
Canonical Ramsey’s Theorem (finite version)
Exposition by William Gasarch

1 Canonical Ramsey’s Theorem for the Fi-

nite Complete Graphs

Notation 1.1 Let n, a ∈ N with a < n.

1. [n] is the set {1, . . . , n}.

2. If A is a set then
(
A
a

)
is the set of all a-sized subsets of A.

3. Kn is the graph (V,E) where

V = [n]

E =
(
[n]
2

)
We will identify

(
[n]
2

)
with Kn. We may refer to vertices and edges of(

[n]
2

)
.

Def 1.2 Let COL be a coloring of
(
[n]
2

)
(the edges of Kn). Let V ⊆ [n]. The

set V is homogenous (henceforth homog) if there exists a color c such that
every edge in

(
V
2

)
is colored c.

The following is the standard Ramsey’s theorem on graphs.

Theorem 1.3 For all k ∈ N, for all c ∈ N, there exists n such that for all
c-coloring of

(
[n]
2

)
(the edges of Kn) there is a homog set of size k. (We can

take n = 22k.)

Note that Ramsey’s Theorem uses only a fixed number of colors. What if
we color

(
[n]
2

)
with as many colors as we like? You may say that’s just stupid—

color each edge a different color. That is true— however, your coloring has
a rainbow set of size n- every edge is different! This leads to the following
conjecture:

Def 1.4 Let COL be a coloring of
(
[n]
2

)
. Let V ⊆ [n]. The set V is rainbow

if every edge in
(
V
2

)
is colored differently.
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Conjecture: For all k there exists n such that for every coloring of
(
[n]
2

)
there is either a homog set of size k or a rainbow set of size k.

This looks good. But alas its not true. Consider the following colorings:

COL(i, j) = i.

COL(i, j) = j.

We leave it to the reader to show that neither of these colorings has
a homog set, nor a rainbow set. However both lead to a certain kind of
homogeneity.

Def 1.5 Let COL be a coloring of
(
[n]
2

)
. Let V ⊆ [n]. The set V is min-

homogenous (henceforth min-homog) if for all a < b and c < d

COL(a, b) = COL(c, d) iff a = c.

The set V is max-homogenous (henceforth max-homog) if for all a < b and
c < d

COL(a, b) = COL(c, d) iff b = d.

We now state the Canonical Ramsey Theorem for finite graphs.

Theorem 1.6 For all k there exists n such that, for all colorings of
(
[n]
2

)
there is either a homog set of size k, a min-homog set of size k, a max-homog
set of size k, or a rainbow set of size k. We denote the least value of n that
works by ER(k).

We will give five proofs of Theorem 1.6 which give different bounds for
ER(k). Some of the proofs that give non-optimal bounds will have other
nice features. We compare and contrast the proofs in the last section.

To even state the bounds we need to state the hypergraph Ramsey The-
orem. and have a notation for hypergraph Ramsey numbers.

Def 1.7 Let COL be a coloring of
(
[n]
a

)
(the edges of the complete a-hypergraph

on n vertices). Let V ⊆ [n]. The set V is homog if there exists a color c such
that every edge in

(
V
a

)
is colored c.
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Theorem 1.8 For all a, for all c, for all k there exists n such that for all
c-colorings of

(
[n]
a

)
there exists a homog set of size k. We denote the least

value of n by Ra(k; c).

Note 1.9 It is known that R2(k; c) is upper bounded by roughly cO(ck),

R3(k; c) is upper bounded by roughly cc
O(ck)

etc. The lower bound on R2(k; c)
is roughly the same as the upper bound. For all a ≥ 3 the upper bound on
Ra(k; c) is roughly one exponential lower than the upper bound.

In Section 2 we prove lemmas that we will need. In Section 3 we give a
slight variants on the classical proof of the Canonical Ramsey Theorem due
to Erdős and Rado [3]. Our version of the proof yields

ER(k) ≤ R4(k
2; 12).

In Section 4 we give a proof that uses the 3-hypergraph Ramsey Theorem.
We believe this proof is new. It yields

ER(k) ≤ R3(k
3; 4).

BILL- CHECK THIS AGAINST RADO PROOF ALSO LEFMANN- DO
WE USE HIS IDEAS AND DO WE CARE IF WE DO

In Section 5 we give a proof that uses the 2-hypergraph Ramsey Theorem
(Ramsey Theorem on graphs). This proof, in the infinite version, is due to
Mileti [5]. Our treatment is probably the first time its been written down
for the finite case. In Section 6 we give a proof that does not use Ramsey’s
Theorem. It uses a strong version of the one-dimensional Canonical Ramsey
Theorem. It yields

ER(k) ≤ XXX.

