BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

The Axiom of Choice and its Equivalences

Exposition by William Gasarch

March 29, 2025

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

We discuss

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

We discuss Axiom of Choice (AC)

We discuss Axiom of Choice (AC) Well Ordering Principle (WOP)

We discuss Axiom of Choice (AC) Well Ordering Principle (WOP) Zorn's Lemma (ZL)

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

We discuss Axiom of Choice (AC) Well Ordering Principle (WOP) Zorn's Lemma (ZL)

We will use these concept twice in the course.

```
We discuss
Axiom of Choice (AC)
Well Ordering Principle (WOP)
Zorn's Lemma (ZL)
```

We will use these concept twice in the course. 1) We use The WOP to show that $\exists \text{COL}: \binom{\mathbb{R}}{2} \rightarrow [2]$ with no \mathbb{R} -sized homog set.

```
We discuss
Axiom of Choice (AC)
Well Ordering Principle (WOP)
Zorn's Lemma (ZL)
```

We will use these concept twice in the course. 1) We use The WOP to show that $\exists \text{COL}: \binom{\mathbb{R}}{2} \rightarrow [2]$ with no \mathbb{R} -sized homog set. 2) We use The ZL to prove the De Bruijn-Erdös Theorem:

```
We discuss
Axiom of Choice (AC)
Well Ordering Principle (WOP)
Zorn's Lemma (ZL)
```

We will use these concept twice in the course. 1) We use The WOP to show that $\exists \text{COL}: \binom{\mathbb{R}}{2} \rightarrow [2]$ with no \mathbb{R} -sized homog set. 2) We use The ZL to prove the De Bruijn-Erdös Theorem: If every finite subgraph of *G* is *k*-colorable then *G* is *k*-colorable

```
We discuss
Axiom of Choice (AC)
Well Ordering Principle (WOP)
Zorn's Lemma (ZL)
```

We will use these concept twice in the course. 1) We use The WOP to show that $\exists \text{COL}: \binom{\mathbb{R}}{2} \rightarrow [2]$ with no \mathbb{R} -sized homog set. 2) We use The ZL to prove the De Bruijn-Erdös Theorem: If every finite subgraph of G is k-colorable then G is k-colorable

We will use DBE thm on the graph (\mathbb{R}^2, E) where

$$E = \{(p,q): |p-q| = 1\}$$

Axiom of Choice (AC) Well Ordering Principle (WOP) Zorn's Lemma (ZL)

AC: Let *I* be any set. Assume that for all $i \in I$ we have an $A_i \neq \emptyset$. Then \exists a function $f: I \rightarrow \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$.

AC: Let *I* be any set. Assume that for all $i \in I$ we have an $A_i \neq \emptyset$. Then \exists a function $f: I \rightarrow \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$. Seems obvious. However, describing *f* may be impossible.

- ・ロト・(部・・ヨト・ヨト・ヨー のへぐ

AC: Let *I* be any set. Assume that for all $i \in I$ we have an $A_i \neq \emptyset$. Then \exists a function $f: I \rightarrow \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$. Seems obvious. However, describing *f* may be impossible. Bertrand Russell gave a telling example:

AC: Let *I* be any set. Assume that for all $i \in I$ we have an $A_i \neq \emptyset$. Then \exists a function $f: I \rightarrow \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$. Seems obvious. However, describing *f* may be impossible. Bertrand Russell gave a telling example: a) Let A_i have a pair of shoes in it. Then let *f* be

AC: Let *I* be any set. Assume that for all $i \in I$ we have an $A_i \neq \emptyset$. Then \exists a function $f: I \rightarrow \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$. Seems obvious. However, describing *f* may be impossible. Bertrand Russell gave a telling example: a) Let A_i have a pair of shoes in it. Then let *f* be

f(i) = the left shoe in A_i . Do not need AC to show f exists

AC: Let *I* be any set. Assume that for all $i \in I$ we have an $A_i \neq \emptyset$. Then \exists a function $f: I \rightarrow \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$. Seems obvious. However, describing *f* may be impossible. Bertrand Russell gave a telling example: a) Let A_i have a pair of shoes in it. Then let *f* be

f(i) = the left shoe in A_i . Do not need AC to show f exists

ション ふぼう メリン メリン しょうくしゃ

b) Let A_i have a pair of socks.

