
Monochromatic Unit Squares: Exposition and Open

Problems

William Gasarch, Auguste Gezalyan

December 31, 2024

1 Introduction

Notation 1.1 Let a, n ∈ N.

1. [n] = {1, . . . , n}.

2. If A is a set then
(
A
a

)
is the set of all a-subsets of A. Hence

(
[n]
2

)
is the complete graph on n

vertices.

3. Cn = (V,E) where V = [n] and E = {(i, i + 1 (mod n)) : 1 ≤ i ≤ n}. More simply, Cn is the
cycle on n vertices.

Definition 1.2 Let c, d ≥ 2. Let k ≥ 3.

1. Let COL: Rd → [c] be a given coloring. A monochromatic unit square (henceforth mono unit
square) is a 1× 1 square in Rd whose vertices are all the same color.

2. d(c) is the least d such that the following is true: For all COL: Rd → [d] there is a mono unit
square.

3. Rc(Ck) is the least n such that, for all COL
(
[n]
2

)
→ [c] there exists a monochromatic (hence-

forth mono) cycle of length k.

The following are known:

1. Burr proved that d(2) ≤ 6. He did not publish the result; however, it appears (crediting
him) in a paper by Erdös et al. [?]. The proof uses the following theorem: R2(C4) = 6. The
accounts of Burr’s result that we have seen say that R2(C4) = 6 is either well-known or easy
and do not give a reference, which is Chvátal & Harary [?]. It may be well-known and easy for
some people; however, when I teach high school students Burr’s result they do not consider
R2(C4) = 6 to be well known or easy.

2. d(2) ≤ 5. All accounts of this say it follows easily from Burr’s proof that d(2) ≤ 6. This may
be true for some people; however, when I teach high school students it is not clear how to
present the result to them.
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Figure 1: R2(C4) ≥ 6

3. d(2) ≤ 4. This proof is very different from the proofs of d(2) ≤ 6 and d(c) ≤ 5.

In this article we do the following:

1. Present the complete proof of d(2) ≤ 6 and d(c) ≤ 5 including the parts that are allegedly
easy.

2. Present bounds on d(c). These results appear to be new.

3. Present some open problems. Some of them are motivated by presenting these theorems, and
others, to high school students.

Convention 1.3 We use R and B for the actual colors. So we might say COL(1, 2) = R. We
use the terms red and blue in pros. So we might say Since COL(1, 2) = B we have a blue C4.
The symbol R (B) will appear red (blue) if you are reading this paper in color and in normal font
(black) if you are not.

2 d(2) ≤ 6

2.1 Lemma on Mono C4

Theorem 2.1 R2(C4) = 6.

Proof:
1) R2(C4) ≥ 6:

Figure ?? is a 2-coloring of
(
[5]
2

)
with no mono C4. (If you are reading this in black and white

instead of color then the coloring is that the cycle 1− 2− 3− 4− 5 is all red edges and the rest of
the edges are blue.)

We present a COL:
(
[5]
2

)
→ [2] with no mono C4.

Note 2.2 The coloring in Figure ?? has a mono C5 but not a mono C4. The study of Rc(Ck) is
very different from the usual Ramsey’s theorem where one seeks mono Kk’s in that if you have a
mono Kk then you have a mono Kk−1 (and lower) but if you have a mono Ck you need not have a
mono Ck−1.
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(b) degR(v) ≥ 2 yields a mono C4

Figure 2

2) R2(C4) ≤ 6:
Let COL:

(
[6]
2

)
→ [2]. By standard Ramsey Theory there is a mono K3. We assume it is red

and on the vertices {1, 2, 3}. See Figure ??.

We view {1, 2, 3} and {4, 5, 6} as the sides of a bipartite graph.

Notation 2.3

1. If a ∈ {1, 2, 3} then degR(a) is the number of red edges between a and {4, 5, 6}.

2. If a ∈ {4, 5, 6} then degR(a) is the number of red edges between a and {1, 2, 3}.

There are cases. Each case assumes the negation of the prior ones.

Case 1 ∃v ∈ {4, 5, 6}, degB(v) ≤ 1. The situation is pictured in Figure ??. Note that 1−4−2−3−1
is a mono C4.

Case 2 (∃v ∈ {4, 5, 6})[degB(v) = 3]. The situation is pictured in Figure ??.
From the negation of Case 1, degB(5) ≥ 2.

