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ABSTRACT 

In this paper  I construct  for each g, l, and m ~- 0 modulo  n a regular n-graph G o f  
degree g and girth l with m >~ ~o(g, l, n) points, where ~(g, / ,  n) is a certain function. 

In  [1] Erd6s constructed such graphs for n = 2. 

1. DEFINITIONS. The cardinal  number  o f  a set x is denoted by I x  [. 
An  n-graph (n ~ 2) is an ordered pair  o f  finite sets G ----- ( V , / ' ) ,  with 

_P C {x [ x C V; I x Z ---- n}. Elements  of  V are the points of  G and elements 
o f / "  are the edges of  G. I use the notat ion:  v(G) = V; e(G) = F. 

The sequence o f  edges e 1 , e2 ..... er with ei E / "  and ei n e~+ 1 :~  0 
(1 ~< i ~ r) is called a way o f  length r in G if: 

(i) ei 3 & e~ (i :~  j ) ,  

(ii) x ~ e ~ = ~ x 6 e j  for  j r  1, i, i +  1}. (r >~2, r + l  m a y  be 
identified with 1). 

(iii) e, n ej n ek = 0 (i :~  j ~ k :~  i). 

The  points  x, y ~ V are said to  be  connected by the way e l ,  e2 ..... e , ,  
if x ~ e and y E e. The distance p(x, y) between the points  x and y is the 
length of  the shortest  way connect ing x with y. I f  A, B are non-empty  sets 
o f  points o f  G, we define the distance p(A, B) between A and B to be the 
length of  the shortest  way connect ing a po in t  o f  A to a point  o f  B. 

A way e l ,  e~ ..... e~ of  length r (r > / 3 )  with el c~ e, 3& 0 is called a 
circuit of  length r and the length of  a shortest  circuit in G, the girth of  G, 
is denoted by t(G). 

I f  x ~ V then d(x), the degree of  x, is the number  of  n-edges incident 
with x. 

I denote  the set o f  all regular  n-graphs o f  degree g and girth l by 

G(g, 1, n) = {GIG is an n-graph; d(x) = g, (x ~ v(G)), t(G) ~ l}. 
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Suppose G = ( V , / ' )  is an n-graph and g - -  1 ~<d(x) ~ g  for all 
x e V. I f  p e V and d(p)  = g - -  1, then 

I--2 

[ { x E V [ p ( x , p ) ~ l - - 2 } ]  ~ ~ , ( g - -  1) i ( n -  1) i = f ( g , l , n ) .  
i = l  

Also, i f  e e r ' ,  then 

l{x e V] p(x,  e) ~ l - -  2}t ~ nf (g ,  l, n). 

I define now the funct ion go(g,/, n): 

go(g, l, n) ~- n(n - -  1)(f(g,  l, n) + ( g  - -  1) t-2 (n - -  1) '-1) + 1. 

2. W e  will prove  the fol lowing: 

THEOREM. I f  n ~ 2 , 1 ~  3, g ~ 1, m ~ go( g, l, n) and  m ~ O ( m o d  n), 
then there is a graph G ~ G(g,  l, n) so that [ v(G)j = m. 

The theo rem obviously holds if g = 1. We  assume now g > 1 and use 
induct ion on g. 

Since m ~ 0 (rood n) and go(g,/, n) > go(g - -  1,/,  n), there is a graph 
Go ~ G ( g  --  1, l, n) with v(Go) = m. Let 

N = {H I H is an n-graph; g - -  1 ~< dH(X) ~ g ( x  ~ v(H));  

t ( H )  ~ l; I v(H)] = m}. 

Then,  N =/= 0, since Go e N. Therefore,  there is a graph G e N so that  

I e(G)] ~ I e(H)] for  all g e N. (1) 

To  prove  our  theorem it is sufficient to prove  that  do(x)  = g for  all 
x e v(G). We will assume that  

V ' = { x l x ~ G ; d o ( x ) = g - -  1 } : ~ r  (2) 

and obtain  a contradiction.  
The n u m b e r  of  distinct pairs (x, y)  with x E v(G) and x E y e e(G) is 

n] e(G)l = mg  - -  [ V '  ]. 