AC: Let *I* be any set. Assume that for all $i \in I$ we have an $A_i \neq \emptyset$. Then \exists a function $f: I \rightarrow \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$. Seems obvious. However, describing *f* may be impossible. Bertrand Russell gave a telling example: a) Let A_i have a pair of shoes in it. Then let *f* be

f(i) = the left shoe in A_i . Do not need AC to show f exists

b) Let A_i have a pair of socks.

 $f(i) = \text{some sock in } A_i$.

AC: Let *I* be any set. Assume that for all $i \in I$ we have an $A_i \neq \emptyset$. Then \exists a function $f: I \rightarrow \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$. Seems obvious. However, describing *f* may be impossible. Bertrand Russell gave a telling example: a) Let A_i have a pair of shoes in it. Then let *f* be

f(i) = the left shoe in A_i . Do not need AC to show f exists

b) Let A_i have a pair of socks.

f(i) = some sock in A_i .

To show some f exists needs the axiom of choice.

(4日) (個) (主) (主) (三) の(の)

Def Let (X, \leq) be a partial order. (X, \leq) is a Well Ordered Set if every nonempty $A \subseteq X$ has a least element.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Def Let (X, \leq) be a partial order. (X, \leq) is a **Well Ordered Set** if every nonempty $A \subseteq X$ has a least element. **Equiv** There is an ordinal α and a bijection from α to X.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Def Let (X, \leq) be a partial order. (X, \leq) is a **Well Ordered Set** if every nonempty $A \subseteq X$ has a least element. **Equiv** There is an ordinal α and a bijection from α to X.

Examples and Counterexamples

Def Let (X, \leq) be a partial order. (X, \leq) is a **Well Ordered Set** if every nonempty $A \subseteq X$ has a least element. **Equiv** There is an ordinal α and a bijection from α to X.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Examples and Counterexamples

The Naturals are well ordered.

Def Let (X, \leq) be a partial order. (X, \leq) is a **Well Ordered Set** if every nonempty $A \subseteq X$ has a least element. **Equiv** There is an ordinal α and a bijection from α to X.

ション ふぼう メリン メリン しょうくしゃ

Examples and Counterexamples

The Naturals are well ordered.

 ω^2 is well-ordered. (Any ordinal is well-ordered.)

Def Let (X, \leq) be a partial order. (X, \leq) is a **Well Ordered Set** if every nonempty $A \subseteq X$ has a least element. **Equiv** There is an ordinal α and a bijection from α to X.

Examples and Counterexamples

The Naturals are well ordered.

- ω^2 is well-ordered. (Any ordinal is well-ordered.)
- ${\mathbb Q}$ and ${\mathbb R}$ are not well ordered in their usual ordering

Def Let (X, \leq) be a partial order. (X, \leq) is a **Well Ordered Set** if every nonempty $A \subseteq X$ has a least element. **Equiv** There is an ordinal α and a bijection from α to X.

Examples and Counterexamples

The Naturals are well ordered.

 ω^2 is well-ordered. (Any ordinal is well-ordered.)

 $\mathbb Q$ and $\mathbb R$ are not well ordered in their usual ordering

 \mathbb{Q}^+ ordered by $\frac{a}{b} \leq \frac{c}{d}$ iff $a + b \leq c + d$ is a well ordering.

Def Let (X, \leq) be a partial order. (X, \leq) is a **Well Ordered Set** if every nonempty $A \subseteq X$ has a least element. **Equiv** There is an ordinal α and a bijection from α to X.

Examples and Counterexamples

The Naturals are well ordered.

 ω^2 is well-ordered. (Any ordinal is well-ordered.)

 \mathbb{Q} and \mathbb{R} are not well ordered in their usual ordering \mathbb{Q}^+ ordered by $\frac{a}{b} \leq \frac{c}{d}$ iff $a + b \leq c + d$ is a well ordering. Can \mathbb{R} be well ordered? Discuss.

▲ロト ◆聞 ト ◆ 臣 ト ◆ 臣 ト ○臣 ○ の Q @

The Well Ordering Principle For all X there is an ordinal α and a bijection from α to X.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

The Well Ordering Principle For all X there is an ordinal α and a bijection from α to X.

Note You can take α to be the least ordinal with cardinality |X|.

- **The Well Ordering Principle** For all X there is an ordinal α and a bijection from α to X.
- **Note** You can take α to be the least ordinal with cardinality |X|.

ション ふぼう メリン メリン しょうくしゃ

The Reals Let ω_1 be the least uncountable ordinal. ω_1 can be identified with the set of all countable ordinals.

The Well Ordering Principle For all X there is an ordinal α and a bijection from α to X.

