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Credit Where Credit is Due

The following people have used Ramsey Theory to show Primes ∞.

1. Alpoge (2015) used Intermediary NT (INT) and VDW.

2. Granville (2017) used INT and VDW.

3. Elsholtz (2021) used INT and Schur’s Thm.

4. Goral, Ozcan, Serbas (2022) used HNT and Poly-VDW Thm.

5. Gasarch (2023) used INT and Schur’s Thm.

6. We refer to the proof by Elsholtz and Gasarch as the
EG-proof.

1. All of these proofs are harder than the usual proof

2. All of these proofs have other points to make after they prove
primes ∞.
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Plan for Todays Talk

1. Present the EG-Proof since its the one I know best.

2. Look at what it means to ask the question in domains other
than N. (In fact, asking it over N is not quite right).

3. Look at domains where the number of primes is finite and see
where the standard proof fails, and where the EG-proof fails.
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Notation Needed

Notation Let k, n ∈ N− {0}.

Let A be any set (it can even be ∞).

1. [n] = {1, 2, . . . , n}.
2.

(A
k

)
is the set of all subsets of A of size k .
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Schur’s Theorem

Thm (∀c)(∃S = S(c)) st for all c-colorings COL : [S ]→ [c] there
exists x , y , z monochromatic such that x + y = z .

Pf We determine S later.
Given COL we define COL′

([S]
2

)
→ [c] as follows:

COL′(x , y) = COL(|x − y |).

There exists a COL′-homog set H of size 3 (thats all we need!).
Say its a < b < c

COL′(c , b) = COL′(b, a) = COL′(c , a)

So

COL(c − b) = COL(b − a) = COL(c − a)

Let x = c − b, y = b − a, z = c − a.

So let S(c) = R(3; c) (homog set 3, colors c).
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Fermat’s Last Theorem

In 1637 Fermat wrote in the margins of Arithmetica, a book on
Number Theory by Diophantus, the following (translated from
Latin)

To divide a cube into two cubes, a fourth power, or in general any
power whatever above the second into two powers of the same
denomination, is impossible, and I have assuredly found a proof of
this, but the margin is too narrow to contain it.
In modern terminology:

(∀n ≥ 3)(∀x , y , z ∈ N− {0})[xn + yn 6= zn].

This has come to be known as Fermat’s Last Theorem.
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Did Fermat Have a Proof? Arguments Against

1) He proved the n = 4 case later in his life. He would not have
done this if he had earlier proved the full theorem.

2) Andrew Wiles proved FLT in the early 1990s with techniques far
beyond what Fermat could have known.
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Did Fermat Have a Proof? Arguments For

1) The 7th Dr. Who had a 5-line proof that uses Boolean Algebra.

2) The 11th Dr. Who gave The real proof to a group of geniuses
to gain their trust.

1. He later said that it was Fermat’s original proof (possible but
unlikely),

2. but that Fermat didn’t write it down since he died in a duel
(not true).
The writers of the show either

2.1 confused Galois with Fermat, or
2.2 meant to say that Fermat died in a duel in a dual timeline.
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More Fiction about Fermat’s Last Theorem

In Star Trek: TNG, the episode The Royale which aired on
March 27, 1989, Captain Picard, in the 24th Century is working on
Fermat’s Last Theorem, which is still OPEN.

Whoops

In Star Trek: DSN, the episode Facets which aired on June 12,
1995, Dax says that one of her previous hosts, Tobin, had done the
most creative work on Fermat’s Last Theorem since Wiles.

My guess is that Tobin wrote this limerick:
A challenge for many long ages
Had baffled the savants and sages

Yet at last came the light
Seems that Fermat was right

To the margin add 200 pages.
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Proof that Primes are Infinite

Thm The number of primes is infinite.

Assume, BWOC, that the primes are finite. p1, . . . , pL.

Let COL : N→ {0, 1, 2, 3}L be the following coloring:

COL(pa11 · · · p
aL
L ) = (a1 (mod 4), . . . , aL (mod 4))

By Schur’s Thm there exists x , y , z same color with x + y = z .
Assume the color is (e1, . . . , eL).

x = p4x1+e1
1 · · · p4xL+eL

L

y = p4y1+e1
1 · · · p4yL+eL

L

z = p4z1+e1
1 · · · p4zn+eL

L

x + y = z
p4x1+e1
1 · · · p4xL+eL

L + p4y1+e1
1 · · · p4yL+eL

L = p4z1+e1
1 · · · p4zn+eL

L

p4x11 · · · p
4xL
L + p4y11 · · · p

4yL
L = p4z11 · · · p

4zn
L

(px11 · · · p
xL
L )4 + (py11 · · · p

yL
L )4 = (pz11 · · · p

zL
L )4

This violates FLT for n = 4.
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How to Ask the Question
of Primes Infinite

December 31, 2024



Integral Domains

Def An Integral Domain is a set D together with operations +,
× such that the following hold

1. D is closed under + and ×.

2. There is an element 0 ∈ D such that (∀x ∈ D)[x + 0 = x ].

3. There is an element 1 ∈ D such that (∀x ∈ D)[x × 1 = x ].

4. + and × are communicative and associative.

