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On Off-diagonal F -Ramsey numbers
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Abstract

A graph is (t1, t2)-Ramsey if any red-blue coloring of its edges contains either a red copy of Kt1 or
a blue copy of Kt2 . The size Ramsey number is the minimum number of edges contained in a (t1, t2)-
Ramsey graph. Generalizing the notion of size Ramsey numbers, the F -Ramsey number rF (t1, t2) is
defined to be the minimum number of copies of F in a (t1, t2)-Ramsey graph. It is easy to see that

rKs
(t1, t2) ≤

(

r(t1,t2)
s

)

. Recently, Fox, Tidor, and Zhang showed that equality holds in this bound when

s = 3 and t1 = t2, i.e. rK3
(t, t) =

(

r(t,t)
3

)

. They further conjectured that rKs
(t, t) =

(

r(t,t)
s

)

for all s ≤ t,
in response to a question of Spiro.

In this work, we study the off-diagonal variant of this conjecture: is it true that rKs
(t1, t2) =

(

r(t1,t2)
s

)

whenever s ≤ max(t1, t2)? Harnessing the constructions used in the recent breakthrough work of
Mattheus and Verstraëte on the asymptotics of r(4, t), we show that when t1 is 3 or 4, the above
equality holds up to a lower order term in the exponent.

1 Introduction

We say that a graph G is (t1, t2)-Ramsey (or t-Ramsey if t1 = t2 = t) if every 2-coloring of its edges
in red and blue results in either a red copy of Kt1 or a blue copy of Kt2 . The smallest n such that Kn

is (t1, t2)-Ramsey is called the Ramsey number r(t1, t2) (or r(t) in the diagonal case). A closely related
quantity is the size Ramsey number r̂(t1, t2), defined to be the minimum number of edges contained in
a (t1, t2)-Ramsey graph. A classical observation by Chvátal gives the relationship between the usual
Ramsey number and size Ramsey number for complete graphs: For any t1, t2 ≥ 1,

r̂(t1, t2) =

(

r(t1, t2)

2

)

.

A recent paper of Fox, Tidor, and Zhang [3] initiated the study of a new variant of the Ramsey number:
For a given graph F , the F -Ramsey number rF (t1, t2) is the smallest number of copies of F contained
in a graph that is (t1, t2)-Ramsey. This definition simultaneously generalizes the usual and size Ramsey
numbers: taking F = K1 gives the usual Ramsey number, while taking F = K2 yields the size Ramsey
number.

In [3], the authors addressed a natural question of Sam Spiro asking whether an analogue of Chvátal’s
result holds for choices of F other than K2. They showed that

rK3(t, t) =

(

r(t)

3

)

,

for all sufficiently large t. They conjectured that for all s ≤ t,

rKs(t, t) =

(

r(t)

s

)

, ∀s ≤ t. (1)

Their conjecture naturally extends to the off-diagonal setting.
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Conjecture 1.1. For all positive integers s, t1, t2 satisfying s ≤ max(t1, t2),

rKs(t1, t2) =

(

r(t1, t2)

s

)

.

It is easy to see that the upper bound in the conjectured equality is true, since Kr(t1,t2) is (t1, t2)-
Ramsey. The conjecture is trivially true when s = 1, and the case s = 2 is Chvátal’s observation. The
main result of [3] corresponds to the case where s = 3 and t1 = t2 is sufficiently large, but the same
argument shows that Conjecture 1.1 is true for s = 3 in general. Unfortunately, their proof technique
cannot be directly extended to s ≥ 4, and it appears that significantly different strategies would be
required to tackle the conjecture in full generality.

In this paper, we investigate Conjecture 1.1 in the simplest off-diagonal cases t1 = 3 and t1 = 4 (the
cases t1 ≤ 2 are trivial). In these cases, the asymptotic value of the usual Ramsey number is almost
fully determined: for r(3, t), results of Ajtai, Komlós, and Szemerédi [1] and of Kim [4] combine to yield
r(3, t) = Θ(t2/ log t) as t → ∞; for r(4, t), results of Ajtai, Komlós, and Szemerédi [1] and of Mattheus
and Verstraëte [6] combine to yield

C ·
t3

log4 t
≤ r(4, t) ≤ (1 + o(1))

t3

log2 t
,

for some absolute constant C > 0 as t → ∞, determining the asymptotics of r(4, t) up to logarithmic
factors. Using these known bounds on the usual Ramsey number, we obtain the following results indicating
that Conjecture 1.1 holds in these cases up to a lower order term in the exponent.

