BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Ramsey on ω^2

Results by Joanna Boyland, William Gasarch, Nathan Hurtig, Robert Rust

March 5, 2025

Def Let COL: $\binom{A}{2} \rightarrow [1,000,000]$. Let $c \in \mathbb{N}$.

Def Let COL: $\binom{A}{2} \rightarrow [1,000,000]$. Let $c \in \mathbb{N}$.

A set $H \subseteq A$ is *c*-homogenous if COL restricted to $\binom{H}{2}$ takes on at most *c* values. (From now on *c*-homog.)

Def Let COL: $\binom{A}{2} \rightarrow [1,000,000]$. Let $c \in \mathbb{N}$.

A set $H \subseteq A$ is *c*-homogenous if COL restricted to $\binom{H}{2}$ takes on at most *c* values. (From now on *c*-homog.)

Def If L_1, L_2 are linearly ordered sets then $L_1 \equiv L_2$ means there is an order preserving bijection between L_1 and L_2 .

We Will Prove The Following Two Theorems

We Will Prove The Following Two Theorems

Thm $\forall \text{COL}: \binom{\omega^2}{2} \rightarrow [1,000,000] \exists \text{ a 4-homog } H \equiv \omega^2.$

We Will Prove The Following Two Theorems

Thm $\forall \text{COL}: \binom{\omega^2}{2} \rightarrow [1,000,000] \exists \text{ a 4-homog } H \equiv \omega^2.$

Thm $\exists COL: {\omega^2 \choose 2} \rightarrow [4]$ Such that there is no 3-homog $H \equiv \omega^2$.

There is Always a 4-Homog Set

Thm $\forall \text{COL}: \binom{\omega^2}{2} \rightarrow [1,000,000] \exists \text{ a 4-homog } H \equiv \omega^2.$

Thm $\forall \text{COL}: {\omega^2 \choose 2} \rightarrow [1,000,000] \; \exists \; \text{a 4-homog} \; H \equiv \omega^2.$ We represent ω^2 as follows, which is standard:

```
\begin{array}{l} \text{Thm } \forall \mathrm{COL} \colon {\omega^2 \choose 2} \to [1,000,000] \; \exists \; \text{a 4-homog} \; H \equiv \omega^2. \\ \text{We represent } \omega^2 \; \text{as follows, which is standard:} \\ \omega \cdot 1 + 1, \quad \omega \cdot 1 + 2, \quad \omega \cdot 1 + 3, \quad \omega \cdot 1 + 4, \quad \dots \\ \omega \cdot 2 + 1, \quad \omega \cdot 2 + 2, \quad \omega \cdot 2 + 3, \quad \omega \cdot 2 + 4, \quad \dots \\ \omega \cdot 3 + 1, \quad \omega \cdot 3 + 2, \quad \omega \cdot 3 + 3, \quad \omega \cdot 3 + 4, \quad \dots \\ \vdots \qquad \vdots \\ \end{array}
```

Thm $\forall \text{COL}: {\omega^2 \choose 2} \rightarrow [1,000,000] \exists \text{ a 4-homog } H \equiv \omega^2.$

We represent ω^2 as follows, which is standard:

Edges within a copy of ω are called **internal**.

Thm $\forall \text{COL}: \binom{\omega^2}{2} \rightarrow [1,000,000] \exists \text{ a 4-homog } H \equiv \omega^2.$ We represent ω^2 as follows, which is standard: $\omega \cdot 1 + 1, \quad \omega \cdot 1 + 2, \quad \omega \cdot 1 + 3, \quad \omega \cdot 1 + 4, \quad \dots$ $\omega \cdot 2 + 1, \quad \omega \cdot 2 + 2, \quad \omega \cdot 2 + 3, \quad \omega \cdot 2 + 4, \quad \dots$ $\omega \cdot 3 + 1, \quad \omega \cdot 3 + 2, \quad \omega \cdot 3 + 3, \quad \omega \cdot 3 + 4, \quad \dots$

Edges within a copy of ω are called **internal**. Edges between copies of ω are called **external**.