Note You can take α to be the least ordinal with cardinality |X|.

ション ふぼう メリン メリン しょうくしゃ

The Reals Let ω_1 be the least uncountable ordinal.

 ω_1 can be identified with the set of all countable ordinals.

By WOP there is a function $\mathbb{R} \to \omega_1$.

- **The Well Ordering Principle** For all X there is an ordinal α and a bijection from α to X.
- **Note** You can take α to be the least ordinal with cardinality |X|.

- **The Reals** Let ω_1 be the least uncountable ordinal.
- ω_1 can be identified with the set of all countable ordinals.
- By WOP there is a function $\mathbb{R} \to \omega_1$.
- This map induces a well-ordering \prec on $\mathbb R$

- **The Well Ordering Principle** For all X there is an ordinal α and a bijection from α to X.
- **Note** You can take α to be the least ordinal with cardinality |X|.

- **The Reals** Let ω_1 be the least uncountable ordinal.
- ω_1 can be identified with the set of all countable ordinals.
- By WOP there is a function $\mathbb{R} \to \omega_1$.
- This map induces a well-ordering \prec on $\mathbb R$
- ${\mathbb R}$ can be well ordered. Is that strange?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

(We will assume CH for convience.)

(We will assume CH for convience.) \leq is a well ordering of the reals.

(We will assume CH for convience.) \leq is a well ordering of the reals. Let ω_1 be the first uncontable ordinal.

(We will assume CH for convience.) \leq is a well ordering of the reals. Let ω_1 be the first uncontable ordinal. There is a bijection $f: \omega_1 \to \mathbb{R}$.

(We will assume CH for convience.) \leq is a well ordering of the reals. Let ω_1 be the first uncontable ordinal. There is a bijection $f: \omega_1 \to \mathbb{R}$. WO the \mathbb{R} by $f(1) < f(2) < \cdots f(\omega) < \cdots < f(\omega^{\omega}) < \cdots$.

(We will assume CH for convience.) \leq is a well ordering of the reals. Let ω_1 be the first uncontable ordinal. There is a bijection $f: \omega_1 \to \mathbb{R}$. WO the \mathbb{R} by $f(1) < f(2) < \cdots f(\omega) < \cdots < f(\omega^{\omega}) < \cdots$. Odd Fact 1: Since every element of ω_1 has a countable number of elements LESS than it,

ション ふぼう メリン メリン しょうくしゃ

 $\forall x \in \mathbb{R},$ the set $\{y \colon y \prec x\}$ is countable.

(We will assume CH for convience.) \leq is a well ordering of the reals. Let ω_1 be the first uncontable ordinal. There is a bijection $f: \omega_1 \to \mathbb{R}$. WO the \mathbb{R} by $f(1) < f(2) < \cdots f(\omega) < \cdots < f(\omega^{\omega}) < \cdots$. Odd Fact 1: Since every element of ω_1 has a countable number of elements LESS than it, $\forall x \in \mathbb{R}$, the set $\{y: y \prec x\}$ is countable.

ション ふぼう メリン メリン しょうくしゃ

Odd Fact 2: $(\forall x \in \mathbb{R})(\exists x^+)$ such that $x \prec x^+$ and $\neg \exists y[x \prec y \prec x^+]$.

(We will assume CH for convience.) \prec is a well ordering of the reals. Let ω_1 be the first uncontable ordinal. There is a bijection $f: \omega_1 \to \mathbb{R}$. WO the \mathbb{R} by $f(1) < f(2) < \cdots + f(\omega) < \cdots < f(\omega^{\omega}) < \cdots$. **Odd Fact 1:** Since every element of ω_1 has a countable number of elements LESS than it. $\forall x \in \mathbb{R}$, the set $\{y : y \prec x\}$ is countable. Odd Fact 2: $(\forall x \in \mathbb{R})(\exists x^+)$ such that $x \prec x^+$ and $\neg \exists y [x \prec y \prec x^+]$.

Odd? Do these two odd facts make your doubt WOP?

<ロト < 置 > < 置 > < 置 > < 置 > の < @</p>

Def Let (P, \leq) be a partial order.

Def Let (P, \leq) be a partial order. A **chain** is a subset of *P* where every pair of elements is comparable.

・ロト・日本・ヨト・ヨト・日・ つへぐ

Def Let (P, \leq) be a partial order.

A **chain** is a subset of P where every pair of elements is comparable.

A Maximal Element of C is an element such that nothing in C is bigger than it. (C might be a subset of P.)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Def Let (P, \leq) be a partial order.

