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Mono Triangles

Def Assume there is a coloring of R2. A Mono Triangle is a
triangle with all three vertices the same color.

We will prove the following:
Thm ∀ finite colorings of R2 ∃ a mono triangle with area 1.
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Red Triangle of Area 1

Let r be a point on L such that d(q, r) = 2
d .
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Case 1 DONE.
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Case 2,3,4

The following cases are either trivial or similar to Case 1.

Case 2: ∃ a horiz. line L which is all R, but every p not on L is B.

Case 3: ∃ a horiz. line L which is all B, and a B point p not on L.

Case 4: ∃ a horiz. line L which is all B, but every p not on L is R.

So whats left? See next slide.
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Case 5: Every horiz. line has both colors. We call this mixed.
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Three Key Points

We focus on (0, 0), (0, 1), (0, 2) and the infinite horiz. lines that
are 1 and 2 above x-axis.

0,0 0,1 0,2 · · ·

· · ·
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Case 5.1: (0, 0) and (0, 1) are R

∃ R p on top line since all horiz. lines are mixed.
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2 × 1× 2 = 1.
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The 3-Color Case

Thm For all COL : R2 → [3] there is a mono triangle with area 1.

We use the colors R, B, G.
Thoughts

1. The key to the 2-color case was that we had horiz. lines that
all used R and B. We will try to get a set of horiz lines that
all use the same colors.

2. Another key is that the horiz. lines were equally spaced.

3. So we need horiz. lines that all use the same set of colors and
our equally spaced.
What does this make you think of?
Answer on next slide.
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Use VDW’s Theorem

Let W = W (k , c) where we will pick k and c later.

Define

COL′ : [W (k , c)]→ {{R}, {B}, {G}, {R,B}, {R,G}, {B,G}, {R,B,G}}

as follows:
COL′(i) = the set of colors used by COL on the line y = i .
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1. The colors are nonempty subsets of {R,B,G} so
c = 23 − 1 = 7.

2. We need 6d , so AP of length 7. k = 7.



Fill in the Parameters

We used W = W (k , c).

1. The colors are nonempty subsets of {R,B,G} so
c = 23 − 1 = 7.

2. We need 6d , so AP of length 7. k = 7.



Fill in the Parameters

We used W = W (k , c).

1. The colors are nonempty subsets of {R,B,G} so
c = 23 − 1 = 7.

2. We need 6d , so AP of length 7. k = 7.



Generalize
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This is a HW problem.

Key is to find the right parameters for VDW.
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