For each $i \in \mathbb{N}$ let

$$A_i = \{\omega \cdot i + 1, \omega \cdot i + 2, \omega \cdot i + 3, \ldots\}.$$

For each $i \in \mathbb{N}$ let

$$A_i = \{\omega \cdot i + 1, \omega \cdot i + 2, \omega \cdot i + 3, \ldots\}.$$

Apply infinite Ramsey to $\binom{A_i}{2}$ to get infinite $H_i \subseteq A_i$ and color c_i such that COL on $\binom{H_i}{2}$ is always c_i . Replace A_i with H_i .

For each $i \in \mathbb{N}$ let

$$A_i = \{\omega \cdot i + 1, \omega \cdot i + 2, \omega \cdot i + 3, \ldots\}.$$

Apply infinite Ramsey to $\binom{A_i}{2}$ to get infinite $H_i \subseteq A_i$ and color c_i such that COL on $\binom{H_i}{2}$ is always c_i . Replace A_i with H_i . Some color c appears as c_i infinitely often.

For each $i \in \mathbb{N}$ let

$$A_i = \{\omega \cdot i + 1, \omega \cdot i + 2, \omega \cdot i + 3, \ldots\}.$$

Apply infinite Ramsey to $\binom{A_i}{2}$ to get infinite $H_i \subseteq A_i$ and color c_i such that COL on $\binom{H_i}{2}$ is always c_i . Replace A_i with H_i . Some color c appears as c_i infinitely often.

Kill all the A_j 's that disagree

For each $i \in \mathbb{N}$ let

$$A_i = \{\omega \cdot i + 1, \omega \cdot i + 2, \omega \cdot i + 3, \ldots\}.$$

Apply infinite Ramsey to $\binom{A_i}{2}$ to get infinite $H_i \subseteq A_i$ and color c_i such that COL on $\binom{H_i}{2}$ is always c_i . Replace A_i with H_i . Some color c appears as c_i infinitely often.

Kill all the A_i 's that disagree

We assume all Internal edges are R.

We relabeled so that the ω^2 is represented by

We relabeled so that the ω^2 is represented by

We relabeled so that the ω^2 is represented by

Within any copy of ω all of the edges are \mathbb{R} .

Plan

▶ We will create a clever coloring COL': $\binom{\mathbb{N}}{4} \rightarrow [1,000,000]^3$.

- ▶ We will create a clever coloring $COL': \binom{\mathbb{N}}{4} \to [1,000,000]^3$.
- ▶ Let H' be an infinite homog set (relative to COL').

- ▶ We will create a clever coloring $COL': \binom{\mathbb{N}}{4} \to [1,000,000]^3$.
- ▶ Let H' be an infinite homog set (relative to COL').
- \blacktriangleright We will use H' to create H, such that

- ▶ We will create a clever coloring COL': $\binom{\mathbb{N}}{4} \rightarrow [1,000,000]^3$.
- ▶ Let H' be an infinite homog set (relative to COL').
- We will use H' to create H, such that (a) H is 4-homog relative to COL, and

- ▶ We will create a clever coloring COL': $\binom{\mathbb{N}}{4} \rightarrow [1,000,000]^3$.
- ▶ Let H' be an infinite homog set (relative to COL').
- \blacktriangleright We will use H' to create H, such that
 - (a) H is 4-homog relative to COL, and
 - (b) $H \equiv \omega^2$.

We color $x_1 < x_2 < x_3 < x_4$ with the 3-tuple of colors below:

We color $x_1 < x_2 < x_3 < x_4$ with the 3-tuple of colors below: $COL(\omega \cdot x_1 + x_2, \omega \cdot x_3 + x_4)$

We color $x_1 < x_2 < x_3 < x_4$ with the 3-tuple of colors below:

$$COL(\omega \cdot x_1 + x_2, \omega \cdot x_3 + x_4)$$

$$COL(\omega \cdot x_1 + x_3, \omega \cdot x_2 + x_4)$$

Coloring 4-Sets (cont)

We color $x_1 < x_2 < x_3 < x_4$ with the 3-tuple of colors below:

$$COL(\omega \cdot x_1 + x_2, \omega \cdot x_3 + x_4)$$

$$COL(\omega \cdot x_1 + x_3, \omega \cdot x_2 + x_4)$$

$$COL(\omega \cdot x_1 + x_4, \omega \cdot x_2 + x_3)$$

Coloring 4-Sets (cont)

We color $x_1 < x_2 < x_3 < x_4$ with the 3-tuple of colors below:

$$COL(\omega \cdot x_1 + x_2, \omega \cdot x_3 + x_4)$$

$$COL(\omega \cdot x_1 + x_3, \omega \cdot x_2 + x_4)$$

$$COL(\omega \cdot x_1 + x_4, \omega \cdot x_2 + x_3)$$

By the 4-ary Ramsey Theorem there is a homog set H'.