5. (Key) (∀x)(∃y)[x + y = 0].

6. (Key) If ab = 0 then either a = 0 or b = 0.

Upshot +,×, 0, 1 act as you expect, you can subtract, you might
not be able to divide.
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Integral Domains

Upshot +,×, 0, 1 act as you expect, you can subtract, you might
not be able to divide.
Integral Domains

1) Z. CANNOT divide: ¬(∃13).

2) Q, R, C. CAN divide.

3) Algebraic Numbers
AN = {a ∈ C : (∃f (x) ∈ Z[x ]))[f (a) = 0]. CAN DIVIDE.
Proof that AN is closed under + and × is hard.

4) Algebraic integers
AI = {a ∈ C : (∃f (x) ∈ Z[x ] lead coeff 1))[p(a) = 0]}. CANNOT
DIVIDE.
Proof that AI is closed under + and × is hard.

5) { ab : gcd(a, b) = 1 ∧ b ≡ 1 (mod 2)}. CANNOT DIVIDE. ¬∃12 .

6) Z[i ] = {a + bi : a, b ∈ Z}. CANNOT DIVIDE. ¬∃12 .
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Domains that are NOT Integral Domains

1) Z12 = {0, . . . , 11} with mod 12 math.

Note that 3× 4 = 0 but 3 6= 0 and 4 6= 0. (Note: Zn is an integral

domain iff n is prime.)

2) N. There is no −3.

We will look at which Integral Domains have an infinite number of
primes.

Will need to ask the question carefully.
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Types of Elements in an Integral Domain

Def Let D be an integral domain.

1. A unit is a u ∈ D such that there exists v ∈ D with uv = 1.
We let U be the set of units.

2. An irreducible is a p ∈ D− U such that if p = ab then either
a ∈ U or b ∈ U.
We let I be the set of irreducibles.

3. A prime is a p ∈ D−U such that if p divides ab then either p
divides a or p divides b.

In any integral domain all primes are irreducible but not all
irreducibles are primes. (We will not be getting into that).

4. A composite is an n ∈ D− U such that there exists
a, b ∈ D− U, n = ab.

Units are not irreducibles. This is why 1, −1 are not primes.

We will be concerned with irreducibles, not primes.

Types of Elts in an ID 0, units, irreducibles, composites.
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Which Irreducibles are Different?

1) Domain is Z. Are 7 and −7 DIFFERENT irreducibles? Discuss

2) Domain is Z[i ]. Are 7, −7, 7i , −7i DIFFERENT irreducibles?
Discuss

3) Domain is CI = Z[{e2πik/n : 0 ≤ k ≤ n}]. e2πik/n’s are all units.
(CI stands for Cyclotomic Integers.)
Is the following argument valid or mid:
CI has an infinite number of irreducibles:

{7× ζni : n ∈ N, 0 ≤ i ≤ n}.

It seems like this is cheating. Even 7 and −7 seem to be the same.

What to do? Discuss
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Equivalence Classes of Irreducibles

Convention Let D be an Int Dom with Units U, Irreds I.

We define the following equivalence relation on I:

p ≡ q iff (∃u ∈ U)[p = uq].

I is infinite up to units if the number of equivalence classes is
infinite.

New Question Given D try to show that D has an infinite number
of equiv classes or irreducibles.

On theses slides infinite will mean infinite up to units.
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Normal Proof that Primes are Infinite

Thm The set of primes in Z is infinite.
Assume not. Let {p1, . . . , pn} be all of the primes in Z.
(Note- if p and −p both appear, we just take p.)

Form N = p1 · · · pn + 1. Two Cases.

1. N is prime. Done since, for all 1 ≤ i ≤ n, pi < N so pi 6= N.
N is a prime but not in {p1, . . . , pn}. Contradiction.

2. N is composite. Then N = ab where a, b /∈ {−1, 1}. If a and
b are composite then break them down until you get to prime
p, p divides N. So N = Mp.
Mp = p1 · · · pn + 1. Take this mod p.
0 ≡ p1 · · · pn + 1 (mod p).
p /∈ {p1, . . . , pn} since if it was then 0 ≡ 1 (mod p).
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Q has a Finite Number of Primes

If p1, . . . , pn are any set of rationals then
N = p1p2 · · · pn + 1 is a a unit.

