Finite Ramsey's Theorem Exposition by William Gasarch

1 Ramsey's Theorem for the Finite Complete Graphs

Theorem 1.1 For all k there exists n such that for every COL: $\binom{[n]}{[2]} \rightarrow [2]$ there is a homog set of size k. KEY: We can take $n = 2^{2k-1}$.

Proof: Let COL: $\binom{[n]}{[2]} \to [2]$. We define an finite sequence of vertices,

$$x_1, x_2, \ldots, x_{2k-1}$$

and an finite sequence of sets of vertices,

$$V_0, V_1, V_2, \ldots, V_{2k-1}$$

that are based on COL.

Here is the intuition: Vertex $x_1 = 1$ has n - 1 edges coming out of it. Some are RED, and some are BLUE. Hence there are either $\geq \frac{n-1}{2}$ RED edges coming out of x_1 , or there are $\geq \frac{n-1}{2}$ BLUE edges coming out of x_1 (or both). Let c_1 be a color such that x_1 has $\frac{n-1}{2}$ edges coming out of it that are colored c_1 . Let V_1 be the set of vertices v such that $COL(v, x_1) = c_1$. Then keep iterating this process.

We now describe it formally.

$$V_0 = [n]$$

$$x_1 = 1$$

$$c_1 = \operatorname{RED} \text{ if } |\{v \in V_0 \mid \operatorname{COL}(v, x_1) = \operatorname{RED}\}| \ge \frac{|V_0| - 1}{2}$$

$$= \operatorname{BLUE} \text{ otherwise}$$

$$V_1 = \{v \in V_0 \mid \operatorname{COL}(v, x_1) = c_1\} \text{ (note that } |V_1| \ge \frac{|V_0| - 1}{2})$$

Let $i \geq 2$, and assume that V_{i-1} is defined. We define x_i , c_i , and V_i :

 $x_i =$ the least number in V_{i-1}

$$\begin{array}{rcl} c_i = & \operatorname{RED} & \operatorname{if} |\{v \in V_{i-1} \mid \operatorname{COL}(v, x_i) = \operatorname{RED}\}| \geq \frac{|V_{i-1}| - 1}{2} \\ & = & \operatorname{BLUE} & \operatorname{otherwise} \\ V_i = & \{v \in V_{i-1} \mid \operatorname{COL}(v, x_i) = c_i\} \text{ (note that } |V_i| \geq \frac{V_{i-1}}{2} \text{)} \end{array}$$

(NOTE- look at the step where we define c_i . We are using the fact that if you 2-color X you are guaranteed some color appears |X|/2 times. we are using the 1-hypergraph Ramsey Theorem. Later when we prove Ramsey on 3-hypergraphs we will use Ramsey on 2-hypergraphs.)

How long can this sequence go on for? Well, x_i can be defined if V_{i-1} is nonempty. We can show by induction that, for every i, $|V_i| \ge \frac{n}{2^i}$ (this is not quite right because of the -1 but we ignore this detail). Hence the sequence

 x_1, x_2, \ldots

will go until V_i is empty. Since $|V_0| = n$ and at every stage the set is cut in half, this will go on for $\log_2(n)$ iterations. Hence we want $2k - 1 \ge \log_2(n)$ so we need $n = 2^{2k-1}$.

Consider the infinite sequence

$$c_1, c_2, \ldots, c_{2k-1}.$$

Each of the colors in this sequence is either RED or BLUE. Hence there must be a subset of k of them that are the same color

$$c_{i_1} = c_{i_2} = \cdots = c_{i_k}$$

Denote this color by c, and consider the vertices

$$H = \{x_{i_1}, x_{i_2}, \cdots, x_{i_k}\}$$

We leave it to the reader to show that H is homog.