Lecture Note

Ramsey Theory

Tianrui Sheng¹

¹AMSC Ph.D., University of Maryland, College Park, 20740, Maryland, United States of America.

Keywords: Ramsey theory

Abstract

This is the lecture note of 2025 Spring CMSC 752 Ramsey Theory by Professor William Gasarch.

Contents

1	Wee	k 1: 01/28/2025, 01/30/2025	1
	1.1	Introduction of Ramsey Theorem	1
	1.2	Infinite Ramsey Theorem For Graphs	2
	1.3	Theory on \mathbb{Z}	3

1. Week 1: 01/28/2025, 01/30/2025

Abstract: In this week, we introduce existence in Ramsey theorem. The proofs are mainly constructions.

1.1. Introduction of Ramsey Theorem

The classical result of Ramsey theorem is:

Theorem 1.1. \forall 2-coloring of the edges of K_6 there is a mono triangle.

In the future, we use the following language to study Ramsey theory.

Definition 1.1. Let $a, n \in \mathbb{N}$ and $A \subseteq \mathbb{N}$.

- $[n] = \{1, \ldots, n\}.$
- $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Corollary 1.1. For all functions

$$COL: \binom{[6]}{2} \to [2]$$

there exists $A \subseteq [6]$, |A| = 3, such that

$$COL: \begin{pmatrix} A \\ 2 \end{pmatrix}$$
 is constant.

Theorem 1.2. For all functions

$$COL: \binom{[18]}{2} \to [2]$$

there exists $A \subseteq [18]$, |A| = 4, such that

$$COL: \begin{pmatrix} A \\ 2 \end{pmatrix}$$
 is constant.

Theorem 1.3 (Ramsey's Theorem for 2-col Graphs). $\forall k \exists n = R(k)$ such that the following happens: *For all*

$$COL: \binom{[n]}{2} \to [2]$$

there exists $A \subseteq [n]$, |A| = k, such that

$$COL: \begin{pmatrix} A \\ 2 \end{pmatrix}$$
 is constant.

Another statement is the following:

Definition 1.2. Let $k \in \mathbb{N}$.

- An Arithmetic Sequence of Length k, denoted k-AP, is a set of k numbers that are equally spaced.
- If there is a coloring of \mathbb{N} then a mono k-AP is a k-AP where all of the numbers are the same color.

Theorem 1.4. For all 2-colorings of [9] there exists a mono 3-AP.

Theorem 1.5. For all 2-colorings of [35] there exists a mono 4-AP.

Theorem 1.6 (Van der Waerden's Theorem for 2-coloring of \mathbb{N}). For all k there exists W = W(k) such that the following happens: For all

$$COL: [W] \rightarrow [2]$$

there exists a mono k-AP.

1.2. Infinite Ramsey Theorem For Graphs

Definition 1.3 (Homogeneous). Let COL : $\binom{A}{2} \rightarrow [2]$. A set $H \subseteq A$ is homogeneous if COL restricted to $\binom{H}{2}$ is constant.

Theorem 1.7 (Infinite Ramsey Theorem). For all $COL : \binom{\mathbb{N}}{2} \to [2]$, there exists an infinite homogeneous set.

Proof.

$$H_1 = \mathbb{N}$$

$$x_1 = 1$$

$$c_1 = \begin{cases} R & \text{if } |\{y \in H_1 : \text{COL}(x_1, y) = R\}| = \infty, \\ B & \text{otherwise.} \end{cases}$$

 $H_2 = \{x_1\} \cup \{y \in H_1 : \text{COL}(x_1, y) = c_1\}$

 x_2 = the least element of $H_2 - \{x_1\}$.

$$c_2 = \begin{cases} R & \text{if } |\{y \in H_2 : \text{COL}(x_2, y) = R\}| = \infty, \\ B & \text{otherwise.} \end{cases}$$

Assume H_s , x_s , c_s are defined.

$$H_{s+1} = \{x_1, \dots, x_s\} \cup \{y \in H_s : \text{COL}(x_s, y) = c_s\}$$

 x_{s+1} = the least element of $H_{s+1} - \{x_1, \dots, x_s\}$.

$$c_{s+1} = \begin{cases} R & \text{if } |\{y \in H_{s+1} : \text{COL}(x_{s+1}, y) = R\}| = \infty, \\ B & \text{otherwise.} \end{cases}$$

$$X = \{x_1, x_2, \dots\}$$

Color x_s by c_s . W.l.o.g. assume $H := \{y \in X : COL(y) = R\}$ s.t. $|H| = \infty$. Then H is an infinite homogeneous set.

