,2(3, 3,3,3,3,6, w, x, y, 2) s 1s 
w+x,y+za9, 

w,x, y, 224, 
(c’ R&(3,3,3., 3,4,4. w, x, y, 2)s 18 

w+x,y+zHL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Sig. 1. 

a b 

ed liues are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAges, dotted lines zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare y and alP others arc 6. 
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Fig. 2. Solid lines are J -edges, dashed lines are p-edges, dotted lines are y and all others are 6. 

In some teases, equality holds; 

core 3.4. R;,,(3,3,3,3,3,5, w, x, y, z) = 14 for w, y z= 3, x, z > 5. 

Ckarly whenever w, y 3 3 and x, z 3 5 we can conclude 

R: 2(3,3,3,3,3,5, w, x, y, z@ R;,2(3, 3,3,5,5,5) = 14. . cl 

OJD (Sabidussi [8]). Let G be a group, and let H be a subset of G such that 

the identity element of G is not in H and H = H-‘. By the Cayley graph, denoted 

X(G, H)., of G with respect to H we mean the graph given by V(X(G, r+Y)) = G, 

and E(A(G, H)) = {[g, gh] 1 g E 6, 11 E H). 

eria 3.5. R$<3,3,3,3, ‘.t, 5, w, x, y, z) = 14 for w, x, y, z 24. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

oof. Let H, = {*2}, I-$ == {*3}, My = {*I, *4) and F& = {*5, *6 

ges of Cayley graphs X(&, E&J, X(&, H,), X(&, H?), X(Z131 

a, p, y and S respectively. Clearly this is a well defined 4-coloring of the edges of 

K13., and it is easy to see it. is proper. Theorem 2.1! implies equahty. 

If W, y 2 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAund x, z, 26, then 

?,;(3,3,3,3,3,6, W, x, y, 2) = 17. 

‘. Since _: *(3., 3,3,6,6,6) = 17 

‘: 2(3,3,3,3,3.6, 

Suppose 

wi x, y, z) 2 17 under the giyzn h 

that there cxkts a proper colori 

olor le produce a 3.colorin 

ere m st exist either an 
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. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc.,(3.3,3,3, /b,x,y,r)= I8 for w,x,y,z~~. 

= {*2, k8) If,, = (*3, *5}, and I-& = {*6, *7). Con- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e, the result follows. Cl 

Almost untouched is the extension to the numbers of the form REj(GI, G2,. . .) 

in which Gk is not necessarily complete. The numbers Rz(K,,,, Kl,yr K,,,) have 

been established [4], and the author has attained R:.,(3,3,3, K,,,. KISY, K,,Z) (see 

WI) . 

I would like to express my thanks to Professor Henry Sharp, Jr. for his most 

valuable conversatiorrs and suggestions. Also thanks are due to the referee whose 

suggestions aided in the clarity of the expMion. 

[l} S.A. Burr, Generalized Ramsey theory for grhphs- A survey, in: Graphs and Combnatorics 

(Springer-Verlag, Berlin, 1974) 52-75. 

[2] KM. Chung and C.L. Liu. A generalization oi Ramsey theory for graphs, Discrete Math. 21 

(1978) 117-127. 

[3) KM. Chung and a_‘.L. Liu, A generalization of F.amsey theory for graphs, Preprint. 

i4] K.M. Chung, M.L. Chung and CL. Liu, A generalization of Ramsey theory for graphs -with stars 

and complete graphs as forbidden subgraphs, PI-X. of the Eighth Southeastern Conference on 

Combinatorics, Graph Theory and Ctimputing, 155-161. 

[5] s.E. Graver and J. Yaeckel, Some graph theoretic results associated with Ramsey’s theorem, J. 

Combin. Theory 4 (1968) 125-175. 

16) M.S. Jacobson, On various extensions of Ramsey theory, Ph.D. Dissertation, Emory University, 

1980. 

[7] F.P. Ramsey, On a problem of formal logic, Proc. London Math. Sot. 30 (1930) 264-286. 