Theorem 1.2. For all s ≤ t,

rKs(3, t) =

(

Ω
(

t2

log2(t)

)

s

)

.

In particular,

rKs(3, t) =

(

r(3, t)

s

)1−o(1)

.

Theorem 1.3. For all sufficiently large t and all s ≤ t,

rKs(4, t) =

(

Ω
(

t3

log4(t)

)

s

)

.

In particular,

rKs(4, t) =

(

r(4, t)

s

)1−o(1)

.

In both of these results, the implicit constant in the Ω notation is an absolute constant, and the o(1)
term in the exponent goes to zero as t grows, with no dependence on s.

Our results provide evidence towards Conjecture 1.1 being at least asymptotically true. In contrast
to the arguments in [3], our methods work equally well for all s ≤ t.

Our arguments utilize the construction given in [6] of a K4-free graph H with few independent sets
of size roughly t (and an analogous construction of a K3-free graph). The key idea is to produce an
edge-coloring contradicting the Ramsey property for a given graph from a random homomorphism into
H, which then yields a lower bound on the number of copies of Kt in the relevant Ramsey graph. The
Kruskal-Katona theorem then converts this into an appropriate lower bound on the number of copies of
Ks for each s ≤ t.

The paper is organized as follows. In Section 2, we present the proofs of our main results on off-
diagonal Ks-Ramsey numbers. We first prove Theorem 1.3 in Section 2.1, then use a similar argument
in Section 2.2 to prove Theorem 1.2. Finally, in Section 3, we discuss how our strategy can be applied to
the more general setting of F -Ramsey numbers of (H1,H2)-Ramsey graphs.

2



2 Off-diagonal Ks-Ramsey Numbers

This section contains our proofs of the lower bounds on both rKs(3, t) and rKs(4, t). While the arguments
for the two settings are of similar complexity, we will begin by considering the case of (4, t)-Ramsey graphs,
because the construction of Mattheus and Verstraëte that we will utilize for this case, while somewhat
more intricate than the construction for the case of (3, t)-Ramsey graphs, is more explicitly described
in [6].

2.1 Asymptotics of rKs(4, t)

We use the following result of Mattheus and Verstraëte, which yields a construction of a family of K4-free
graphs with few independent sets of size t, for all sufficiently large t.

Theorem 2.1 ([6]). For each prime power q ≥ 240, there exists a K4-free graph H with q2(q2 − q + 1)
vertices such that for every set X of at least m = 224q2 vertices of H,

e(H[X]) ≥
|X|2

256q
.

The following result is used in [6] to give an upper bound on the number of independent sets of a
fixed size t = 230q log2 q in the graph H given by Theorem 2.1. We will use it to bound the number of
independent sets of a certain range of sizes.

Proposition 2.2 ([6, Proposition 4]). Let H be a graph on n vertices, and let r,R ∈ N, and α ∈ [0, 1]
satisfy:

e−αrn ≤ R,

and, for every subset X ⊆ V (H) of at least R vertices,

2e(X) ≥ α|X|2.

Then for any t ≥ r, the number of independent sets of size t in H is at most
(

n

r

)(

R

t− r

)

.

We also make use of the following form of the Kruskal-Katona theorem due to Lovász.

Lemma 2.3 ([5, Exercise 31(b)]). Given a set X and positive integers s ≤ t, let A be a set of t-element
subsets of X, and let B be the set of all s-element subsets of the sets in A. If |A| =

(n
t

)

, then |B| ≥
(n
s

)

.

In the setting of graphs, the Kruskal-Katona theorem implies that if a graph contains
(n
t

)

copies of
Kt, then it must contain at least

(n
s

)

copies of Ks for s ≤ t. Now we are ready to prove Theorem 1.3

Proof of Theorem 1.3. We first prove the theorem for the case where s = t.
Let q ≥ 240 be a power of 2 such that t ∈ [233q log2 q, 233(2q) log2(2q)]. Such a choice of q exists

because the union of the relevant intervals contains all sufficiently large integers.
Let H be the graph given by Theorem 2.1 on n := q2(q2 − q + 1) vertices. Then we can apply

Proposition 2.2 with R = 224q2, r = 210q log q, and α = 1/(28q) to show that, for any t′ ∈ [t/8, t], the
number of independent sets of size t′ in H is at most

(

n

r

)(

R

t′ − r

)

≤ nr

(

R

t′

)

≤ q4r
(

eR

t′

)t′

≤ (q/ log2 q)t
′

.

