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Today’s Lesson

We discuss
Axiom of Choice (AC)
Well Ordering Principle (WOP)
Zorn’s Lemma (ZL)

We will use these concept twice in the course.
1) We use The WOP to show that
∃COL :

(R
2

)
→ [2] with no R-sized homog set.

2) We use The ZL to prove the De Bruijn-Erdös Theorem:
If every finite subgraph of G is k-colorable then G is
k-colorable

We will use DBE thm on the graph (R2,E ) where

E = {(p, q) : |p − q| = 1}
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The Axiom of Choice (AC)

AC: Let I be any set. Assume that for all i ∈ I we have an Ai 6= ∅.
Then ∃ a function f : I → ∪i∈IAi such that f (i) ∈ Ai .

Seems obvious. However, describing f may be impossible.

Bertrand Russell gave a telling example:

a) Let Ai have a pair of shoes in it. Then let f be

f (i) = the left shoe in Ai . Do not need AC to show f exists

b) Let Ai have a pair of socks.

f (i) = some sock in Ai .

To show some f exists needs the axiom of choice.
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Well Orderings

Def Let (X ,≤) be a partial order. (X ,≤) is a Well Ordered Set
if every nonempty A ⊆ X has a least element.
Equiv There is an ordinal α and a bijection from α to X .

Examples and Counterexamples

The Naturals are well ordered.

ω2 is well-ordered. (Any ordinal is well-ordered.)

Q and R are not well ordered in their usual ordering

Q+ ordered by a
b ≤

c
d iff a + b ≤ c + d is a well ordering.

Can R be well ordered? Discuss.
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The Well Orderings Principle

The Well Ordering Principle For all X there is an ordinal α and
a bijection from α to X .

Note You can take α to be the least ordinal with cardinality |X |.
The Reals Let ω1 be the least uncountable ordinal.
ω1 can be identified with the set of all countable ordinals.

By WOP there is a function R→ ω1.
This map induces a well-ordering ≺ on R
R can be well ordered. Is that strange?
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Consequences of R Being Well Ordered

(We will assume CH for convience.)

� is a well ordering of the reals.
Let ω1 be the first uncontable ordinal.
There is a bijection f : ω1 → R.
WO the R by f (1) < f (2) < · · · f (ω) < · · · < f (ωω) < · · · .
Odd Fact 1: Since every element of ω1 has a countable number of
elements LESS than it,
∀x ∈ R, the set {y : y ≺ x} is countable.

Odd Fact 2:
(∀x ∈ R)(∃x+) such that x ≺ x+ and ¬∃y[x ≺ y ≺ x+].

Odd? Do these two odd facts make your doubt WOP?
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Zorn’s Lemma

Def Let (P,≤) be a partial order.
A chain is a subset of P where every pair of elements is
comparable.
A Maximal Element of C is an element such that nothing in C is
bigger than it. (C might be a subset of P.)
Example Partial order is (2N,⊆). The following is a chain:

{2} ⊆ {2, 22} ⊆ {2, 22, 23} · · ·

Zorn’s Lemma Let (P,≤) be a partial order. Assume that every
chain has a maximal element (it need not be in the chain.) Then
(P,≤) has a maximal element.
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State All Three

AC: Let I be any set. Assume that for all i ∈ I we have an Ai 6= ∅.
There ∃ f : I → ∪i∈IAi such that f (i) ∈ Ai .

WO: ∀X ∃ ordinal α and bijection from α to X .

ZL Let (P,≤) be a partial order. Assume that every chain has a
maximal element that is in P (it need not be in the chain). Then
(P,≤) has a maximal element

1) AC, WO, ZL are all equivalent.

2) Mathematician Jerry Bona’s famous quote
The Axiom of Choice is obviously true.
The Well Ordering Principle is obviously false.
And who can tell about Zorn’s Lemma?
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