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1 Introduction

When Andrew Wiles proved Fermat’s Last Theorem (henceforth FLT) it was
a great achievement. However, there have been very few applications of FLT.
In this paper we use the n = 4 case of FLT, and Schur’s theorem (in Ramsey
Theory), to prove the primes are infinite. While there are of course easier
proofs, we think it is of interest that it can be derived from FLT.

Alpoge [2] proved the primes were infinite using elementary number the-
ory and van der Warden’s theorem. Granville [4] proved that the primes
were infinite from the fact that that there can never be four squares in arith-
metic progression (attributed to Fermat) and van der Warden’s theorem.
Our proof (1) uses easier Ramsey Theory then Alpoge’s or Granville’s proof,
and (2) uses harder number theory than Alpoge and about the same level as
Granville.

In Section 2 we present Schur’s Theorem and definitions from Number
Theory. In Section 3 we present a condition on integral domains D that
implies D has an infinite number of irreducibles. We then use that condition
to show Z has an infinite number of primes. In Sections 4 and 5 we use our
results to show that many domains have an infinite number of irreducibles (in
Section 5 relative to a conjecture). In Section 6 we present an open problem.

2 Preliminaries

The following is Schur’s Theorem. It can be proven from Ramsey’s Theorem.

Lemma 2.1 For all c, there exists S ≤ c3c such that, for all c-colorings
COL : [S]→ [c], there exists x, y, z with x + y = z and

COL(x) = COL(y) = COL(z).

Def 2.2 Let D be an integral domain.
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1. A unit is a u ∈ D such that there exists v ∈ D with uv = 1. We let U
be the set of units.

2. An irreducible is a p ∈ D such that if p = ab then either a ∈ U or b ∈ U.
We let I be the set of irreducibles if the domain is understood.

3. A prime is a p ∈ D such that if p divides ab then either p divides a or p
divides b. In any integral domain all primes are irreducible. There are
integral domains with irreducibles that are not primes.

4. We impose an equivalence relation on I: p and q are equivalent if there
exists u ∈ U such that p = uq. We say I is infinite up to units if the
number of equivalence classes is infinite.

5. FLT holds for n on D if there is no x, y, z ∈ D−{0} such that xn+yn =
zn. We may omit the on D if D is understood.

3 D Such that I is infinite

The coloring in the proof of Theorem 3.1 is similar to the one used by Al-
poge [2] and then later by Granville [4].

Theorem 3.1 Let D be an integral domain. Assume that (1) D contains
Z, (2) there exists n ≥ 2 such that there are no 6-tuples (ux, uy, uz, X, Y, Z) ∈
U3× (D−{0})3 with uxX

n + uyY
n = uzZ

n. Then D has an infinite number
of irreducibles up to units.

Proof: Let I be the set of irreducibles. Assume, by way of contradiction,
that the number of irreducibles up to units is finite. Let p1, . . . , pm be formed
by taking an irreducible from each equivalence class. Note that every x ∈ D
can be written as upx1

1 · · · pxm
m where u ∈ U and x1, . . . , xm ∈ N. This need

not be unique; however, for the sake of definiteness, we will take (x1, . . . , xm)
to be lexicographically least tuple.

We define a coloring COL of N− {0} as follows: Color x by the vector

(x1 mod n, . . . , xm mod n).

There are nm colors, which is finite. By Lemma 2.1 there exists (x, y, z), and
a color (e1, . . . , em), such that
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COL(x) = COL(y) = COL(z) = (e1, . . . , em).

and

x + y = z.

We now reason about x but the same logic applies to y, z. Note that
there exists u ∈ U and k1, . . . , km ∈ N such that

x = upk1n+e1
1 · · · pkmn+em

m

hence

xpn−e11 · · · pn−emm = up
(k1−1)n
1 · · · p(km−1)nm .

The factor p
(k1−1)n
1 · · · p(km−1)nm is of the form Xn where X is in the quotient

field of D; however, we can multiply it by a unit u′ to get it to be of the form
Xn where X ∈ D. Letting uu′ = ux and reusing the variable name X we
have:

xpn−e11 · · · pn−emm = uxX
n

where ux ∈ U and X ∈ D.
Since the same logic applies to x, y, z we have that there exists X, Y, Z ∈ D

and ux, uy, uz ∈ U such that
x× pn−e11 × · · · × pn−emm = pn−e1+x1

1 · · · pn−em+xm
m = uxX

n

y × pn−e11 × · · · × pn−emm = pn−e1+y1
1 · · · pn−em+ym

m = uyY
n

z × pn−e11 × · · · × pn−emm = pn−e1+z1
1 · · · pn−em+zm

m = uzZ
n.

Note that uxX
n+uyY

n = uzZ
n and (ux, uy, uz, X, Y,X) ∈ U3×(D−{0})3.

This contradicts the premise.

We now present a condition for the infinitude of the primes that is easier
to apply then Theorem 3.1.

Theorem 3.2 Let D be a number field.

1. Assume that there is an n such that both (1) for all u ∈ U, un = u and
(2) FLT holds for n. Then D has an infinite number of irreducibles.