1. If COL(5, 1) = COL(5, 2) = B then there is a blue C4: 5− 1− 4− 2− 5.

2. If COL(5, 2) = COL(5, 3) = B then there is a blue C4: 5− 3− 4− 2− 5.

3. If COL(5, 1) = COL(5, 3) = B then there is a blue C4: 5− 1− 4− 3− 5.

Case 3 (∃v ∈ {1, 2, 3})[degR(v) ≥ 2]]
The situation is pictured in Figure ??.

1. If COL(1, 4) = R then there is a red C4: 1− 4− 2− 3− 1.

2. If COL(3, 6) = R then there is a red C4: 3− 6− 2− 1− 3.

3. If COL(3, 4) = R then there is a red C4: 3− 4− 2− 1− 3.
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(b) degR(v) ≥ 2 yields a mono C4

Figure 3

4. If COL(1, 6) = R then there is a red C4: 1− 6− 2− 3− 1.

5. If all of those edges are blue then there is a blue C4: 1− 4− 3− 6− 1.

Case 5 The negation of Cases 1,2,3,4. So we have the following:

1. (∀v ∈ {1, 2, 3}[degR(v) = 1].

2. (∀v ∈ {4, 5, 6}[degR(v) = 1].

3. Hence we can assume

(a) COL(1, 4) = COL(2, 5) = COL(4, 6) = R

(b) All other edges between {1, 2, 3} and {4, 5, 6} are blue. (We will find some other edges
that must be blue.)

The situation is pictured in Figure ??. If any of (4, 5), (5, 6),or (4, 6) are R then there will be
a red C4. Hence they are all blue. Hence 4− 5− 6− 2− 4 is a blue C4.
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Figure 4: Negation of Cases 1,2,3,4

Open Problem 2.4 The proof of Theorem ?? took five cases. Some of the cases had subcases. Is
there a proof with less cases. Perhaps beginning with the fact that any 2-coloring of the edges of
K6 has two mono triangles.
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2.2 Proof of the R6 Theorem

Theorem 2.5 d(2) ≤ 6.

Proof:
Let COL: R6 → [2]. We form a coloring COL′ :

(
[6]
2

)
→ [2].

Let
p1,2 = ( 1√

2
, 1√

2
, 0, 0, 0, 0).

p1,3 = ( 1√
2
, 0, 1√

2
, 0, 0, 0).

...
...

...
p5,6 = (0, 0, 0, 0, 1√

2
, 1√

2
).

Define COL′(i, j) = COL(pi,j).
By Theorem ?? there exists a mono C4. Let the vertices be a, b, c, d and the color be red. Then

COL′(a, b) = COL′(b, c) = COL′(c, d) = COL′(d, a) = R

hence

COL(pa,b) = COL(pb,c) = COL(pc,d) = COL(pd,a) = R.

It it easy to see that

d(pa,b, pb,c) = d(pb,c, pc,d) = d(pc,d, pd,a) = 1.

Hence we have a mono unit square.

AUGUSTE- IS IT THE CASE THAT IF YOU HAVE 4 POINTS p, q, r, s IN Rn AND d(p, q) =
d(q, r) = d(r, s) = d(s, p) = 1 THEN THE FOUR FORM A UNIT SQUARE?

The proof of Theorem ?? did not use any geometry. That makes it easy to teach since the
students do not have to visualize R6.

3 d(2) ≤ 5

Definition 3.1

1. For 1 ≤ i < j ≤ 6 let pi,j be as in Theorem ??.

2. P = {pi,j : 1 ≤ i < j ≤ 6}.

3. H = {(x1, . . . , x6) ∈ R6 : x1 + x2 + x3 + x4 + x5 + x6 = 2√
2
}.

We state the following easy fact for reference.

Fact 3.2

1. For every COL: P → [2] there exists a mono unit square. This follows from the proof of
Theorem ??.
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2. P ⊆ H.

3. H is a 5 dimensional hyperplane. Hence there is a rotation that maps H to R6. By omitting
the last coordinate (which is always 0) there is a rotation f that maps H to R5.

4. f is a bijection from H to R5. Let g be its inverse.

5. f preserves distance: d(x, y) = d(f(x), f(y)).