In Section 7 we present a proof the yields the best upper bounds known,
due to Lefmann and Rodl [4]. Our proof, which is a very slight variant of
theirs, yields the bound

ER(k) ≤
(

9k6

16

)2(k−1)2+1

≤ 212k2 log k.
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2 Needed Lemmas

2.1 One Dimensional Canonical Ramsey Theorem

We need the following lemma which could be called the 1-dimensional Canon-
ical Ramsey Theorem. We leave the proof to the reader.

Def 2.1 If COL is a coloring of [m] then (1) a homog subset of [m] relative
to COL is a set that is all the same color, and (2) a rainbow subset of [m]
relative to COL is a set where every element has a different color.

Lemma 2.2 Let COL be any coloring of [(m − 1)2 + 1]. Then there exists
either a homog set of size m or a rainbow set of size m.

2.2 Premises that Yield Homog or Min-Homog or Max-
Homog

Lemma 2.3 Let COL be a coloring of
(
m
2

)
.

1. Let
X = {x1 < x2 < · · · < xL}

such that the following occurs:

(∀a < b < c)[COL(xa, xb) = COL(xa, xc)].

Then either there exists a homog set of size at least
√
L or there exists

a min-homog set of size at least
√
L.

2. Let
X = {x1 < x2 < · · · < xL}

such that the following occurs:

(∀a < b < c)[COL(xa, xc) = COL(xb, xc)].

Then either there exists a homog set of size at least
√
L or there exists

a max-homog set of size at least
√
L.
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3. Let
X = {x1 < x2 < · · · < xL}

such that the following occurs:

(∀a < b < c)[COL(xa, xb) = COL(xb, xc)].

Then there exists a homog set of size at least L− 1.

4. Let
X = {x1 < x2 < · · · < xL}

such that the following occurs:

(∀a < b < c < d)[COL(xa, xb) = COL(xc, xd)].

Then there exists a homog set of size at least L− 2.

5. Let
X = {x1 < x2 < · · · < xL}

such that the following occurs:

(∀a < b < c < d)[COL(xa, xc) = COL(xb, xd)].

Then there exists a homog set of size at least L
2
− 1.

Proof:
We assume

√
L is an integer.

1) Let COL′(xa) = COL(xa, xa+1). Note that, for all b > a, COL′(xa) =
COL(xa, xb). Apply Lemma 2.2 to COL′ to obtain either a homog (relative
to COL′) set of size

√
L, which is a homog set relative to COL, or a rainbow

set (relative to COL′) which is a min-homog set relative to COL.

2) This part is similar to part 1 so we omit it.

3) Note that COL(x1, x2) = COL(x2, x3) = · · · = COL(xL−1, xL). We call
this color RED. Let

H = {x1, x2, x3, . . . , xL−1}.

Since for 1 ≤ a < b ≤ L − 1, COL(xa, xb) = COL(xb, xb+1) = RED, H
is homog.
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4) Note that, for 3 ≤ a < b, COL(x1, x2) = COL(xa, xb). We call this color
RED. Let

H = {x3, . . . , xL}.

Since for all 3 ≤ a < b, COL(xa, xb) = COL(x1, x2) = RED, H is homog.
5) Note that, for 1 ≤ a < b ≤ L,

COL(xa, xa+2) = COL(xa+1, xa+3) = COL(xa+2, xa+4).

Assume L is even. Let

H ′ = {x2, x4, x6, . . . , xL}.

This set H is of size L
2

and satisfies the premise of part 3. Hence there is
a homog set of size L

2
− 1.

2.3 A Premise that Yields a Rainbow Set

The next definition and lemmas gives a way to get a rainbow set under some
conditions.

Def 2.4 Let COL be a coloring of
(
[m]
2

)
. If c is a color and v ∈ [m] then

degc(v) is the number of c-colored edges with an endpoint in v.

The following theorem is due to Babai [2]. We include the proof since the
paper is not available on-line and will eventually be lost to history.

Lemma 2.5 Let m ≥ 3. Let COL be a coloring of
(
[m]
2

)
. If for all v ∈ [m]

and all colors c degc(v) ≤ 1 then there exists a rainbow set of size ≥ (2m)1/3.

Proof:
Let X be a maximal rainbow set. This means that,

(∀y ∈ [m]−X)[X ∪ {y} is not a rainbow set].

Let y ∈ [m]−X. Why is y /∈ X? One of the following must occur:

1. There exists u, u1, u2 ∈ X such that u1 6= u2 and COL(y, u) = COL(u1, u2).
(It is possible for u = u1 or u = u2.)
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2. There exists u1 6= u2 ∈ X such that COL(y, u1) = COL(y, u2). This
cannot happen since then y has some color degree ≥ 2.

