On the Existence of Regular n-Graphs with Given Girth

N. SAUER

The University of Calgary, Department of Mathematics, Calgary, Alberta, Canada Communicated by Frank Harary

Received February 12, 1968

Abstract

In this paper I construct for each g, l, and $m \equiv 0$ modulo n a regular n-graph G of degree g and girth l with $m \ge \varphi(g, l, n)$ points, where $\varphi(g, l, n)$ is a certain function. In [1] Erdös constructed such graphs for n = 2.

1. DEFINITIONS. The cardinal number of a set x is denoted by |x|. An *n*-graph $(n \ge 2)$ is an ordered pair of finite sets $G = (V, \Gamma)$, with $\Gamma \subset \{x \mid x \subset V; \mid x \mid = n\}$. Elements of V are the points of G and elements of Γ are the edges of G. I use the notation: $\nu(G) = V; e(G) = \Gamma$.

The sequence of edges $e_1, e_2, ..., e_r$ with $e_i \in \Gamma$ and $e_i \cap e_{i+1} \neq 0$ $(1 \leq i \leq r)$ is called a *way of length* r in G if:

- (i) $e_i \neq e_j \ (i \neq j)$,
- (ii) $x \in e_i \Rightarrow x \notin e_i$ for $j \notin \{i 1, i, i + 1\}$. $(r \ge 2, r + 1 \text{ may be identified with } 1)$.
- (iii) $e_i \cap e_j \cap e_k = 0$ $(i \neq j \neq k \neq i)$.

The points $x, y \in V$ are said to be connected by the way $e_1, e_2, ..., e_r$, if $x \in e$ and $y \in e$. The distance $\rho(x, y)$ between the points x and y is the length of the shortest way connecting x with y. If A, B are non-empty sets of points of G, we define the distance $\rho(A, B)$ between A and B to be the length of the shortest way connecting a point of A to a point of B.

A way e_1 , e_2 ,..., e_r of length r ($r \ge 3$) with $e_1 \cap e_r \ne 0$ is called a *circuit* of length r and the length of a shortest circuit in G, the *girth* of G, is denoted by t(G).

If $x \in V$ then d(x), the degree of x, is the number of *n*-edges incident with x.

I denote the set of all regular n-graphs of degree g and girth l by

$$G(g, l, n) = \{G/G \text{ is an } n\text{-graph}; d(x) = g, (x \in \nu(G)), t(G) \ge l\}.$$

Suppose $G = (V, \Gamma)$ is an *n*-graph and $g - 1 \le d(x) \le g$ for all $x \in V$. If $p \in V$ and d(p) = g - 1, then

$$|\{x \in V \mid \rho(x, p) \leq l-2\}| \leq \sum_{i=1}^{l-2} (g-1)^i (n-1)^i = f(g, l, n).$$

Also, if $e \in \Gamma$, then

 $|\{x \in V \mid \rho(x, e) \leq l-2\}| \leq nf(g, l, n).$

I define now the function $\varphi(g, l, n)$:

$$\varphi(g, l, n) = n(n-1)(f(g, l, n) + (g-1)^{l-2}(n-1)^{l-1}) + 1.$$

2. We will prove the following:

THEOREM. If $n \ge 2$, $l \ge 3$, $g \ge 1$, $m \ge \varphi(g, l, n)$ and $m \equiv 0 \pmod{n}$, then there is a graph $G \in G(g, l, n)$ so that $|\nu(G)| = m$.

The theorem obviously holds if g = 1. We assume now g > 1 and use induction on g.

Since $m \equiv 0 \pmod{n}$ and $\varphi(g, l, n) > \varphi(g - 1, l, n)$, there is a graph $G_0 \in G(g - 1, l, n)$ with $\nu(G_0) = m$. Let

$$N = \{H \mid H \text{ is an } n \text{-graph}; g - 1 \leq d_H(x) \leq g(x \in \nu(H));$$

 $t(H) \geq l; \mid \nu(H) \mid = m\}.$

Then, $N \neq 0$, since $G_0 \in N$. Therefore, there is a graph $G \in N$ so that

$$|e(G)| \ge |e(H)|$$
 for all $H \in N$. (1)

To prove our theorem it is sufficient to prove that $d_G(x) = g$ for all $x \in \nu(G)$. We will assume that

$$V' = \{x \mid x \in G; d_G(x) = g - 1\} \neq \emptyset$$
(2)

and obtain a contradiction.