2. Assume that there is an n such that both (1) for all u ∈ U, there is
v ∈ D such that vn = u, (2) FLT holds for n. Then D has an infinite
number of irreducibles.
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Proof:
1) Assume, by way of contradiction, that D has a finite number of irre-
ducibles. By Theorem 3.1, for all n ≥ 3, there is a 6-tuples (ux, uy, uz, X, Y, Z) ∈
U3 × (D− {0})3 such that:

uxX
n + yyY

n = uzZ
n

un
xX

n + un
Y y

n = un
zZ

n

(uxX)n + (yyY )n = (uzZ)n.

This contradicts the premise that FLT holds for n.

2) Assume, by way of contradiction, that D has a finite number of irre-
ducibles. By Theorem 3.1, for all n ≥ 3, there is a 6-tuples (ux, uy, uz, X, Y, Z) ∈
U3 × (D− {0})3 such that :

uxX
n + yyY

n = uzZ
n.

Let vx, vy, vz be such that vnx = ux, vny = uy, v
n
z = uz.

(vxX)n + (vyY )n = (vzZ)n.

This contradicts the premise that FLT holds for n.

As a sanity check on Theorem 3.2 we look at two number fields that have
a finite number of irreducibles.

• Consider Q. Note that U = Q − {0}. Fix n ≥ 3. Q satisfies FLT for
n. But (1) it is not the case that (∀u ∈ U)(∃v ∈ U)[vn = u], and (2) it
is not the case that every (∀u ∈ U)[un = u]. Hence Theorem 3.2 does
not apply.

• Consider C. Note that U = C − {0}. Fix n ≥ 1. C satisfies the
condition (∀u ∈ U)(∃v ∈ U)[vn = u]. But C does not satisfy FLT for
n. Hence Theorem 3.2 does not apply.

Corollary 3.3

1. Z has an infinite number of irreducibles.
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2. Z has an infinite number of primes.

Proof:
1) Let n = 4. All units u ∈ Z satisfy u4 = u and FLT holds for n = 4. Hence,
by Theorem 3.2, Z has an infinite number of irreducibles.

2) In Z all irreducibles are primes. Hence Z has an infinite number of primes.

4 In Z[
√
−d] I is Infinite

We leave the following lemma to the reader.

Lemma 4.1 Let d ∈ N.

1. If d = 1 then the only units in Z[
√
−d] are {−1, 1,−i, i}

2. If d ≥ 2 then the only units in Z[
√
−d] are {−1, 1}

3. If d ∈ N and u is a unit of Z[
√
−d] then u9 = u (This follows from

Part 1 and 2. We use 9 instead of 5 since 9 is more useful.)

Aigner [1] proved the following (see also Ribenbiom [5]).

Lemma 4.2 For all d ∈ Z the equations x9 + y9 = z9 and x6 + y6 = z6 have
no nontrivial solution in Q(

√
−d). (We will only use the x9 + y9 = z9 part.)

Note 4.3 The following counterexamples show why Lemma 4.2 does not
work if 6 or 9 is replaced by 3,4, or any n ≡ ±1 (mod 6). As far as we know
it is an open problem as to whether Lemma 4.2 is true for 8.

• In Q(
√

2): (18 + 17
√

2)3 + (18− 17
√

2)3 = 423.

• In Q(
√
−7): (1 +

√
−7)4 + (1−

√
−7)4 = 24.

• In Q(
√
−3): (1 +

√
−3)6k±1 + (1−

√
3)6k±1 = 26k±1.

Theorem 4.4 Let d ≥ 1. Then there are an infinite number of irreducibles
in Z[

√
−d].

Proof: Let D = Z[
√
−d]. Let n = 9. By Lemma 4.1, for all u ∈ U,

un = u. By Lemma 4.2 FLT for n is true for D. By Theorem 3.2 with n = 9,
D has an infinite number of irreducibles.
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5 Conjecturally, Some D Have I Infinite

Debarre-Klassen [3] suggest the following conjecture:

Conjecture 5.1 Let K be a number field of degree d over Q. Then the
equation xn + yn = zn has only trivial solutions over K when n ≥ d + 2.

Theorem 5.2 Assume the Conjecture is true. Let K be a number field of
finite degree over Q. Let D be a subdomain of K with a finite number of
units. Then D has an infinite number of irreducibles.

Proof: Let K be a number field of degree d over Q. For all n ≥ d + 2
FLT holds for n on K and hence on D.

Since D has a finite number of units, for each unit u, there exists nu such
that unu = 1. Let nU be the lcm of all the nu. Note that, for all units u,
unU = 1. Hence, for all n ≡ 1 (mod nU), un ≡ 1 (mod nU).

Let n be such that n ≡ 1 (mod nU) and n ≥ d + 2. Then both (1)
xn + yn = zn has no solution in D, and (2) for all u ∈ U, un = u. By
Theorem 3.2, D has an infinite number of irreducibles.

6 Open Problems

Find other domains to apply Theorem 3.1 to. This might involve proving,
for fixed n, variants of FLT that allow units as coefficients.
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