Coloring 4-Sets (cont)

We color $x_1 < x_2 < x_3 < x_4$ with the 3-tuple of colors below:

$$COL(\omega \cdot x_1 + x_2, \omega \cdot x_3 + x_4)$$

$$COL(\omega \cdot x_1 + x_3, \omega \cdot x_2 + x_4)$$

$$COL(\omega \cdot x_1 + x_4, \omega \cdot x_2 + x_3)$$

By the 4-ary Ramsey Theorem there is a homog set H'.

Let (B, G, Y) be the color of the homog set.

Let
$$H' = \{ h_1 < h_2 < h_3 < h_4 < \cdots \}$$

Let $H' = \{ h_1 < h_2 < h_3 < h_4 < \cdots \}$ Let H'' be

```
Let H' = \{h_1 < h_2 < h_3 < h_4 < \cdots \}

Let H'' be \omega \cdot h_1 + h_1, \omega \cdot h_1 + h_2, \omega \cdot h_1 + h_3, \omega \cdot h_1 + h_4, ... \omega \cdot h_2 + h_1, \omega \cdot h_2 + h_2, \omega \cdot h_2 + h_3, \omega \cdot h_2 + h_4, ... \omega \cdot h_3 + h_1, \omega \cdot h_3 + h_2, \omega \cdot h_3 + h_3, \omega \cdot h_3 + h_4, ... \vdots \vdots \vdots \vdots
```

```
Let H' = \{h_1 < h_2 < h_3 < h_4 < \cdots \}

Let H'' be \omega \cdot h_1 + h_1, \omega \cdot h_1 + h_2, \omega \cdot h_1 + h_3, \omega \cdot h_1 + h_4, ... \omega \cdot h_2 + h_1, \omega \cdot h_2 + h_2, \omega \cdot h_2 + h_3, \omega \cdot h_2 + h_4, ... \omega \cdot h_3 + h_1, \omega \cdot h_3 + h_2, \omega \cdot h_3 + h_3, \omega \cdot h_3 + h_4, ... \vdots \vdots \vdots \vdots \vdots
```

We will thin out H'' to get the desired H.

```
Let H' = \{h_1 < h_2 < h_3 < h_4 < \cdots \}

Let H'' be \omega \cdot h_1 + h_1, \omega \cdot h_1 + h_2, \omega \cdot h_1 + h_3, \omega \cdot h_1 + h_4, ... \omega \cdot h_2 + h_1, \omega \cdot h_2 + h_2, \omega \cdot h_2 + h_3, \omega \cdot h_2 + h_4, ... \omega \cdot h_3 + h_1, \omega \cdot h_3 + h_2, \omega \cdot h_3 + h_3, \omega \cdot h_3 + h_4, ... \vdots \vdots \vdots \vdots \vdots
```

We will thin out H'' to get the desired H.

For which external edges $(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell)$ do we get

Let
$$H' = \{h_1 < h_2 < h_3 < h_4 < \cdots \}$$

Let H'' be $\omega \cdot h_1 + h_1$, $\omega \cdot h_1 + h_2$, $\omega \cdot h_1 + h_3$, $\omega \cdot h_1 + h_4$, ... $\omega \cdot h_2 + h_1$, $\omega \cdot h_2 + h_2$, $\omega \cdot h_2 + h_3$, $\omega \cdot h_2 + h_4$, ... $\omega \cdot h_3 + h_1$, $\omega \cdot h_3 + h_2$, $\omega \cdot h_3 + h_3$, $\omega \cdot h_3 + h_4$, ... \vdots \vdots \vdots \vdots

We will thin out H'' to get the desired H.