Here we have used the fact that by our choices of t, n,R, r, t′, we have n ≤ q4, r ≤ t′ ≤ R/2, q4r ≤ 2t
′

,
and 2eR/t′ ≤ q/ log2 q.
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Let G be a (4, t)-Ramsey graph containing exactly N := rKt(4, t) copies of Kt. Our goal is to prove a
lower bound on N . We color the edges of G as follows: Take a uniformly random map π : V (G) → V (H).
For an edge (v,w) ∈ G, color it red if (π(v), π(w)) ∈ E(H), and blue otherwise (including the case where
π(v) = π(w)).

Since H is K4-free by construction, there are no red K4’s in G. For any copy K of Kt in G, it can
be monochromatically blue only if its image π(K) is an independent set in H. The probability that this
occurs is bounded above by

ρ :=

t
∑

i=1

P[π(K) is an independent set of size i]

≤

t/8
∑

i=1

(

n

i

)(

i

n

)t

+

t
∑

i=t/8+1

(q/ log2 q)i
(

i

n

)t

≤ 2n−(t−t/8)tt + 2(q/ log2 q)t
(

t

n

)t

= O(ttq−3.5t + tt(q3 log2 q)−t)

= O(tt(q3 log2 q)−t).

To show the first inequality, we trivially bound the probability that |π(K)| ≤ i for each i ≤ t/8, then
use the upper bound derived earlier for the number of independent sets of each size i ∈ [t/8, t]. The
second-to-last line uses the fact that n = Θ(q4).

The expected number of blue copies of Kt in our coloring of G is at most Nρ. If Nρ < 1, then there
is such a coloring with no red K4 or blue Kt, contradicting the fact that G is (4, t)-Ramsey. So, since
t = Θ(q log2 q), and thus q = Θ( t

log2 t
), we have

N ≥
1

ρ
= Ω

(

(

t−1
(

q3 log2 q
))t
)

=

(

Ω( t3

log4 t
)
)t

tt
=

(

Ω( t3

log4(t)
)

t

)

,

using the estimate
(

n
k

)

≤ (enk )k. This shows the desired lower bound on rKt(4, t).

By the Kruskal-Katona theorem, since G contains
(Ω( t3

log4(t)
)

t

)

copies of Kt, it must contain at least
(Ω( t3

log4(t)
)

s

)

copies of Ks for each s ≤ t.

Finally, since r(4, t) ≤ (1 + o(1)) t3

log2 t
=
(

t3

log4 t

)1+o(1)
, we have rKs(4, t) =

(Ω( t3

log4(t)
)

s

)

≥
(r(4,t)

s

)1−o(1)
.

Since Kr(4,t) is (4, t)-Ramsey by definition, we have a trivial matching upper bound of rKs(4, t) ≤
(r(4,t)

s

)

.
This concludes the proof.

2.2 Asymptotics of rKs(3, t)

The asymptotics for r(3, t) have been thoroughly studied. It is known that

r(3, t) = Θ

(

t2

log t

)

,

where the upper bound was shown by Ajtai, Komlós, and Szemerédi [1] and the lower bound by Kim [4].
This lower bound was initially proven by constructing triangle-free graphs on n vertices with chromatic
number Ω(

√

n/ log n) using the Rödl nibble method. However, a different construction, given by Mattheus
and Verstraëte [6, Section 3] as an adaptation of their own construction for r(4, t), is more suitable for
our approach.
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Theorem 2.4 ([6]). There exists a constant C > 0 for which the following holds. For each prime power
q ≥ 240, there exists a triangle-free graph H with q3+q2+q+1 vertices such that for every set X ⊆ V (H)
of size |X| ≥ C · q2,

e(H[X]) ≥
|X|2

C · q
.

The proof of Theorem 1.2 uses the same strategy as the proof of Theorem 1.3. However, different
choices of parameters are used in this proof, so we include the full proof for the sake of completeness.