The number of distinct pairs (x, y) with $x \in v(G)$ and $x \in y \in e(G)$ is

$$n \mid e(G) \mid = mg - \mid V' \mid.$$

Therefore |V'| is a multiple of *n* and by (2), $|V'| \ge n$. Let $A \subseteq V'$, |A| = n. We will show that there are n - 1 distinct edges

$$y_1, y_2, ..., y_{n-1} \in e(G)$$

such that

$$\rho(y_i, A) \geqslant l - 1, \tag{3}$$

and

$$\rho(y_i, y_j) \ge l - 1 \qquad (i \ne j). \tag{4}$$

Suppose there are at most r edges y_1 , y_2 ,..., y_r which satisfy (3) and (4) and that $0 \le r < n - 1$. Put

$$B = A \cup \bigcup_{1 \leq j \leq r} y_j$$

and let $C = \{x \in \nu(G) | \rho(x, B) \leq l - 2\}$. Then

$$|C| \leq (r+1) nf(g, l, n).$$

Therefore, if $D = \nu(G) - C$, then

$$|D| > n(n-1)(g-1)^{l-2}(n-1)^{l-1}$$
.

The set D contains no edge of G by the maximality condition on r.

Let $E = \{x \in \nu(G) | \rho(x, B) = l - 2\}$. Then

$$|E| \leq (r+1) n(g-1)^{l-2} (n-1)^{l-2}$$

Let $D' = \{y \in e(G) | y \cap D \neq 0\}$. Since D contains no edge of G, and the points of D are at distance at least l - 1 from B, it follows that if $y \in D'$, then $y \cap E \neq 0$ and $y \in E \cap D$. Since each point of E is incident with at most g - 1 edges in D' it follows that

$$|D'| \leq (g-1) |E|.$$

Also, since each point of D is incident with at least (g - 1) edges of D' and every edge of D' has at most n - 1 points in D, we have

$$(g-1) | D | \leq (n-1) | D' |.$$

We now have the contradiction

$$n(n-1)(g-1)^{l-2}(n-1)^{l-1} < |D| \leq (n-1) |E| \leq (n-1) n(g-1)^{l-2} (n-1)^{l-1}.$$

This proves our assertion that there are $y_1, ..., y_{n-1} \in e(G)$ so that (3) and (4) hold.

Since A, $y_1, ..., y_{n-1}$ are n disjoint sets each with n elements, there are disjoint sets $z_1, ..., z_n$ such that $|z_i| = n$ and

$$|z_i \cap A| = 1, |z_i \cap y_j| = 1$$
 $(1 \leq i \leq n; 1 \leq j \leq n-1).$

146

Consider now the graphs $G_1 = (\nu(G), \Gamma_1), G_2 = (\nu(G), \Gamma_2)$, where

 $\Gamma_1 = e(G) - \{y_1, y_2, ..., y_{n-1}\}, \qquad \Gamma_2 = \Gamma_1 \cup \{z_1, ..., z_n\}.$

Clearly G_2 is an *n*-graph, $|\nu(G_2)| = m$ and $d_{G_2}(x) = g - 1$ or g for $x \in \nu(G)$.

Suppose G_2 contains a circuit e_1 , e_2 ,..., e_r of length r < l. Since G contains no such circuit one of the edges z_j must be included and we can assume $e_1 = z_1$. If $p \in e_1 \cap e_2$ and $q \in e_1 \cap e_r$, then $p \neq q$ and by the definition of z_1 we may assume $p \notin A$.

Since the z_j are mutually disjoint $e_2 \notin \{z_1, ..., z_n\}$, and, hence, there is some $s \leq r$ so that $e_2, ..., e_s \in \Gamma_1$ and the way $e_2, ..., e_s$ joins p to some other point of $A \cup y_1 \cup \cdots \cup y_n$. This is impossible by (3) and (4).

This proves that $G_2 \in N$ and, since $|e(G_2)| = |e(G)| + 1$, we have a contradiction against (1). This proves that (2) is false and hence that G is a regular graph of degree g.

ACKNOWLEDGMENT

I am greatly indebted to Professor E. C. Milner for his useful suggestions making the proof of this theorem much more elegant and shorter.

Reference

1. P. ERDÖS AND H. SACHS, Regulare Graphen gegebener Taillenweite mit minimaler Knotenzahl, Wiss. Z. Univ. Halle, Math.-Nat. 12 (March 1963), 251-258.