For which external edges $(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell)$ do we get

$$COL(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell) \in \{B, G, Y\}$$

Let
$$H' = \{h_1 < h_2 < h_3 < h_4 < \cdots \}$$

Let H'' be $\omega \cdot h_1 + h_1$, $\omega \cdot h_1 + h_2$, $\omega \cdot h_1 + h_3$, $\omega \cdot h_1 + h_4$, ... $\omega \cdot h_2 + h_1$, $\omega \cdot h_2 + h_2$, $\omega \cdot h_2 + h_3$, $\omega \cdot h_2 + h_4$, ... $\omega \cdot h_3 + h_1$, $\omega \cdot h_3 + h_2$, $\omega \cdot h_3 + h_3$, $\omega \cdot h_3 + h_4$, ... \vdots \vdots \vdots \vdots \vdots

We will thin out H'' to get the desired H.

For which external edges $(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell)$ do we get

$$COL(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell) \in \{B, G, Y\}$$

from H' being homog of color (B, G, Y)?

Let
$$H' = \{h_1 < h_2 < h_3 < h_4 < \cdots \}$$

Let H'' be $\omega \cdot h_1 + h_1$, $\omega \cdot h_1 + h_2$, $\omega \cdot h_1 + h_3$, $\omega \cdot h_1 + h_4$, ... $\omega \cdot h_2 + h_1$, $\omega \cdot h_2 + h_2$, $\omega \cdot h_2 + h_3$, $\omega \cdot h_2 + h_4$, ... $\omega \cdot h_3 + h_1$, $\omega \cdot h_3 + h_2$, $\omega \cdot h_3 + h_3$, $\omega \cdot h_3 + h_4$, ... \vdots \vdots \vdots \vdots \vdots

We will thin out H'' to get the desired H.

For which external edges $(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell)$ do we get

$$COL(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell) \in \{B, G, Y\}$$

from H' being homog of color (B, G, Y)? We continue this on the next slide.

For which external edges $(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell)$ do we get

For which external edges $(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell)$ do we get

$$COL(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell) \in \{B, G, Y\}.$$

For which external edges $(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell)$ do we get

$$COL(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell) \in \{B, G, Y\}.$$

from H' being homog of color (B, G, Y)?

For which external edges $(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell)$ do we get

$$COL(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell) \in \{B, G, Y\}.$$

from H' being homog of color (B, G, Y)? Since the edge is external we assume $h_i < h_k$.

For which external edges $(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell)$ do we get

$$COL(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell) \in \{B, G, Y\}.$$

from H' being homog of color $(\mathbf{B}, \mathbf{G}, \mathbf{Y})$? Since the edge is external we assume $h_i < h_k$. Recall that $\mathrm{COL}'(x_1 < x_2 < x_3 < x_4) =$

For which external edges $(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell)$ do we get

$$COL(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell) \in \{B, G, Y\}.$$

from H' being homog of color $(\mathbf{B}, \mathbf{G}, \mathbf{Y})$? Since the edge is external we assume $h_i < h_k$. Recall that $\mathrm{COL}'(x_1 < x_2 < x_3 < x_4) =$ $\mathrm{COL}(\omega \cdot x_1 + x_2, \omega \cdot x_3 + x_4)$ $\mathrm{COL}(\omega \cdot x_1 + x_3, \omega \cdot x_2 + x_4)$ $\mathrm{COL}(\omega \cdot x_1 + x_4, \omega \cdot x_2 + x_3)$

For which external edges $(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell)$ do we get

$$COL(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell) \in \{B, G, Y\}.$$

from H' being homog of color (B, G, Y)?

Since the edge is external we assume $h_i < h_k$.

Recall that $COL'(x_1 < x_2 < x_3 < x_4) =$

$$COL(\omega \cdot x_1 + x_2, \omega \cdot x_3 + x_4)$$

$$COL(\omega \cdot x_1 + x_3, \omega \cdot x_2 + x_4)$$

$$COL(\omega \cdot x_1 + x_4, \omega \cdot x_2 + x_3)$$

If
$$h_i < h_j < h_k < h_\ell$$
 then $\mathrm{COL}'(h_i < h_j < h_k < h_\ell) = (\mathbf{B}, \mathbf{G}, \mathbf{Y})$ so $\mathrm{COL}(\omega \cdot h_i + h_i, \omega \cdot h_k + h_\ell) = \mathbf{B}$.