A **chain** is a subset of *P* where every pair of elements is comparable.

A Maximal Element of C is an element such that nothing in C is bigger than it. (C might be a subset of P.) Example Partial order is $(2^{\mathbb{N}}, \subseteq)$. The following is a chain:

$$\{2\} \subseteq \{2, 2^2\} \subseteq \{2, 2^2, 2^3\} \cdots$$

Def Let (P, \leq) be a partial order.

A **chain** is a subset of *P* where every pair of elements is comparable.

A Maximal Element of *C* is an element such that nothing in *C* is bigger than it. (*C* might be a subset of *P*.) Example Partial order is $(2^{\mathbb{N}}, \subseteq)$. The following is a chain:

$$\{2\} \subseteq \{2, 2^2\} \subseteq \{2, 2^2, 2^3\} \cdots$$

Zorn's Lemma Let (P, \leq) be a partial order. Assume that every chain has a maximal element (it need not be in the chain.) Then (P, \leq) has a maximal element.

AC: Let *I* be any set. Assume that for all $i \in I$ we have an $A_i \neq \emptyset$. There $\exists f: I \rightarrow \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

AC: Let *I* be any set. Assume that for all $i \in I$ we have an $A_i \neq \emptyset$. There $\exists f: I \rightarrow \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

WO: $\forall X \exists$ ordinal α and bijection from α to X.

AC: Let *I* be any set. Assume that for all $i \in I$ we have an $A_i \neq \emptyset$. There $\exists f: I \rightarrow \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$.

WO: $\forall X \exists$ ordinal α and bijection from α to X.

ZL Let (P, \leq) be a partial order. Assume that every chain has a maximal element that is in P (it need not be in the chain). Then (P, \leq) has a maximal element

AC: Let *I* be any set. Assume that for all $i \in I$ we have an $A_i \neq \emptyset$. There $\exists f: I \rightarrow \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$.

WO: $\forall X \exists$ ordinal α and bijection from α to X.

ZL Let (P, \leq) be a partial order. Assume that every chain has a maximal element that is in P (it need not be in the chain). Then (P, \leq) has a maximal element

ション ふゆ アメビア メロア しょうくしゃ

1) AC, WO, ZL are all equivalent.

AC: Let *I* be any set. Assume that for all $i \in I$ we have an $A_i \neq \emptyset$. There $\exists f: I \rightarrow \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$.

WO: $\forall X \exists$ ordinal α and bijection from α to X.

ZL Let (P, \leq) be a partial order. Assume that every chain has a maximal element that is in P (it need not be in the chain). Then (P, \leq) has a maximal element

ション ふゆ アメビア メロア しょうくしゃ

1) AC, WO, ZL are all equivalent.

2) Mathematician Jerry Bona's famous quote

AC: Let *I* be any set. Assume that for all $i \in I$ we have an $A_i \neq \emptyset$. There $\exists f: I \rightarrow \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$.

WO: $\forall X \exists$ ordinal α and bijection from α to X.

ZL Let (P, \leq) be a partial order. Assume that every chain has a maximal element that is in P (it need not be in the chain). Then (P, \leq) has a maximal element

ション ふゆ アメビア メロア しょうくしゃ

1) AC, WO, ZL are all equivalent.

2) Mathematician Jerry Bona's famous quote **The Axiom of Choice is obviously true.**

AC: Let *I* be any set. Assume that for all $i \in I$ we have an $A_i \neq \emptyset$. There $\exists f: I \rightarrow \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$.

WO: $\forall X \exists$ ordinal α and bijection from α to X.

ZL Let (P, \leq) be a partial order. Assume that every chain has a maximal element that is in P (it need not be in the chain). Then (P, \leq) has a maximal element

1) AC, WO, ZL are all equivalent.

2) Mathematician Jerry Bona's famous quote The Axiom of Choice is obviously true. The Well Ordering Principle is obviously false.

AC: Let *I* be any set. Assume that for all $i \in I$ we have an $A_i \neq \emptyset$. There $\exists f: I \rightarrow \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$.

WO: $\forall X \exists$ ordinal α and bijection from α to X.

ZL Let (P, \leq) be a partial order. Assume that every chain has a maximal element that is in P (it need not be in the chain). Then (P, \leq) has a maximal element

1) AC, WO, ZL are all equivalent.

2) Mathematician Jerry Bona's famous quote The Axiom of Choice is obviously true. The Well Ordering Principle is obviously false. And who can tell about Zorn's Lemma?