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Coloring
(

Z
2

)
Exposition by William Gasarch-U of MD



Not Quite Homogenous

Def A coloring is finite if it only uses a finite number of colors.
Convention For concreteness we will use 1,000,000 (the Arushi
number) when we want to say any number.
Def Let COL :

(A
2

)
→ [1, 000, 000]. Let c ∈ N. Let H ⊆ A.

H is c-homog if COL restricted to
(H
2

)
takes on ≤ c values.

Notation If L1 and L2 are both linearly ordered set then L1 ≡ L2
means that ∃ an order preserving bijection between L1 and L2.
Our Question Fill in c in the following:
∀COL :

(Z
2

)
→ [1, 000, 000] ∃ inf H ⊆ Z, H ≡ Z, H is c-homog.

∃COL :
(Z
2

)
→ [c] no (c − 1)-homog set.
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c ≥ 4

Thm ∃ COL :
(Z
2

)
→ [4] with no infinite 3-homog H ≡ Z.

Convention We will take Z to be the following set:
{. . . ,−6,−4,−2} ∪ {1, 3, 5, . . .}.
We define COL(x , y) :

(Z
2

)
. We assume |x | < |y |

COL(x , y) =


1 if x , y ≥ 1

2 if x , y ≤ −1

3 if x ≤ −1, y ≥ 1

4 if y ≤ −1, x ≥ 1

(1)

There is no 3-homog H ≡ Z. Left to the reader.
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c ≤ 4

∀ COL :
(Z
2

)
→ [1, 000, 000] ∃ H ≡ Z, H is 4-homog.

1) First look at the coloring restricted to
(N
2

)
. Use infinite Ramsey

to get H1 ⊆ N such that COL restricted to
(N
2

)
is constant.

Assume constant is c1.

2) Second look at the coloring restricted to
(−N

2

)
. Use infinite

Ramsey to get H2 ⊆ −N such that COL restricted to
(N
2

)
is

constant. Assume constant is c2.

3) Now we must deal with the edges between N and −N. This will
be the bulk of the proof.

4) We need a thm about bipartite graphs. This will be used for
(Z
2

)
and the Genevieve graphs

(
α
2

)
where α is a ctble ordinal.
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Bipartite Graphs

Def A Bipartite Graph is (L,R,E ) where the vertices are L ∪ R
and E ⊆ L× R (so no edges within L or within R). L stands for
Left, R stands for Right.

Def Let n,m ∈ N. The Complete (n,m)-Bipartite Graph,
denoted Kn,m is the bipartite graph ([n], [m], [n]× [m]).

Def KN,N is the bipartite graph (N,N,N× N).

Note A coloring of the edges of KN,N is a coloring of N× N.
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Infinite Ramsey Theory

for KN,N



Ramsey Theory for N× N

Def Let COL : N× N→ [1, 000, 000]. Let c ∈ N.
H1 × H2 ⊆ N× N is c-homog if
COL restricted to H1 × H2 takes on ≤ c values, and
H1,H2 both infinite.

We want a value of c such that the following is true:
Thm ∀COL : N× N→ [1, 000, 000] ∃ c-homog H1 × H2.
Thm ∃COL : N× N→ [c] no c − 1-homog H1 × H2.
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c ≥ 2

Thm ∃ COL : N× N→ [2] with no infinite 1-homog H1 × H2.

We use EVEN+ ×ODD+ instead of N× N.
We define COL(x , y) : N× N→ [2].

COL(x , y) =

{
1 if x < y

2 if x > y
(2)

There is no 1-homog H1 × H2 ⊆ N× N. Left to the reader.
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c ≤ 2

∀ COL : N× N→ [1, 000, 000] ∃ H1 ×H2, 2-homog.

We do an example. The formal construction is left to the reader.

Initially we have COL : N× N→ [1, 000, 000].
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Example of finite coloring of N× N
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Focus on Vertex 1 On The Left

1

...

6

4

2

Let c be least color such that ∃∞x ,COL(1, x) = c . We assume R.
Kill All Those On The Right Who Disagree.
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Focus on Vertex 1 On The Left After The Massacre

1
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4

1 is immortal (for now). We focus on 4.
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Focusing on 4 On The Right
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Let c be least color such that ∃∞x ,COL(x , 4) = c . We assume B.

Kill all those on the Left Who Disagree
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After Processing 4
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(∃d)(∃∞x)[COL′(y) = d ]. Assume G .
Kill all those who disagree
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Recap

We have shown the following
Thm ∃ COL : N× N→ [2] such that there is no 1-homog
(H1,H2).
Thm ∀ COL : N× N→ [1, 000, 000] ∃ 2-homog (H1,H2).
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Theorem for Z

Thm 1 ∃ COL :
(Z
2

)
→ [2] such that there is no 3-homog H ≡ Z.

Thm 2 ∀ COL :
(Z
2

)
→ [1, 000, 000] ∃ 4-homog H ≡ Z.
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Thm 2 we prove on the next slide.



Theorem for Z

Thm 1 ∃ COL :
(Z
2

)
→ [2] such that there is no 3-homog H ≡ Z.

Thm 2 ∀ COL :
(Z
2

)
→ [1, 000, 000] ∃ 4-homog H ≡ Z.

Thm 1 we proved earlier.

Thm 2 we prove on the next slide.



Theorem for Z

Thm 1 ∃ COL :
(Z
2

)
→ [2] such that there is no 3-homog H ≡ Z.

Thm 2 ∀ COL :
(Z
2

)
→ [1, 000, 000] ∃ 4-homog H ≡ Z.

Thm 1 we proved earlier.

Thm 2 we prove on the next slide.



Theorem for Z

Thm 1 ∃ COL :
(Z
2

)
→ [2] such that there is no 3-homog H ≡ Z.

Thm 2 ∀ COL :
(Z
2

)
→ [1, 000, 000] ∃ 4-homog H ≡ Z.

Thm 1 we proved earlier.

Thm 2 we prove on the next slide.



Theorem for Z

Thm 1 ∃ COL :
(Z
2

)
→ [2] such that there is no 3-homog H ≡ Z.

Thm 2 ∀ COL :
(Z
2

)
→ [1, 000, 000] ∃ 4-homog H ≡ Z.

Thm 1 we proved earlier.

Thm 2 we prove on the next slide.



Theorem for Z

Let COL :
(Z
2

)
→ [1, 000, 000].

1) Use Inf Ramsey on the COL restricted to first N. Homog set
H1. Color c1.
2) Use Inf Ramsey on the COL restricted to

(−N
2

)
. Homog set H2.

Color c2.
3) View the edges from H1 to H2 as a bipartite graph. Use
Bipartite Thm. Colors c3, c4.
At most 4 colors. DONE!
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What Else is Known?

Lots of linear orders have been looked at.

Hypergraph versions have been looked at.

Other structures, more complicated than linear orders, have been
looked at.

If I wasn’t making up this slide at 10:30AM for a class at 11:00AM
I would go into more detail.

Instead some of the other results might be on a HW.
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