Note that in the proof we considered two cases:
N is prime.
N is composite.

We never considered N is a unit.

Upshot The proof that Z has an infinite number of primes uses
that, for all p1 · · · pn + 1 is never a unit.
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Q2 has a Finite Number of Primes

Q2 = { ab : gcd(a, b) = 1 ∧ b ≡ 1 (mod 2)}.

Q2 has 0.

Q2 has units: all a
b where a ≡ 1 (mod 2).

Q2 has primes: 2, 23 ,
2
5 ,

2
7 ,

2
9 , . . ..

Are there any more primes? No. I leave that for you to prove.

So it looks like Q2 has an infinite number of primes.

BUT all of the primes listed are equivalent. So Q2 has only one
prime.

So where does the proof that the primes are infinite go wrong?
Discuss

See next slide.
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Q2 has a Finite Number of Primes

We actually have a list of primes: {2}.
N = 2 + 1 = 3 which is a unit.
So similar to why the proof fails for Q.



AI has a Finite Number of Primes

AI = {a ∈ C : (∃f (x) ∈ Z[x ] lead coeff 1))[p(a) = 0]}.

The units are
U = {a ∈ C : (∃f (x) ∈ Z[x ] lead coeff 1 and constant coeff is 1)
[p(a) = 0]}.
We won’t prove or need this. Units are not the problem this time.

Give me a number in AI thats a prime. Discuss.

There are no primes. See next slide.



AI has a Finite Number of Primes

AI = {a ∈ C : (∃f (x) ∈ Z[x ] lead coeff 1))[p(a) = 0]}.
The units are
U = {a ∈ C : (∃f (x) ∈ Z[x ] lead coeff 1 and constant coeff is 1)
[p(a) = 0]}.

We won’t prove or need this. Units are not the problem this time.

Give me a number in AI thats a prime. Discuss.

There are no primes. See next slide.



AI has a Finite Number of Primes

AI = {a ∈ C : (∃f (x) ∈ Z[x ] lead coeff 1))[p(a) = 0]}.
The units are
U = {a ∈ C : (∃f (x) ∈ Z[x ] lead coeff 1 and constant coeff is 1)
[p(a) = 0]}.
We won’t prove or need this.

Units are not the problem this time.

Give me a number in AI thats a prime. Discuss.

There are no primes. See next slide.



AI has a Finite Number of Primes

AI = {a ∈ C : (∃f (x) ∈ Z[x ] lead coeff 1))[p(a) = 0]}.
The units are
U = {a ∈ C : (∃f (x) ∈ Z[x ] lead coeff 1 and constant coeff is 1)
[p(a) = 0]}.
We won’t prove or need this. Units are not the problem this time.

Give me a number in AI thats a prime. Discuss.

There are no primes. See next slide.



AI has a Finite Number of Primes

AI = {a ∈ C : (∃f (x) ∈ Z[x ] lead coeff 1))[p(a) = 0]}.
The units are
U = {a ∈ C : (∃f (x) ∈ Z[x ] lead coeff 1 and constant coeff is 1)
[p(a) = 0]}.
We won’t prove or need this. Units are not the problem this time.

Give me a number in AI thats a prime. Discuss.

There are no primes. See next slide.



AI has a Finite Number of Primes

AI = {a ∈ C : (∃f (x) ∈ Z[x ] lead coeff 1))[p(a) = 0]}.
The units are
U = {a ∈ C : (∃f (x) ∈ Z[x ] lead coeff 1 and constant coeff is 1)
[p(a) = 0]}.
We won’t prove or need this. Units are not the problem this time.

Give me a number in AI thats a prime. Discuss.

There are no primes. See next slide.



AI has no Primes

Let p ∈ AI.

We show that p is not prime.

Note that p =
√
p ×√p. We need to show that

√
p ∈ AI.

Let f be poly with lead coeff 1 such that f (p) = 0.
f (x) = xn + an−1x

n−1 + · · ·+ a1x + a0.
f (p) = pn + an−1p

n−1 + · · ·+ a1p + a0 = 0.

Let
g(x) = x2n + an−1x

2(n−1) + · · ·+ a1x
2 + a0.

g(p1/2) = pn + an−1p
n−1 + a1p + a0 = 0.

So
√
p ∈ AI.

So there are no primes.
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Where does the Proof Break For AI?

Lets revisit the proof.