AUGUSTE- FIND THE ACTUAL ROTATION. I ASSUME ITS A MATRIX.

Theorem 3.3 For all COL: R5 → [2] there exists a mono unit square.

Proof: We define COL′ : P → [2] by

COL′(pi,j) = COL(g(pi,j)).

By Fact ??.1 there is a mono unit square (using COL′) in R6 using the vertices pa,b, pb,c, pc,d, pd,a.
By Fact ??.4 and 5 the points g(pa,b), g(pb,c), g(pc,d), g(pd,a) form a mono unit square (using COL)
in R5.

The proof of Theorem ?? did not use any geometry. That makes it easy to teach since the
students do not have to visualize R5.

4 d(2) ≤ 4

The following theorem was proven by Kent Cantwell [?].

Theorem 4.1 For all COL: R4 → [2] there exists a mono unit square.

AUGUSTE- LOOK AT THE PROOF AND SEE IF WE CAN SKETCH IT OR PRESENT IT
OR WHAT. ALSO SEE IF THE NEXT STATEMENT IS TRUE

The proof of Theorem ?? uses geometry. This makes it hard to teach.

Open Problem 4.2 Give a proof that d(2) ≤ 4 that uses less geometry.

5 What If We Use More Colors?

Theorem 5.1

1. d(c) ≤ Rc(4).

2. d(c) ≤ Rc(4)− 1.
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Proof:
1) d(c) ≤ Rc(4).

Let COL: RRc(4) → [c]. We form a coloring COL′ :
(
[Rc(4)]

2

)
→ [c].

We define
(
Rc(4)

2

)
points in RRc(4).

p1,2 = ( 1√
2
, 1√

2
, 0, . . . , 0).

p1,3 = ( 1√
2
, 0, 1√

2
, 0, . . . , 0).

...
...

...
pRc(4)−1,Rc(4) = (0, . . . , 0, 1√

2
, 1√

2
).

Define COL′(i, j) = COL(pi,j).
By the definition of Rc(4) there exists a mono C4. The rest of the proof is identical to the proof

of Theorem ??.

2) In Theorem ?? we obtained d(2) ≤ 5 from the proof of d(2) ≤ 6. The same technique can be
used to obtain a proof of d(c) ≤ Rc(C4)− 1 from the proof that d(c) ≤ Rc(C4).

The proof of Theorem ?? did not use any geometry. That makes it easy to teach since the
students do not have to visualize high and unknown dimensions.

To use Theorem ?? we need to know upper bounds on Rc(C4). The following lemma is obtained
from a variety of results in Section 6.3.2 of Radziszowski’s survey of small Ramsey numbers [?]. Go
there for references.

Lemma 5.2

1. R3(C4) = 11.

2. R4(C4) = 18.

3. For all c ≥ 1, Rc(C4) ≤ c2 + c + 1.

4. For all c ≥ 2, c even, Rc(C4) ≤ c2 + c.

By combining Theorem ?? and Lemma ?? we obtain the following.

Theorem 5.3

1. d(3) ≤ 10.

2. d(4) ≤ 17.

3. For c ≥ 5 d(c) ≤ c2 + c.

4. For c ≥ 6, c even, d(c) ≤ c2 + c− 1.

Open Problem 5.4

1. Find better upper bounds on d(c). This may require proofs similar to that of Theorem ??
and hence geometry.

AUGUSTE- TRY TO DO THIS

2. Find lower bounds on d(c) by finding colorings with no mono unit.
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6 What If We Want a Monochromatic Unit k-Gon?

Definition 6.1 Let c, d ≥ 2. Let k ≥ 3.

1. Let COL: Rd → [c] be a given coloring. A mono unit k-gon is a regular k-gon with all sides
of length 1. whose vertices are all the same color.

2. dk(c) is the least d such that the following is true: For all COL: Rd → [d] there is a mono
unit k-gon.

3. Recall that Rc(Ck) is the least n such that, for all COL
(
[n]
2

)
→ [c] there exists a mono cycle

of length k.

The proof of the following Theorem is similar to that of Theorem ?? and hence is omitted.

Theorem 6.2

1. dk(c) ≤ Rc(k).

2. dk(c) ≤ Rc(k)− 1.

To use Theorem ?? we need to know upper bounds on Rc(Ck). See Radziszowski’s survey of
small Ramsey numbers [?] for such bounds.
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