We map [m]−X to X ×
(
X
2

)
by mapping y ∈ [m]−X to (u, {u1, u2}) as

indicated in item 1 above. This map is injective since if y1 and y2 both map
to (u, {u1, u2}) then COL(y1, u) = COL(y2, u).

This map has domain of size n − |X| and co-domain of size |X|
(|X|

2

)
.

Hence

m− |X| ≤ |X|
(
|X|
2

)
= |X|2(|X| − 1)/2 =

|X|3 − |X|2

2
≤ |X

3

2
− |X|

m ≤ |X|
3

2
.

|X| ≥ (2m)1/3.

Alon, Lefmann, and Rodl [1] have obtained a slight improvement and also
showed that it cannot be improved past that.

Lemma 2.6 Let m ≥ 3.

1. Let COL be a coloring of
(
[m]
2

)
. If for all v ∈ [m] and all colors c,

degc(v) ≤ 2 then there exists a rainbow set of size ≥ Ω((m logm)1/3).

2. There exists a coloring of
(
[m]
2

)
. such that for all v ∈ [m] and all colors

c, degc(v) ≤ 1 and all rainbow sets are of size ≤ O((m logm)1/3).

3 A Proof that Uses the 4-Hypergraph Ram-

sey Theorem

We give a slight variant of the original proof of the Canonical Ramsey The-
orem due to Erdős -Rado [3].

Theorem 3.1 ER(k) ≤ R4(k
2, 12).
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Proof:
Let n = R4

c(m) where we determine c and m later.
We are given COL :

(
[n]
2

)
→ N. We use COL to obtain a FINITE coloring

of
(
[n]
4

)
which we denote COL′.

What is COL′(x1 < x2 < x3 < x4). We look at COL on all
(
4
2

)
pairs of

{x1, x2, x3, x4} and see how they compare to each other.
For each case we assume the negation of all the prior cases. Also, in each

case, we indicate what happens if this is the color of the homog set of size
m.

1. If COL(x1, x2) = COL(x1, x3) then color (x1, x2, x3, x4) with (12, 13).
If this is the color of the homog set for COL′ then, by Lemma 2.3.1,
there is either a homog set or a min-homog set of size

√
m for COL.

2. If COL(x1, x2) = COL(x1, x4) then color (x1, x2, x3, x4) with (12, 14).
If this is the color of the homog set for COL′ then,

3. If COL(x1, x3) = COL(x1, x4) then color (x1, x2, x3, x4) with (13, 14).
If this is the color of the homog set for COL′ then, by Lemma 2.3.1,
there is either a homog set or a min-homog set of size

√
m for COL.

4. If COL(x2, x3) = COL(x2, x4) then color (x1, x2, x3, x4) with (23, 24).
If this is the color of the homog set for COL′ then, by Lemma 2.3.1,
there is either a homog set or a min-homog set of size

√
m for COL.

5. If COL(x1, x3) = COL(x2, x3) then color (x1, x2, x3, x4) with (13, 23).
If this is the color of the homog set for COL′ then, by Lemma 2.3.2,
there is either a homog set or a max-homog set of size

√
m for COL.

6. If COL(x1, x4) = COL(x2, x4) then color (x1, x2, x3, x4) with (14, 24).
If this is the color of the homog set for COL′ then,

7. If COL(x1, x4) = COL(x3, x4) then color (x1, x2, x3, x4) with (14, 24).
If this is the color of the homog set for COL′ then, by Lemma 2.3.2,
there is either a homog set or a max-homog set of size

√
m for COL.

8. If COL(x2, x4) = COL(x3, x4) then color (x1, x2, x3, x4) with (24, 34).
If this is the color of the homog set for COL′ then, by Lemma 2.3.2,
there is either a homog set or a max-homog set of size

√
m for COL.
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9. If COL(x1, x2) = COL(x2, x3) then color (x1, x2, x3, x4) with (12, 23).
If this is the color of the homog set for COL′ then, by Lemma 2.3.3,
there is a homog set of size m− 1 for COL.

10. If COL(x1, x2) = COL(x2, x4) then color (x1, x2, x3, x4) with (12, 24).
If this is the color of the homog set for COL′ then, by Lemma 2.3.3,
there is a homog set of size m− 1 for COL.

11. If COL(x1, x3) = COL(x3, x4) then color (x1, x2, x3, x4) with (13, 34).
If this is the color of the homog set for COL′ then, by Lemma 2.3.3,
there is a homog set of size m− 1 for COL.