For which external edges $(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell)$ do we get

$$COL(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell) \in \{B, G, Y\}.$$

from H' being homog of color (B, G, Y)?

Since the edge is external we assume $h_i < h_k$.

Recall that $COL'(x_1 < x_2 < x_3 < x_4) =$

$$COL(\omega \cdot x_1 + x_2, \omega \cdot x_3 + x_4)$$

$$COL(\omega \cdot x_1 + x_3, \omega \cdot x_2 + x_4)$$

$$COL(\omega \cdot x_1 + x_4, \omega \cdot x_2 + x_3)$$

If
$$h_i < h_j < h_k < h_\ell$$
 then $COL'(h_i < h_j < h_k < h_\ell) = (\mathbf{B}, \mathbf{G}, \mathbf{Y})$ so $COL(\omega \cdot h_i + h_i, \omega \cdot h_k + h_\ell) = \mathbf{B}$.

If
$$h_i < h_k < h_j < h_\ell$$
 then $COL'(h_i < h_k < h_j < h_\ell) = (\mathbf{B}, \mathbf{G}, \mathbf{Y})$ so $COL(\omega \cdot h_i + h_i, \omega \cdot h_k + h_\ell) = \mathbf{G}$.

For which external edges $(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell)$ do we get

$$COL(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell) \in \{B, G, Y\}.$$

from H' being homog of color (B, G, Y)?

Since the edge is external we assume $h_i < h_k$.

Recall that $COL'(x_1 < x_2 < x_3 < x_4) =$

$$COL(\omega \cdot x_1 + x_2, \omega \cdot x_3 + x_4)$$

$$COL(\omega \cdot x_1 + x_3, \omega \cdot x_2 + x_4)$$

$$COL(\omega \cdot x_1 + x_4, \omega \cdot x_2 + x_3)$$

If
$$h_i < h_j < h_k < h_\ell$$
 then $\mathrm{COL}'(h_i < h_j < h_k < h_\ell) = (\mathbf{B}, \mathbf{G}, \mathbf{Y})$ so $\mathrm{COL}(\omega \cdot h_i + h_i, \omega \cdot h_k + h_\ell) = \mathbf{B}$.

If
$$h_i < h_k < h_j < h_\ell$$
 then $COL'(h_i < h_k < h_j < h_\ell) = (\mathbf{B}, \mathbf{G}, \mathbf{Y})$ so $COL(\omega \cdot h_i + h_i, \omega \cdot h_k + h_\ell) = \mathbf{G}$.

If
$$h_i < h_\ell < h_j < h_k$$
 then $\mathrm{COL}'(h_i < h_\ell < h_j < h_k) = (\mathbf{B}, \mathbf{G}, \mathbf{Y})$ so $\mathrm{COL}(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell) = \mathbf{Y}$.

$$h_i < h_j < h_k < h_\ell$$
, or

$$h_i < h_i < h_k < h_\ell$$
, or

$$h_i < h_k < h_j < h_\ell$$
, or

$$h_i < h_j < h_k < h_\ell$$
, or

$$h_i < h_k < h_j < h_\ell$$
, or

$$h_i < h_\ell < h_j < h_k.$$

Need If $(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell)$ is an external edge with $h_i < h_k$ then either

$$h_i < h_j < h_k < h_\ell$$
, or $h_i < h_k < h_j < h_\ell$, or $h_i < h_\ell < h_i < h_k$.

It suffices to have

What Do We Need the hi's To Look Like?

Need If $(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell)$ is an external edge with $h_i < h_k$ then either

$$h_i < h_j < h_k < h_{\ell}$$
, or $h_i < h_k < h_i < h_{\ell}$, or

$$h_i < h_\ell < h_j < h_k.$$

It suffices to have

$$h_i < h_j$$
,

Need If $(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell)$ is an external edge with $h_i < h_k$ then either

$$h_i < h_j < h_k < h_\ell$$
, or

$$h_i < h_k < h_j < h_\ell$$
, or

$$h_i < h_\ell < h_j < h_k.$$

It suffices to have

$$h_i < h_j$$
,

$$h_k < h_\ell$$
, and

Need If $(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell)$ is an external edge with $h_i < h_k$ then either

$$h_i < h_j < h_k < h_\ell$$
, or

$$h_i < h_k < h_j < h_\ell$$
, or $h_i < h_\ell < h_j < h_k$.