Therefore  ] V' [  is a mult iple of  n and by (2), r V ' I  ~ n. Let  A C V', 
] A I = n. We will show tha t  there are n - -  1 distinct edges 

Y l  , Y~ ,..., Y , - I  e e(G) 
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such that  
p(y~, A) ~> t --  1, (3) 

and 
p ( y , ,  y~) >~ I -- 1 (i =;& j) .  (4) 

Suppose there are at most  r edges y~, Y2 .... , y~ which satisfy (3) and  (4) 
and t h a t 0  ~<r  < n - -  1. Put  

B = A u  U Y~ 
l ~ j ~ r  

and let C = {x e v(G)/p(x, B) <~ I --  2}. Then 

I C I  <~ (r q- 1) n f ( g , l , n ) .  

Therefore, if D = v(G) -- C, then 

I O l  > n(n --  1)(g --  1) t-2 (n - -  1) ~-1. 

The set D contains no edge o f  G by the maximali ty condit ion on r. 
Let  E = {x ~ v(G)/p(x, B) ~- l --  2}. Then 

IE[ ~ ( r +  1) n(g- -  1) t - 2 ( n -  1) ~-e. 

Let D '  = {y e e(G)/y n D =/= 0}. Since D contains no edge of  G, and the 
points o f  D are at  distance at least l - -  1 f rom B, it follows that  if y ~ D' ,  
then y ~ E :/= 0 and y C E n D. Since each point  o f  E is incident with at 
most  g - -  1 edges in D '  it follows that  

[ O ' l  ~ < ( g - -  1) I E I .  

Also, since each point  of  D is incident with at  least (g - -  1) edges o f  D '  
and every edge o f  D' has at mos t  n - -  1 points in D, we have 

( g - - 1 ) t D I  ~ ( n - -  1) [ D '  1. 

We now have the contradiction 

n ( n -  1 ) ( g -  1)*-2 ( n -  1) *-1 

< [ D [ ~ (n - -  1) t E I  ~< (n --  1) n(g  --  1) *-~ (n --  1)z-L 

This proves our  assertion that  there are Yl ..... y~_~ E e(G) so that  (3) and (4) 
hold. 

Since A, y~ ..... Y~-I are n disjoint sets each with n elements, there are 
disjoint sets Zx ,..., z,~ such that  [ zi I = n and 

I z i n A l =  1, I z ~ y j l = l  (1 ~ i ~ n ;  1 ~ j ~ < n - - 1 ) .  
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Consider  now the graphs (71 = (v(G), 1-'1) , G2 ----- (v(G),  1'2), where 

G ~- e(G)  - -  { Y l ,  Y2 ..... Y~-I},  1F'2 = G t...) {z 1 ..... z~}. 

Clearly G2 is an n-graph, t v(GOI = m and  d % ( x )  -~ g - -  1 or g for 
x e v(G).  

Suppose G2 contains  a circuit e l ,  e2 .... , er of  length r < L Since G 
contains no such circuit one of the edges z~- mus t  be included and  we can 

assume el ~ zl �9 I f  p ~ el n e2 and  q ~ e~ n e,., then p =/: q and  by the 
definition of  Zl we may assume p ~ A. 

Since the z~ are mutual ly  disjoint  e2 ~ {z~ .... , z,+}, and, hence, there is 
some s ~ r so that  ez ..... e+ ~/~1 and the way e2 ..... es jo ins  p to some 
other po in t  of  A w Yl w ... w y,~. This is impossible by (3) and  (4). 

This proves that  G2 ~ N and, since I e(G2)l = I e(G)l -}- 1, we have a 
contradic t ion against  (1). This proves that (2) is false and hence that  G is a 
regular graph of degree g. 
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