12. If COL(x2, x3) = COL(x3, x4) then color (x1, x2, x3, x4) with (23, 34).
If this is the color of the homog set for COL′ then, by Lemma 2.3.3,
there is a homog set of size m− 1 for COL.

13. If COL(x1, x2) = COL(x3, x4) then color (x1, x2, x3, x4) with (12, 34).
If this is the color of the homog set for COL′ then, By Lemma 2.3.4
there is a homog set of size m− 2 for COL.

14. If COL(x1, x3) = COL(x2, x4) then color (x1, x2, x3, x4) with (13, 24).
If this is the color of the homog set for COL′ then, By Lemma 2.3.5
there is a homog set of size m

2
− 2 for COL.

15. If none of the above occur then color (x1, x2, x3, x4) with NONE. If
this is the color of the homog set for COL′ then this is clearly a rainbow
set of size m for COL.

We used 12 colors and obtained a homog set of size at least
√
k. Hence

we need to take m = k2.

4 A Proof that Uses the 3-Hypergraph Ram-

sey Theorem

Theorem 4.1 ER(k) ≤ R3(k
3, 4).
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Proof:
Let n = R3

c(m) where we determine c and m later.
We are given COL :

(
[n]
2

)
→ N. We use COL to obtain a FINITE coloring

of
(
[n]
3

)
which we denote COL′.

What is COL′(x1 < x2 < x3). We look at COL of all
(
3
2

)
pairs of

{x1, x2, x3} and how they compare to each other to color x1 < x2 < x3.
For each case we assume the negation of all the prior cases. Also, in each

case, we indicate what happens if this is the color of the homog set of size
m.

1. If COL(x1, x2) = COL(x1, x3) then color (x1, x2, x3) with (12, 13). If
this is the color of the homog set for COL′ then, by Lemma 2.3.1, there
is either a homog set or a min-homog set of size

√
m for COL.

2. If COL(x1, x3) = COL(x2, x3) then color (x1, x2, x3) with (13, 23). If
this is the color of the homog set for COL′ then, by Lemma 2.3.2, there
is either a homog set or a max-homog set of size

√
m for COL.

3. If COL(x1, x2) = COL(x2, x3) then color (x1, x2, x3) with (12, 23). If
this is the color of the homog set for COL′ then, by Lemma 2.3.3, there
is a homog set of size m− 1 for COL.

4. If none of the above occur then color (x1, x2, x3) with NONE. Let
H ′ be the homog set. Note that for all v ∈ H ′ and for all colors c,
restricted to H ′, degc(v) ≤ 1. Hence, by Lemma 2.5, there is a rainbow
set of size (2m)1/3.

We used 4 colors and obtained a homog set of size at least (2m)1/3 Hence
we need m ≤ (k/2)3 = k3/8 ≤ k3. We take m = k3.

5 A Proof that Uses the 2-Hypergraph Ram-

sey Theorem

Theorem 5.1

ER(k) ≤ 2222Ω(k4)

.
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Proof: This proof is more in the spirit of the original proof of Ramsey’s
theorem.

Intuition: In the usual proofs of Ramsey’s Theorem we take a vertex v
and see which of such that degRRED(v) or degRBLUE is “large.” One of them
must be at least half of the size of the vertices still in play. Here we change
this up:

• If there is a color c such that degc(x) is “large” we will indeed delete
all nodes y > x with COL(x, y) 6= c, and label x with c.

• If this does not happen we will delete nodes so that, for all y, z > x,
COL(x, y) 6= COL(x, z) and label x with ∗.

• We will call the labels themselves colorings and we may use Lemma 2.2.

• At the end of the construction we may color edges between vertices
that were labeled * (and survived). If we label x and y (x < y) with
∗ then we will make sure that x and y either agree everywhere or
nowhere. That is, either (∀z > y)[COL(x, z) = COL(y, z)] or (∀z >
y)[COL(x, z) 6= COL(y, z)]. We will color the edge between x and y
either AGREE or DISAGREE. We will then use Ramsey’s Theorem.

We will determine n, the initial number of nodes we start with, and m a
parameter, later.
CONSTRUCTION
Phase 1:
Stage 0:

1. N0 = [n]. COL′ is not defined on any points.

Stage i: If i = m+1 then goto Phase Two. Assume that Ni, x0 < · · · < xi−1,
COL′ is defined on x0, . . . , xi−1. Let xi be the least element in Ni. For
y ∈ Ni let TCOL(y) = COL(xi, y) (TCOL stands for temporary coloring.)
By Lemma 2.2 we have two cases.

