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ABSTRACT

In this paper 1 construct for each g, /, and m = 0 modulo #n a regular n-graph G of
degree g and girth [ with m > ¢(g, I, n) points, where ¢(g, I, n) is a certain function.
In [1] Erd6s constructed such graphs for n = 2.

1. DeFINITIONS. The cardinal number of a set x is denoted by | x|.

An n-graph (n = 2) is an ordered pair of finite sets G = (V, I'), with
I'C{x|xCV;|x| = n}. Elements of V are the points of G and elements
of I' are the edges of G. I use the notation: W(G) = V; e(G) = I

The sequence of edges e, ey,...,e, with e,;el” and e;Ne; ;40
(1 < i< r)iscalled a way of length r in G if:

() e; F e; (0 £ ),
(i) xce; >x¢e; for je{i— 1,0, i+ 1} (r =22, r+ 1 may be
identified with I).

The points x, y € V are said to be connected by the way ¢; , e, ,..., &, ,
if xee and yee. The distance p(x, y) between the points x and y is the
length of the shortest way connecting x with y. If A, B are non-empty sets
of points of G, we define the distance p(4, B) between 4 and B to be the
length of the shortest way connecting a point of 4 to a point of B.

A way e, e;,...,e, of length r (r > 3) with e; Ne, £ 0 is called a
circuit of length r and the length of a shortest circuit in G, the girth of G,
is denoted by #(G).

If x e V then d(x), the degree of x, is the number of n-edges incident
with x.

1 denote the set of all regular n-graphs of degree g and girth [ by

G(g, I, n) = {G/G is an n-graph; d(x) = g, (x e (@), H(G) = I}.
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Suppose G == (V,I") is an m-~graph and g — 1 < d(x) < g for all
xeV. lf peVand dp) =g — 1, then

eV Iple p) < 1= B <3 (g — 1 (n— 1¥ = f(g L)
Also, if ee I, then -
KxeVplx, e) <1 — 2} <nf(g, 1, n).
1 define now the function ¢(g, /, n):

(g Ln)=nn—D(f(g,Ln)+ (g —D?@—- 1))+ 1L

2. We will prove the following:

THEOREM. Ifn > 2,1>3,g =2 1,m = ¢(g, I, n) and m = 0 (mod n),
then there is a graph G € G(g, I, n) so that | wG)| = m.

The theorem obviously holds if g = 1. We assume now g > 1 and use
induction on g.

Since m = 0 (mod n) and ¢(g, l, n) > ¢(g — 1, /, n), there is a graph
Gye G(g — 1, 1, n) with »(Gy) = m. Let

N = {H| His an n-graph; g — 1 < dyp(x) < g(x = v(H));
1(H) = I | (H)] = m}.
Then, N =£ 0, since G, € N. Therefore, there is a graph G € N so that
| e(G)] = | e(H)| forall HeN. €))

To prove our theorem it is sufficient to prove that dg(x) = g for all
x € v(G). We will assume that

V={x|xeGdx)=g—1}£0 (#))

and obtain a contradiction.
The number of distinct pairs (x, y) with x € »(G) and x € y € &(G) is

nle(G) = mg — |V

Therefore | V| is a multiple of » and by (2), | V'| = n Let AC V",
| A| = n. We will show that there are n — 1 distinct edges

Y1>YV2 s Y € E(G)
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such that

p(yi, A =1—1, &)
and

p(yi,y) =1—1  (iF#)). ©)

Suppose there are at most r edges y; , Vs 5..., ¥, which satisfy (3) and (4)
and that 0 <{r <n — 1. Put

B=4vu U ¥;

1=<ir
and let C = {x € W(G)/p(x, B) < I — 2}. Then
ICI < (r+ Dnf(g L n).
Therefore, if D = v(G) — C, then
|D| >nn— (g~ 1)2mE— 1)L

The set D contains no edge of G by the maximality condition on r.
Let E = {x € W(G)/p(x, B = [ — 2}. Then

|El < (r+Dn(g— 120 — 1)

Let D' = {y e e(G)/y N D 5~ 0}. Since D contains no edge of G, and the
points of D are at distance at least / — 1 from B, it follows that if y e D',
then y N E 5~ 0 and y C E N D. Since each point of E is incident with at
most g — 1 edges in D’ it follows that

1D <(g—DIEI

Also, since each point of D is incident with at least (g — 1) edges of D’
and every edge of D’ has at most n — 1 points in D, we have

—DIDI<@m—-D[D|
We now have the contradiction
nn— D(g — 1= (2 — 1)~
< DI<@—DIEI<@—Dn(g— 1@ — D

This proves our assertion that there are y, ,..., y,_; € e(G) so that (3) and (4)
hold.

Since 4, y; ,..., Yoy are n disjoint sets each with » elements, there are
disjoint sets z, ,..., z, such that | z; | = » and

lzzndl=1 lznyli=1 (d<i<n 1<j<n—-1).
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Consider now the graphs G; = ((G), I'), G, = (U(G), I';), where

FI = e(G) - {yl ’ y2 EARES] y’ﬂ—l}s Fz = Fl \ {Zl ERREY] Zn}-

Clearly G, is an n-graph, | (Gy)| = m and dg(x) = g — 1 or g for
x € v(G).

Suppose G, contains a circuit e, , €, ,..., ¢, of length r <[ Since G
contains no such circuit one of the edges z; must be included and we can
assume e; = z;. If pce; Ne, and ge e, Ne,, then p 7% ¢ and by the
definition of z; we may assume p ¢ 4.

Since the z; are mutually disjoint e, ¢ {z, ,..., z,}, and, hence, there is
some s < r so that e,,..., e, I} and the way e, ,..., e; joins p to some
other point of 4 U y; U -+ U y, . This is impossible by (3) and (4).

This proves that G, e N and, since | e(G,)| = | e(G)| + 1, we have a
contradiction against (1). This proves that (2) is false and hence that Gisa
regular graph of degree g.
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