[8] G. Sabidussi, On a class of fixed point free graphs, Proc. A.M.S. 9 (1958) 800-804. 

https://www.researchgate.net/publication/229352776_Some_Graph_Theoretic_Results_Associated_with_Ramsey's_Theorem?el=1_x_8&enrichId=rgreq-36287235-c233-4ca7-92d4-15b88c385cff&enrichSource=Y292ZXJQYWdlOzIyMDE5MTg2ODtBUzoxOTA2MTEzODAzMzQ2MDlAMTQyMjQ1NjcwMzAwMA==
https://www.researchgate.net/publication/229352776_Some_Graph_Theoretic_Results_Associated_with_Ramsey's_Theorem?el=1_x_8&enrichId=rgreq-36287235-c233-4ca7-92d4-15b88c385cff&enrichSource=Y292ZXJQYWdlOzIyMDE5MTg2ODtBUzoxOTA2MTEzODAzMzQ2MDlAMTQyMjQ1NjcwMzAwMA==
https://www.researchgate.net/publication/243763641_On_a_Class_of_Fixed-Point-Free_Graphs?el=1_x_8&enrichId=rgreq-36287235-c233-4ca7-92d4-15b88c385cff&enrichSource=Y292ZXJQYWdlOzIyMDE5MTg2ODtBUzoxOTA2MTEzODAzMzQ2MDlAMTQyMjQ1NjcwMzAwMA==
https://www.researchgate.net/publication/241010750_On_a_Problem_of_Formal_Logic?el=1_x_8&enrichId=rgreq-36287235-c233-4ca7-92d4-15b88c385cff&enrichSource=Y292ZXJQYWdlOzIyMDE5MTg2ODtBUzoxOTA2MTEzODAzMzQ2MDlAMTQyMjQ1NjcwMzAwMA==
https://www.researchgate.net/publication/266051671_A_generalization_of_Ramsey_theory_for_graphs-with_stars_and_complete_graphs_as_forbidden_subgraphs?el=1_x_8&enrichId=rgreq-36287235-c233-4ca7-92d4-15b88c385cff&enrichSource=Y292ZXJQYWdlOzIyMDE5MTg2ODtBUzoxOTA2MTEzODAzMzQ2MDlAMTQyMjQ1NjcwMzAwMA==
https://www.researchgate.net/publication/266051671_A_generalization_of_Ramsey_theory_for_graphs-with_stars_and_complete_graphs_as_forbidden_subgraphs?el=1_x_8&enrichId=rgreq-36287235-c233-4ca7-92d4-15b88c385cff&enrichSource=Y292ZXJQYWdlOzIyMDE5MTg2ODtBUzoxOTA2MTEzODAzMzQ2MDlAMTQyMjQ1NjcwMzAwMA==
https://www.researchgate.net/publication/266051671_A_generalization_of_Ramsey_theory_for_graphs-with_stars_and_complete_graphs_as_forbidden_subgraphs?el=1_x_8&enrichId=rgreq-36287235-c233-4ca7-92d4-15b88c385cff&enrichSource=Y292ZXJQYWdlOzIyMDE5MTg2ODtBUzoxOTA2MTEzODAzMzQ2MDlAMTQyMjQ1NjcwMzAwMA==
https://www.researchgate.net/publication/248825038_A_generalization_of_Ramsey_theory_for_graphs?el=1_x_8&enrichId=rgreq-36287235-c233-4ca7-92d4-15b88c385cff&enrichSource=Y292ZXJQYWdlOzIyMDE5MTg2ODtBUzoxOTA2MTEzODAzMzQ2MDlAMTQyMjQ1NjcwMzAwMA==
https://www.researchgate.net/publication/248825038_A_generalization_of_Ramsey_theory_for_graphs?el=1_x_8&enrichId=rgreq-36287235-c233-4ca7-92d4-15b88c385cff&enrichSource=Y292ZXJQYWdlOzIyMDE5MTg2ODtBUzoxOTA2MTEzODAzMzQ2MDlAMTQyMjQ1NjcwMzAwMA==