1. There is a
√
|Ni| sized homog set H ′ relative to TCOL. Let COL(xi)

be its color of the homog set and let Ni+1 be H ′.

2. There is a
√
|Ni| sized rainbow set H ′ relative to TCOL. Let COL(xi)

be ∗ and let Ni+1 be H ′.
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Phase 2: We introduce two new parameters: m1 and m2. We will need
m1 +m2 = m. There are two cases.

1. There are m1 vertices labeled with a color in N (so not labeled with
∗). Restrict COL′ to those m1 vertices and apply Lemma 2.2 to obtain
either (1) a homog set relative to COL′ of size

√
m1, in which case

there is a homog set relative to COL of size
√
m1, or (2) a rainbow set

relative to COL′ of size
√
m1, in which case there is a min-homog set

relative to COL of size
√
m1. We will need to make

√
m1 ≥ k. Hence

we will need m1 ≥ k2. We will take m1 = k2.

2. There are at least m2 vertices labeled with ∗. Call the set of such
vertices H0. (We will be thinning out so we will get H1, H2, . . .).

We will need a new parameter m3.

CONSTRUCTION

Stage 0: H0 is as above. Note that |H0| ≥ m2.

Stage i: If i = m3 + 1 then goto Phase 3. Otherwise assume that
z1, . . . , zi−1 and Hi are defined. Let zi be the least element of Hi−1.
We thin out Hi without changing its index. For all a < i we use the
ordered pair (za, zi) to both thin out Hi and color (za, zi).

Let

AGREE(za, zi) = {v ∈ Hi : COL(za, v) = COL(zi, v)}.

Case 1: If |AGREE(za, zi)| ≥ |Hi|
2

then Let Hi be AGREE(za, zi).
Let COL′′(za, zi) AGREE.

Case 2: If |AGREE(za, zi)| ≤ |Hi|
2

then LetHi beHi−AGREE(za, zi).
Let COL′′(za, zi) DISAGREE.

In Stage i we divide Hi by 2i. Hence Hm3 is of size Ω( m
2

2m
2
3
). In order to

carry out this construction we need this quantity to be ≥ 1. Hence we need
m2 ≥ Ω(2m

2
3).

Phase 3: We now have z1, . . . , zm3 such that (1) for all 1 ≤ i ≤ m3 all
of the edges coming out of zi to the right are different colors, and (2) for
all 1 ≤ i < j ≤ m3 either zi and zj agree on all z > zj or disagree on

all z > zj. We view the agree/disagree distinction as a 2-coloring of
(
[m3]
2

)
.

Apply Ramsey’s theorem to get a homogenous set H ′ (relative to the agree-
disagree coloring) of size Ω(logm3)).
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1. If the color is AGREE then it is easy to see that H ′ is homogenous for
COL.

2. If the color is DISAGREE then we have some work to do. Restrict
COL to H ′.

Claim: Let v ∈ H ′ and c be a color. Then degc(v) ≤ 2.

Proof of Claim: Assume, by way of contradiction, that degc(v) ≥ 3.
There are two cases:

• There exists v1, v2 ∈ H ′ such that v < v1, v2 and COL(v, v1) =
COL(v, v2) = c. This violates that v was colored ∗.

• There exists v1, v2 ∈ H ′ such that v1, v2 < v and COL(v1, v) =
COL(v2, v) = c. This violates that v2 and v2 disagree.

End of Proof of Claim

By Lemma ?? there is a rainbow set H ⊆ H ′ of size Ω(|H ′|1/4) =
Ω((logm3)

1/4).

END OF CONSTRUCTION
We need to set the parameters. We have already set m1 = k2. To get

Ω((logm3)
1/4) ≥ k

we need to set

m3 ≥ Ω(2k
4

).

Hence

m2 ≥ Ω(2m
2
3) ≥ 22Ω(k4)

.

Hence

m = m1 +m2 = k2 + 22Ω(k4)

= 22Ω(k4)

.

The value of n has to be such that n ≥ 2 and its possible to take its
square root m times. So n1/2m ≥ 2. Hence

n ≥ 22m = 2222Ω(k4)

.
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6 A Proof that Does Not Use Ramsey’s Theorem-

I

FILL IN LATER

7 A Proof that Does Not use Ramsey’s Theorem-

II

We remind the reader of the definition of degc and also add the definitions
of degLc and degRc .

Def 7.1 Let COL be a coloring of
(
[m]
2

)
. Let c be a color and let v ∈ [m]

1. degRc (v) is the number of c-colored edges (v, u) with v < u.

2. degRc (v) is the number of c-colored edges (v, u) with u < v.