Assume AI has only a finite number of primes. Let {p1, . . . , pn} be
all of the primes in AI.
Form N = p1 · · · pn + 1

1. N prime. done since, for all 1 ≤ i ≤ n, pi < N so pi 6= N. N
is a prime but not in {p1, . . . , pn}. Contradiction.

2. N is composite. N = ab where a, b /∈ U. If a and b are
composite then break them down further until you get prime
p, p divides N. So N = Mp.
This is where the proof breaks down! In AI you can keep
going down and never get to a prime.
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Example of Infinite Descending Factors

Example
2

= 21/2 × 21/2

= 21/4 × 21/4 × 21/4 × 21/4

= 21/8 × 21/8 × 21/8 × 21/8 × 21/8 × 21/8 × 21/8 × 21/8

etc.

So what property of Z was used to avoid this problem?
See next slide.
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Atomic Domains

Def An Atomic Integral Domain is an integral domain such that
every element of D− (U ∪ {0}) can be written (not necessarily
uniquely) as upx11 · · · pxmm where u is a unit and all of the pi ’s are
irreducible.

Examples
Z. Key is that f (x) = |x | is such that f (a) < f (ab) and
f (ab) < f (b). So when you factor you end up with smaller
numbers.

Z[i ]. Key is that f (x + iy) = x2 + y2 decreases when you factor.

AI has no such function (called a Norm).

Upshot The proof that Z has an infinite number of primes used
that Z is atomic.
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Where Does EG-Proof Fail for Q?

Thm The number of primes in Q is infinite (attempt).

Assume, BWOC, that the primes are finite. p1, . . . , pL.
We define a coloring on N ⊆ Q as follows.

Let COL : N→ {0, 1, 2, 3}L be the following coloring:

COL(pa11 · · · p
aL
L ) = (a1 (mod 4), . . . , aL (mod 4))

Two Issues
1) Factoring elements of N into primes in N every number is of the
form pa11 · · · p

aL
L . No issue with units since the only units is 1. We

are factoring elements of N into primes in Q so units may be
needed.
2) In our proof we used mod 4. Lets keep it n for now and try to
pick some n that will work.
We define the coloring as follows:

COL(upa11 · · · p
aL
L ) = (a1 (mod n), . . . , aL (mod n))
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Where Does EG-Proof Fail for Q? (cont)

Let COL : N→ {0, . . . , n − 1}L be the following coloring:

COL(upa11 · · · p
aL
L ) = (a1 (mod n), . . . , aL (mod n))

By Schur’s Thm there exists x , y , z same color with x + y = z .
Assume the color is (e1, . . . , eL).

x = uxp
nx1+e1
1 · · · pnxL+eL

L

y = uyp
ny1+e1
1 · · · pnyL+eL

L
z = uzp

nz1+e1
1 · · · pnzn+eL

L

x + y = z
uxp

nx1+e1
1 · · · pnxL+eL

L + pny1+e1
1 · · · pnyL+eL

L = uxp
nz1+e1
1 · · · pnzn+eL

L
uyp

nx1
1 · · · pnxLL + pny11 · · · pnyLL = uyp

nz1
1 · · · p

nzn
L

ux(px11 · · · p
xL
L )n + uy (py11 · · · p

yL
L )n = uz(pz11 · · · p

zL
L )n

uxX
n + uyY

n = uzZ
n.
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Where Does EG-Proof Fail for Q? (cont)

We need that there is an n such that

for all ux , uy , uz ∈ U and a, b, c ∈ Q

uxX
n + uyY

n = uzZ
n

has no solution.
Not True Fix n. Let ux = uy = 1

2 , uz = 1, X = Y = Z = 1.

uxX
n + uyY

n = uzZ
n

Becomes

1

2
1n +

1

2
1n = 1× 1n

1

2
+

1

2
= 1
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Where Does EG-Proof Fail for Q?: Upshot

The EG-proof that there are an infinite number of primes (in N)
did not transfer to Q because

Its NOT that FLT is false over Q. Indeed—FLT is true over Q
(follows form FLT being true over Z).

Its because the following variant of FLT is false for Q:

There exists n ∈ N such that the following has no solution:

uxX
n + uyY

n = uzZ
n

where ux , uy , yz ∈ U and X ,Y ,Z ∈ Q.
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Project TO-DO List

1. Read the Gasarch paper. Note that its initial proof was a
generalization of what was presented here.

2. Read in Gasarch’s paper the Sanity Check which has more
domains with a finite number of primes.

3. Read the other papers on the website of Ramsey-Primes
paper. Some of the papers are difficult so try to just figure
out the proof for Z or N, and then see where it fails for Q and
Q2. (I think they all fail for AI because AI is not atomic,
though check that.)
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