Remark 1.1. This is not true when replace \mathbb{N} by \mathbb{Z} and require $H \equiv \mathbb{Z}$. The relative result is Theorem 1.9.

Counterexample. negative-negative = blue; negative-positive=blue; positive-positive=red.

Corollary 1.2. $\forall c \in \mathbb{N}$, for all $COL : \binom{\mathbb{N}}{2} \to [c]$, there exists an infinite homogeneous set.

Here we introduce the concept of hypergraphs. The above results are about 2-hypergraphs.

Definition 1.4 (Hypergraph). An *a*-hypergraph is (V, E), where $E \subset {\binom{V}{a}}$.

Proof of Theorem 1.3 by Theorem 1.7. Assume the statement is false. Then

$$(\exists k)(\forall n)(\exists \text{COL}: \binom{[n]}{2} \rightarrow [2] \text{ with no homogeneous set of size } k).$$

Let COL_i , i = 0, 1, ... be the coloring s.t.

$$\operatorname{COL}_i : \binom{[k+i]}{2} \to [2]$$
 with no homogeneous set of size k.

Let $T = {COL_i}_{i \in \mathbb{N}}$.

Let e_1, e_2, \dots be a list of every element of $\binom{\mathbb{N}}{2}$.

$$COL(e_1) = R$$
 if $|\{y : COL_y(e_1) = R| = \infty, B$ otherwise.

Delete {COL \in *T* : COL(e_1) \neq *R*} from *T*. Still denote as *T*.

By induction, do the coloring for $\{e_i\}$. Then we get a coloring COL of $\binom{\mathbb{N}}{2}$. By Theorem 1.7, there is an infinite homogeneous set $H = \{x_1 < x_2 < ...\}$. Then $\text{COL}|_{\binom{\{x_1,...,x_k\}}{2}} = \text{COL}_j$ for some j and $\{x_1,...,x_k\}$ is a homogeneous set of COL_j with size k.

1.3. Theory on \mathbb{Z}

For relaxing the requirement of the theory, we define

Definition 1.5 (*m*-homogeneous). Let COL : $\binom{A}{2} \to [c]$. Let $m \in \mathbb{N}$. Let $H \subseteq A$. *H* is *m*-homogeneous if COL restricted to $\binom{H}{2}$ takes on $\leq m$ values.

Here c is some large fixed number.

Definition 1.6. If L_1 and L_2 are both linearly ordered sets then $L_1 \equiv L_2$ means that \exists an order preserving bijection between L_1 and L_2 .

The questions we care about is to find m, s.t.

$$\forall \text{COL} : \begin{pmatrix} \mathbb{Z} \\ 2 \end{pmatrix} \rightarrow [c] \quad \exists \text{ infinite set } H \subseteq \mathbb{Z}, \ H \equiv \mathbb{Z}, \ H \text{ is } m \text{-homogeneous.}$$

•

•

$$\exists \text{COL} : \begin{pmatrix} \mathbb{Z} \\ 2 \end{pmatrix} \rightarrow [c] \text{ no } (c-1) \text{-homogeneous set } H, \text{ s.t. } H \equiv \mathbb{Z}.$$

The answer for the second problem is

Theorem 1.8. $\exists COL : \binom{\mathbb{Z}}{2} \rightarrow [4]$ with no infinite 3-homogeneous $H \equiv \mathbb{Z}$.

Proof. We will take \mathbb{Z} to be the following set:

$$\{\ldots, -6, -4, -2\} \cup \{1, 3, 5, \ldots\}$$

We define $\text{COL}(x, y) : \binom{\mathbb{Z}}{2}$. We assume |x| < |y|.

$$COL(x, y) = \begin{cases} 1 & \text{if } x, y \ge 1 \\ 2 & \text{if } x, y \le -1 \\ 3 & \text{if } x \le -1, \ y \ge 1 \\ 4 & \text{if } y \le -1, \ x \ge 1 \end{cases}$$

There is no 3-homogeneous $H \equiv \mathbb{Z}$. Suppose that we have such H, then there are more than 2 positive nodes and more than 2 negative nodes, which means color 1, 2 are necessary. Since both sides are infinite, there exists $x, y \in H, x < 0, y > 0$, s.t. |x| < |y|, i.e. color 3 is necessary. Similar to color 4.