3. A bad triple is a triple a, b, c such that a, b, c does not form a rainbow
K3.

The next two lemmas show us how to, in some cases, reduce the number
of bad triples.

Lemma 7.2 Let COL be a coloring of
(
[m]
2

)
such that, for every color c and

vertex v, degc(v) ≤ d. Then the number of bad triples is less than dm2

2
.

Proof: Let b be the number of bad triples. We upper bound b by summing
over all v that are the point of the triple with two same-colored edges coming
out of it.

b ≤
∑
v∈[m]

∑
c∈N

Num of bad triples {v, u1, u2} with COL(v, u1) = COL(v, u2) = c .

(Note that we are not assuming v < u1, u2.)
We bound the inner summation. Since v is of degree m − 1 we can

renumber the colors as 1, 2, . . . ,m−1 (some of the degc(v) may be 0). Hence
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b ≤
∑
v∈[m]

m−1∑
c=1

(
degc(v)

2

)
.

Note that
∑m

c=1 degc(v) = m − 1 ≤ m and (∀c)[degc(v) ≤ d]. The inner
sum is maximized when d = deg1(v) = deg2(v) = · · · = degm/d(v) and the
rest of the degc(v)’s are 0. Hence we have

b ≤
∑
v∈[m]

m∑
c=1

(
degc(v)

2

)
≤
∑
v∈[m]

(m/d)

(
d

2

)
< m

m

d

d2

2
=
dm2

2
.

Lemma 7.3 Let COL be a coloring of
(
[m]
2

)
that has b bad triples. Let 1 ≤

m′ ≤ m. There exists an m′-sized set of vertices with ≤ b
(
m′

m

)3
bad triples.

Proof: Pick a set X of size m′ at random. Let E be the expected number
of bad triples. Note that

E =
∑

{v1,v2,v3} bad

Prob that {v1, v2, v3} ⊆ X .

Let {v1, v2, v3} be a bad triple. The probability that all three nodes are
in X is bounded by(

m−3
m′−3

)(
m
m′

) =
m′(m′ − 1)(m′ − 2)

m(m− 1)(m− 2)
≤
(
m′

m

)3

.

Hence the expected number of bad triples is ≤ b(m
′

m
)3. Therefore there

must exist some X that has ≤ b(m
′

m
)3 bad triples.

Note 7.4 The above theorem presents the user with an interesting tradeoff.
She wants a large set with few bad triples. If m′ is large then you get a large
set, but it will have many bad triples. If m′ is small then you won’t have
many bad triples, but m′ is small. We will need a Goldilocks-m′ that is just
right.
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Now we can prove the theorem!

Theorem 7.5 For all k the following hold.

1.

ER(k) ≤
(
k9

16

)2(k−2)2+1

≤ 218k2 lg(k).

2.

ER(k) ≤
(

9k6

16

)2(k−2)2+1

≤ 212k2 lg(k).

Proof:
We will determine n later. We will have parametersm,m′,m′′, δ, s, t which

we will choose later.
Intuition: In the usual proofs of Ramsey’s Theorem we take a vertex v

and see which of such that degRRED(v) or degRBLUE is large. One of them must
be at least half of the size of the vertices still in play. Here we change this
up:

• Instead of taking a particular vertex v we ask if there is any v and any
color c such that either degLc (v) or degRc (v) is large. We hope to do this
until either we have (k − 2)2 + 1 elements that have a large degLc (v)
for some c, or (k− 2)2 + 1 elements that have a large degRc (v) for some
c. We will then apply Lemma 2.2. (We take care of the extra point
we need a different way.) We will need to iterate this process at most
2(k − 2)2 + 1 times.

• What is large? Similar to the proof of Ramsey’s theorem it will be a
fraction of what is left, a fraction δ which we will pick later. Unlike the
proof of Ramsey’s theorem δ will depend on k.

• In the proof of Ramsey’s theorem we were guaranteed that one of
degRED(v) or degBLUE(v) was large. Here we have no such guaran-
tee. We may fail. In that case something else happens and leads to a
rainbow set!

Formally the construction will only use the points {2, . . . , n− 1} so that
we will have available a point bigger than all the points we finally have or
smaller than. We ignore this in the construction and the analysis but we will
point it out when we need it.
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CONSTRUCTION
Phase 1:
Stage 0:

1. V L
0 = V R

0 = ∅. The set V L
0 will be vertices such that the edges from

them to all vertices to their Left are the same color. Similar for V R
0 .

2. N0 = [n]. COL′ is not defined on any points.

Stage i: Assume that V L
i−1, V

R
i−1, and Ni−1 are already defined.