It suffices to have

$$h_i < h_j$$
,

$$h_k < h_\ell$$
, and

 h_i, h_j, h_k, h_ℓ all different.

What Do We Need the hi's To Look Like?

Need If $(\omega \cdot h_i + h_j, \omega \cdot h_k + h_\ell)$ is an external edge with $h_i < h_k$ then either

$$h_i < h_j < h_k < h_\ell$$
, or

$$h_i < h_k < h_j < h_\ell$$
, or

$$h_i < h_\ell < h_j < h_k.$$

It suffices to have

$$h_i < h_i$$
,

$$h_k < h_\ell$$
, and

 h_i, h_i, h_k, h_ℓ all different.

Next slide has a thinned out version of H'' that suffices.

Recall
$$H' = \{ h_1 < h_2 < h_3 < h_4 < \cdots \}$$

Recall $H' = \{ h_1 < h_2 < h_3 < h_4 < \cdots \}$ We define H as:

```
 \begin{array}{l} \text{Recall } H' = \{h_1 < h_2 < h_3 < h_4 < \cdots \} \\ \text{We define $H$ as:} \\ \omega \cdot h_{2^1} + h_{2^2}, \quad \omega \cdot h_{2^1} + h_{2^3}, \quad \omega \cdot h_{2^1} + h_{2^4}, \quad \omega \cdot h_{2^1} + h_{2^5}, \quad \dots \\ \omega \cdot h_{3^1} + h_{3^2}, \quad \omega \cdot h_{3^1} + h_{3^3}, \quad \omega \cdot h_{3^1} + h_{3^4}, \quad \omega \cdot h_{3^1} + h_{3^5}, \quad \dots \\ \omega \cdot h_{5^1} + h_{5^2}, \quad \omega \cdot h_{5^1} + h_{5^3}, \quad \omega \cdot h_{5^1} + h_{5^4}, \quad \omega \cdot h_{5^1} + h_{5^5}, \quad \dots \\ \vdots \qquad \qquad \vdots
```

```
Recall H' = \{h_1 < h_2 < h_3 < h_4 < \cdots \}

We define H as: \omega \cdot h_{2^1} + h_{2^2}, \quad \omega \cdot h_{2^1} + h_{2^3}, \quad \omega \cdot h_{2^1} + h_{2^4}, \quad \omega \cdot h_{2^1} + h_{2^5}, \quad \ldots \omega \cdot h_{3^1} + h_{3^2}, \quad \omega \cdot h_{3^1} + h_{3^3}, \quad \omega \cdot h_{3^1} + h_{3^4}, \quad \omega \cdot h_{3^1} + h_{3^5}, \quad \ldots \omega \cdot h_{5^1} + h_{5^2}, \quad \omega \cdot h_{5^1} + h_{5^3}, \quad \omega \cdot h_{5^1} + h_{5^4}, \quad \omega \cdot h_{5^1} + h_{5^5}, \quad \ldots \vdots \vdots \vdots \vdots \vdots
```

H is 4-homog and,

The Homog Set

```
 \begin{array}{l} \text{Recall } H' = \{h_1 < h_2 < h_3 < h_4 < \cdots \} \\ \text{We define $H$ as:} \\ \omega \cdot h_{2^1} + h_{2^2}, \quad \omega \cdot h_{2^1} + h_{2^3}, \quad \omega \cdot h_{2^1} + h_{2^4}, \quad \omega \cdot h_{2^1} + h_{2^5}, \quad \ldots \\ \omega \cdot h_{3^1} + h_{3^2}, \quad \omega \cdot h_{3^1} + h_{3^3}, \quad \omega \cdot h_{3^1} + h_{3^4}, \quad \omega \cdot h_{3^1} + h_{3^5}, \quad \ldots \\ \omega \cdot h_{5^1} + h_{5^2}, \quad \omega \cdot h_{5^1} + h_{5^3}, \quad \omega \cdot h_{5^1} + h_{5^4}, \quad \omega \cdot h_{5^1} + h_{5^5}, \quad \ldots \\ \vdots \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots
```