Proof of Theorem 1.2. As in the proof of Theorem 1.3, we first prove the theorem in the case s = t. Let C
be the constant from Theorem 2.4, and let q ≥ 240 be a power of 2 such that t ∈ [28Cq log2 q, 28C(2q) log2(2q)].

Let H be the graph given by Theorem 2.4 on n := q3 + q2 + q + 1 vertices. Applying Proposition 2.2
with the parameters R = 25Cq2, r = 2Cq log q and α = 1/(C ·q) gives that for any t′ ∈ [t/8, t], the number
of independent sets of size t′ in H is at most

(

n

r

)(

R

t′ − r

)

≤ nr

(

R

t′

)

≤ (2q3)r
(

eR

t′

)t′

≤ (q/ log2 q)t
′

.

Here we have used the facts that n ≤ 2q3, r ≤ t′ ≤ R/2, (2q3)r ≤ 2t
′

, and 2eR/t′ ≤ q/ log2 q.
Let G be a (3, t)-Ramsey graph containing exactly N := rKt(3, t) copies of Kt. Consider the following

coloring of G: Take a uniformly random map π : V (G) → V (H). For an edge (v,w) ∈ G, color it red if
(π(v), π(w)) ∈ E(H), and blue otherwise (including the case where π(v) = π(w)).

Since H is taken to be triangle-free, there are no red triangles in G. For any copy K of Kt in G, it
can be monochromatically blue only if its image π(K) is an independent set in H. The probability that
this occurs is bounded above by

ρ :=

t
∑

i=1

P[π(K) is an independent set of size i]

≤

t/8
∑

i=1

(

n

i

)(

i

n

)t

+

t
∑

i=t/8+1

(q/ log2 q)i
(

i

n

)t

≤ 2n−(t−t/8)tt + 2(q/ log2 q)t
(

t

n

)t

= O(ttq−21t/8 + tt(q2 log2 q)−t)

= O(tt(q2 log2 q)−t),

by the same reasoning as in the proof of Theorem 1.3. Since the expected number of blue copies of Kt in
this coloring is at most Nρ, we must have Nρ ≥ 1 because otherwise there exists is a coloring with no red
K4 or blue Kt, contradicting the fact that G is (3, t)-Ramsey. So, by the same reasoning as in the proof
of Theorem 1.3, we have

N ≥
1

ρ
= Ω

(

(

t−1
(

q2 log2 q
))t
)

=

(

Ω( t2

log2(t)
)

t

)

,

showing the lower bound on rKt(3, t) as desired.

By the Kruskal-Katona theorem, since G contains
(Ω( t2

log2(t)
)

t

)

copies of Kt, it must contain at least
(Ω( t2

log2(t)
)

s

)

copies of Ks for each s ≤ t. Combining this with the fact that r(3, t) = Θ(t2/ log t), as well as

the trivial upper bound Ks(3, t) ≤
(

r(3,t)
s

)

, we arrive at the second equation in the Theorem statement as
before. This concludes the proof.
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3 Cycle-complete Ks-Ramsey numbers

The notion of (t1, t2)-Ramsey graphs extends to a more general setting, where monochromatic subgraphs
other than cliques are considered: For any graphs H1 and H2, we say a graph G is (H1,H2)-Ramsey
if every 2-coloring of its edges in red and blue results in either a red copy of H1 or a blue copy of H2.
The definition of the F -Ramsey number can likewise be generalized by letting rF (H1,H2) be the smallest
number of copies of F contained in an (H1,H2)-Ramsey graph. The diagonal case of this more general
definition is briefly discussed in [3]. There, the authors point out that rF (H,H) = 0 in the following two
cases:

• m2(F ) > m2(H) (as shown in [8]), where we define m2(G) = maxG′⊆G
e(G′)−1
|G′|−2 ;

• The girth of F is smaller than the girth of H (equivalent to a result in [7]).

One can ask whether an analogue of Conjecture 1.1 holds for rKs(H1,H2), for some choices of (H1,H2)
other than a pair of cliques. Namely, is it true that

rKs(H1,H2) =

(

r(H1,H2)

s

)

,

for some appropriate range of values of s? (Here r(H1,H2) denotes the usual Ramsey number.) In this
section, we study the case where only one of H1, H2 is a clique. We obtain lower bounds on rKs(H1,Kt)
when t ≥ 2 and s ≤ t, under certain conditions on H1.