1. If there exists x ∈ Ni−1 and c a color such that degRc (x) ≥ δNi−1 then
do the following:

V R
i = V R

i−1 ∪ {x}
V L
i = V L

i−1
Ni = {v ∈ Ni−1 : x < v ∧ COL(x, v) = c}
xi = x

COL′(xi) = c

Note that |Ni| ≥ δ|Ni−1|. If |V R
i | = (k − 2)2 + 1 then goto Phase 2a.

2. If there exists x ∈ Ni−1 and c a color such that degLc (x) ≥ δNi−1 then
do the following:

V R
i = V R

i−1
V L
i = V L

i−1 ∪ {x}
Ni = {v ∈ Ni−1 : v < x ∧ COL(x, v) = c}
xi = x

COL′(xi) = c

Note that |Ni| ≥ δ|Ni−1|. If |V L
i | = (k − 2)2 + 1 then goto Phase 2b.

3. If neither case 1 or case 2 holds then goto Phase 2c.

End of Phase 1
Since we goto Phase 2 if either |V R

i | = (k− 2)2 + 1 or |V L
i | = (k− 2)2 + 1

we iterate the above process at most 2(k−2)2+1 times. Let s = 2(k−2)2+1.
Phase 2a: Restrict COL′ to V R

i and apply Lemma 2.2 to obtain that one
of the following occurs.
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1. There is a a set H ′ ⊆ V R
i , homog relative to COL′, of size k−1. Recall

that n has not been used at all. It is easy to see that H = H ′ ∪ {n} is
homog relative to COL.

2. There is a a set H ′ ⊆ V R
i , rainbow relative to COL′, of size k−1. Recall

that n has not been used at all. It is easy to see that H = H ′ ∪ {n} is
min-homog relative to COL.

We need to be able to carry out the construction for s stages. Note that
after s stages |Ns| ≥ δsn. We need this to be ≥ 1. Hence we need

FIRST CONSTRAINT:

δ ≥
(

1

n

)1/s

.

If you got to Phase 2a you do NOT need to goto Phase 2b or 2c.
End of Phase 2a:

Phase 2b: You got here because |V L
i | = (k−2)2+1. This is similar to Phase

2a so we omit it. We note that in this case you obtain either a homog set or
a max-homog set.
End of Phase 2b:
Phase 2c:

Assume that when you got here N = Ni was of size m. The largest stage
this could happen at was s− 1. Hence we need

SECOND CONSTRAINT:

m ≤ δs−1n.

We take

n =
1

δs−1
n.

This will also satisfy FIRST CONSTRAINT.
You got here because for all v ∈ N , for all colors c, degLc (v) ≤ δm

and degRc (v) ≤ δm. Hence degc(v) ≤ 2δm. By renumbering we assume
that N = {1, . . . ,m} and that the colors are {1, . . . ,m}. Let COL be the
coloring restricted to

(
[m]
2

)
. Note that, for all vertices v ∈ [m], for all colors

c, degc(v) ≤ 2δm.
Note also that, for any vertex v ∈ [m],
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m− 1 < m =
m∑
c=1

degc(v) ≤
m∑
c=1

δm = m2δ.

Hence
THIRD CONSTRAINT:

δ ≥ 1

m
.

Note that COL is a coloring of
(
[m]
2

)
such that for every v and c, degc(v) ≤

2δm. Hence, by Lemma 7.2, there are at most

2δm×m2

2
= δm3

bad triples.
By Lemma 7.3 there exists a subset X of size m′ that has at most

δm3 ×
(
m′

m

)3

= δ(m′)3

bad triples.
We have two options for setting m′ which lead to the different upper

bounds. The first option gives a simpler proof and one less parameter; how-
ever, the second option gives a better bound. We admit here that the im-
provement of the upper bound is marginal.
Option 1: Set m′ and δ so that there are no bad triples. Hence we need

δ(m′)3 < 1

We now have a setX of sizem′ with no bad triples. We will use Lemma 2.5
on this set, hence we take

m′ =
k3

2
.

Hence

δ =
2

m′3
=

16

k9
.

By THIRD CONSTRAINT we need

δ ≥ 1

m
.

19



We take

m =
1

δ
=
k9

16
.

By the SECOND CONSTRAINT

m ≤ δs−1n.

n =
m

δs−1
.

Since δ = 1
m

we can express n in terms of m.

n = ms =

(
k9

16

)s
=

(
k9

16

)2(k−2)2+1

.

And we are DONE— with Option 1.
Option 2. We set m′ such that the number of bad triples is so small that
we can just remove one point from each. This will lead to a better value of
n. Recall that the number of bad triples is δ(m′)3.