H is 4-homog and, $H = \omega^2$

The Homog Set

```
Recall H' = \{h_1 < h_2 < h_3 < h_4 < \cdots \}

We define H as: \omega \cdot h_{2^1} + h_{2^2}, \quad \omega \cdot h_{2^1} + h_{2^3}, \quad \omega \cdot h_{2^1} + h_{2^4}, \quad \omega \cdot h_{2^1} + h_{2^5}, \quad \ldots \omega \cdot h_{3^1} + h_{3^2}, \quad \omega \cdot h_{3^1} + h_{3^3}, \quad \omega \cdot h_{3^1} + h_{3^4}, \quad \omega \cdot h_{3^1} + h_{3^5}, \quad \ldots \omega \cdot h_{5^1} + h_{5^2}, \quad \omega \cdot h_{5^1} + h_{5^3}, \quad \omega \cdot h_{5^1} + h_{5^4}, \quad \omega \cdot h_{5^1} + h_{5^5}, \quad \ldots \vdots \vdots \vdots \vdots \vdots
```

H is 4-homog and, $H \equiv \omega^2$ So we are done!

Thm $\exists COL: \binom{\omega^2}{2} \to [4]$ such that there is no 3-homog $H \equiv \omega^2$.

Thm $\exists \mathrm{COL} \colon {\omega^2 \choose 2} \to [4]$ such that there is no 3-homog $H \equiv \omega^2$. We use this representation

```
\begin{array}{l} \textbf{Thm} \ \exists \text{COL:} \ {\omega^2 \choose 2} \rightarrow [4] \ \text{such that there is no 3-homog} \ H \equiv \omega^2. \\ \text{We use this representation} \\ \omega \cdot 2^1 + 2^2, \quad \omega \cdot 2^1 + 2^3, \quad \omega \cdot 2^1 + 2^4, \quad \omega \cdot 2^1 + 2^5, \quad \dots \\ \omega \cdot 3^1 + 3^2, \quad \omega \cdot 3^1 + 3^3, \quad \omega \cdot 3^1 + 3^4, \quad \omega \cdot 3^1 + 3^5, \quad \dots \\ \omega \cdot 5^1 + 5^2, \quad \omega \cdot 5^1 + 5^3, \quad \omega \cdot 5^1 + 5^4, \quad \omega \cdot 5^1 + 5^5, \quad \dots \\ \vdots \qquad \vdots \\ \end{array}
```

We define $COL(\omega \cdot a + b, \omega \cdot c + d)$.

We define $COL(\omega \cdot a + b, \omega \cdot c + d)$.

1) By the representation, a < b, c < d, and b, c, d are all different.

We define $COL(\omega \cdot a + b, \omega \cdot c + d)$.

- 1) By the representation, a < b, c < d, and b, c, d are all different.
- 2) We assume $a \le c$.

We define $COL(\omega \cdot a + b, \omega \cdot c + d)$.

- 1) By the representation, a < b, c < d, and b, c, d are all different.
- 2) We assume $a \le c$.

$$COL(\omega \cdot a + b, \omega \cdot c + d) = \begin{cases} \mathbf{R} & \text{If } a = c \\ 1 & \text{If } a < c \text{ and } b < c < d \\ 2 & \text{If } a < c \text{ and } c < b < d \\ 3 & \text{If } a < c \text{ and } c < d < b \end{cases}$$

We define $COL(\omega \cdot a + b, \omega \cdot c + d)$.

- 1) By the representation, a < b, c < d, and b, c, d are all different.
- 2) We assume $a \le c$.

$$COL(\omega \cdot a + b, \omega \cdot c + d) = \begin{cases} \mathbf{R} & \text{If } a = c \\ 1 & \text{If } a < c \text{ and } b < c < d \\ 2 & \text{If } a < c \text{ and } c < b < d \\ 3 & \text{If } a < c \text{ and } c < d < b \end{cases}$$

The proof that there is no 3-homog set is left to the reader.