In recent work of Conlon, Mattheus, Mubayi, and Verstraëte [2], similar techniques as in [6] are used to
show lower bounds for the cycle-complete Ramsey numbers r(C5,Kt) and r(C7,Kt). They derived these
bounds through a more general result conditioned on the existence of a graph with certain properties.

Before stating this result, let us recall some definitions from [2]. Given a graph F , let E(F ) denote the
set of sequences of edge-disjoint bipartite subgraphs F1, . . . , Fk ⊆ F such that the edges of the subgraphs
Fi form a partition of the edges of F , each Fi has at least one edge, and each pair Fi 6= Fj shares at most one
vertex. Given H = (F1, . . . , Fk) ∈ E(F ), define J(H) to be the bipartite graph with parts [k] and V (F ),
where each i ∈ [k] is adjacent to the vertices V (Fi) ⊆ V (F ). Then let L(F ) = {J(H) : H ∈ E(F )}∪{C4}.
Finally, for m ≤ n and a ≤ b, define an (m,n, a, b)-graph to be a bipartite graph with parts of size m and
n such that every vertex in the part with size n has degree a, and every vertex in the part with size m
has degree b. Now we are ready to state the main result in [2].

Theorem 3.1 ([2]). Let F be a graph and let a, b,m, n be positive integers with a ≥ 212(log n)3 such that
there exists an L(F )-free (m,n, a, b)-graph. If t0 = 28n(log n)2/ab, then

r(F,Kt0) = Ω

(

bt0
log n

)

.

Here, we obtain an analogous bound on rKs(F,Kt) in terms of the lower bound in Theorem 3.1.

Theorem 3.2. Let F be a graph and let a, b,m, n be positive integers with a ≥ 212(log n)3 such that there
exists an L(F )-free (m,n, a, b)-graph. If t = 211n(log n)2/ab, then for all s ≤ t,

rKs(F,Kt) = Ω

((

g(F, t)

s

))

,

where g(F, t) = Ω( bt0
logn) with t0 = t/8 is the lower bound from Theorem 3.1.

Similarly to the proof of Theorem 1.3, we use the following technical result proven in [2].

6



Lemma 3.3 ([2, Lemma 2]). Let F be a graph and let a, b,m, n be positive integers with a ≥ 212(log n)3

such that there exists an L(F )-free (m,n, a, b)-graph. Then there exists an F -free graph H on n vertices
such that each X ⊆ V (H) with |X| ≥ 210(m log n)/a has

e(H[X]) ≥
a2

28m
|X|2.

Proof Sketch of Theorem 3.2. As before, we first prove the case where s = t = 211n(log n)2/ab. Applying
Proposition 2.2 to the graph H given by Lemma 3.3 with R = 210m(log n)/a, r = t/(23 log n), and

α = a2

28m
, we conclude that for any t′ ∈ [t/8, t], the number of independent sets of size t′ in H is at most

(

n

r

)(

R

t′ − r

)

≤ nr

(

eR

t′

)t′

≤

(

210e2m log n

at′

)t′

,

where the second inequality uses the fact that nr ≤ nt′/ logn = et
′

.
Let G be an (F,Kt)-Ramsey graph and suppose that G contains N copies of Kt as subgraphs. Taking

the same uniformly random map π : V (G) → V (H) as before, we color an edge of G red if it gets mapped
to an edge in H, and blue otherwise. By the same argument and calculations as before, we can show that

N ≥

(

Ω (g(F,Kt))

t

)

.

Applying the Kruskal-Katona theorem then yields the desired bound on rKs(F,Kt) for all s ≤ t.

Noting that the conditions of Theorem 3.1 are satisfied for F = C5 and F = C7 for appropriate values
of (m,n, a, b), the authors of [2] derive the following bounds on the cycle-complete Ramsey numbers in
those two cases.

Theorem 3.4 ([2]). As t → ∞,

r(C5,Kt) = Ω

(

t10/7

(log t)13/7

)

, and r(C7,Kt) = Ω

(

t5/4

(log t)3/2

)

.

In the same manner, Theorem 3.2 yields the following bounds.

Theorem 3.5. As t → ∞, for every s ≤ t we have

rs(C5,Kt) =

(

Ω
(

t10/7

(log t)13/7

)

s

)

, and rs(C7,Kt) =

(

Ω
(

t5/4

(log t)3/2

)

s

)

.
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