The answer for the first problem is

Theorem 1.9. $\forall COL : \binom{\mathbb{Z}}{2} \rightarrow [c], \exists a 4\text{-homogeneous } H \equiv \mathbb{Z}.$

Before proving Theorem 1.9, we need a lemma on bipartite graph.

Definition 1.7 (Bipartite Graph). A Bipartite Graph is (L, R, E) where the vertices are $L \cup R$ and $E \subseteq L \times R$ (so no edges within L or within R). L stands for Left, R stands for Right.

Definition 1.8. Let $n, m \in \mathbb{N}$. The complete (n, m)-bipartite graph, denoted $K_{n,m}$, is the bipartite graph $([n], [m], [n] \times [m])$.

Remark 1.2. In particular, $K_{\mathbb{N},\mathbb{N}}$ is the bipartite graph $(\mathbb{N}, \mathbb{N}, \mathbb{N} \times \mathbb{N})$. A coloring of the edges of $K_{\mathbb{N},\mathbb{N}}$ is a coloring of $\mathbb{N} \times \mathbb{N}$.

Then we introduce the theory on $K_{\mathbb{N},\mathbb{N}}$.

Definition 1.9. Let COL : $\mathbb{N} \times \mathbb{N} \to [c]$. Let $m \in \mathbb{N}$. $H_1 \times H_2 \subseteq \mathbb{N} \times \mathbb{N}$ is an infinite *m*-homogeneous if COL restricted to $H_1 \times H_2$ takes on $\leq m$ values, and H_1, H_2 both infinite.

Theorem 1.10. $\exists COL : \mathbb{N} \times \mathbb{N} \rightarrow [2]$ with no infinite 1-homogeneous $H_1 \times H_2$.

Proof. We use $\text{EVEN}^+ = \{2, 4, 6, ...\} \times \text{ODD}^+$ instead of $\mathbb{N} \times \mathbb{N}$. We define $\text{COL}(x, y) : \mathbb{N} \times \mathbb{N} \to [2]$.

$$\operatorname{COL}(x, y) = \begin{cases} 1 & \text{if } x < y \\ 2 & \text{if } x > y \end{cases}$$

Theorem 1.11. \forall *COL*: $\mathbb{N} \times \mathbb{N} \rightarrow [c]$, $\exists H_1 \times H_2$, it is an infinite 2-homogeneous.

Proof. Assume left side is labeled as $X = \{x_i\}_{i \in \mathbb{N}}$ and right side is labeled as $Y = \{y_i\}_{i \in \mathbb{N}}$.

Let $\tilde{x}_1 = x_1$. There is color c_1 , s.t. $|\{y \in Y : COL(\tilde{x}_1, y) = c_1\}| = \infty$. Delete $y \in Y$ such that $COL(\tilde{x}_1, y) \neq c_1$, still denote as Y.

Let \tilde{y}_1 = the least element of *Y*. There is color d_1 , s.t. $|\{x \in X : COL(x, \tilde{y}_1) = d_1\}| = \infty$. Delete $x \in X$ such that $COL(x, \tilde{y}_1) \neq d_1$, still denote as *X*.

Use induction to continue the construction. Color $x_i \in X$ by c_i and $y_j \in Y$ by d_j . There is a color c, s.t. $|\{x \in X : COL(x) = c\}| = \infty$, let $H_1 = \{x \in X : COL(x) = c\}$. Similarly, define H_2 . Then $H_1 \times H_2$ is an infinite 2-homogeneous set.

Proof of Theorem 1.9. Use Theorem 1.7 on $\binom{\mathbb{N}}{2}$ to find color c_1 .

Use Theorem 1.7 on $\binom{-\mathbb{N}}{2}$ to find color c_2 .

Use Theorem 1.11 to connect \mathbb{N} and $-\mathbb{N}$ with color c_3, c_4 .