We want the number of bad triples to be so small that if we just toss out
one vertex from each we still have many (that is, m′′) vertices.

FOURTH CONSTRAINT:

m′ − δ(m′)3

3
≥ m′′.

By renumbering we can assume the m′′ vertices are {1, . . . ,m′′}. Let COL
be the coloring restricted to

(
[m′′]
2

)
. Note that there are NO bad triples. By

Lemma 2.5 there exists a rainbow set of size (2m′′)1/3. Since we want this to
be ≥ k we have our

FIFTH CONSTRAINT:

m′′ ≥ k3

2
.

End of Phase 2c
We now collect up all the constraints and see how to satisfy them in a

way that minimizes n.
List of Constraints
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1.

δ ≥
(

1

n

)1/s

This constraint is implied by the next one so we do nothing.

2.

δ ≥
(
m

n

)1/(s−1)

.

We satisfy this by taking

n =
m

δs−1

This constraint is now satisfied; however, we need to know what m and
δ are.

3.

δ ≥ 1

m
.

We will take

m =
1

δ
.

This constraint is now satisfied; however, we need to know what δ is.

4.

m′ − δ

3
(m′)3 ≥ m′′.

δ ≤ 3m′ − 3m′′

(m′)3

Since we want δ as large as possible we will take δ to equal this upper
bound. This constraint is now satisfied; however, we need to know
what m′,m′′ are.

5.

m′′ ≥ k3

2
.

We take m′′ equal to this lower bound. This constraint is now satisfied.
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End of List of Constraints

m′′ =
k3

2
.

What should m′ and δ be? We want to maximize δ. Recall that

δ =
3m′ − 3m′′

(m′)3
.

We pick the value of 1 ≤ m′ ≤ m that maximizes δ. Simple calculus
reveals that this value is m′ = 1.5m′′. Hence

m′ = 1.5m′′ =
1.5k3

2
.

δ =
3m′ − 3m′′

(m′)3
=

4.5m′′ − 3m′′

(1.5m′′)3
=

1.5m′′

(1.5m′′)3
=

1

(1.5m′′)2

Note that

(1.5m′′)2 =

(
1.5k3

2

)2

=

(
3k3

4

)2

=
9k6

16
.

Hence

δ =
16

9k6
.

Hence

m =
1

δ
=

9k6

16
.

We now know m and δ so we can find n. Since m = 1
δ

we express n in
terms of m and then k.

n =
m

δs−1
= ms =

(
9k6

16

)s
=

(
9k6

16

)2(k−2)2+1

.

Note 7.6 Lemma 2.6 can be used to very slightly improve Theorem 7.5. We
leave this to the reader.
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Note 7.7 Our proof is an exposition of the proof of Lefmann and Rodl [4].
There is one minor difference. They end up with a constant of 27

16
instead of

9
16

. They, like us, claim they will take out one point from each bad triple.
However, they, unlike us, remove every point of every bad triple. This results
in the worse constant.

8 Comparing the Proofs

In the table below we compare the proofs with the following criteria:

1. How powerful a Ramsey Theorem does the proof use. We list the
proofs in this order. The more powerful a Ramsey Theorem you use
(generally) the worse your bounds will be. Mileti [5] is concerned with
the logical complexity of the Canonical Ramsey Theorem. For him, the
more powerful a Ramsey Theorem you are using, the higher (which is
bad) the logical complexity of the proof.

2. What is the bound? the lower the bound the better. In this case the
2-ary-II proof is clearly the best by far.

3. Does the proof extend to the a-ary case? This is one drawback of 2-
ary-II: It does not extend to a-ary. All of the others, except for the
3-ary proof, do extend.

4. Does the proof extend to the infinite case? This is another drawback
of 2-ary-II: It does not extend to the infinite graph case while all of the
others do. Incidentally, all of the others except the 3-ary extend to the
infinite a-ary case.

5. How complicated is the construction. We are asking this subjectively;
however, we justify our choices. The 4-ary proof just applies the 4-
ary hypergraph Ramsey Theorem and PUFF, done!. This is clearly
the easiest construction. The 3-ary proof applies the 3-ary hypergraph
Ramsey Theorem but then still has to apply Lemma 2.5. So that is
just a bit harder. The 2-ary, NONE-I, and NONE-II are significantly
more difficult so we discuss them in the next XXX.

6. LATER
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Proof bound extends to a-ary? extends to ∞? How Complicated
4-ary R4(k

2; 12) YES YES easy
3-ary R3(k

3; 4) BILL? YES easy+ Lemma
2-ary BILL? YES YES BILL

NONE-I BILL? YES YES BILL

NONE-II 212k2 log k NO NO YES
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