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Abstract

A graph is (¢, t2)-Ramsey if any red-blue coloring of its edges contains either a red copy of Ky, or
a blue copy of Ky,. The size Ramsey number is the minimum number of edges contained in a (¢, t2)-
Ramsey graph. Generalizing the notion of size Ramsey numbers, the F-Ramsey number rp(t1,t2) is
defined to be the minimum number of copies of F' in a (t1,%2)-Ramsey graph. It is easy to see that
ri. (t1,t2) < (T(tls’t2)). Recently, Fox, Tidor, and Zhang showed that equality holds in this bound when
s=3and t; =to, i.e. Ti,(t,t) = (T(g’t)). They further conjectured that rx_(¢,t) = (T(ts’t)) for all s <t
in response to a question of Spiro.

In this work, we study the off-diagonal variant of this conjecture: is it true that rx_(t1,t2) = (T(tls’tQ))
whenever s < max(t1,t2)? Harnessing the constructions used in the recent breakthrough work of
Mattheus and Verstraéte on the asymptotics of r(4,t), we show that when ¢; is 3 or 4, the above
equality holds up to a lower order term in the exponent.

1 Introduction

We say that a graph G is (t1,t2)-Ramsey (or t-Ramsey if t1 = to = t) if every 2-coloring of its edges
in red and blue results in either a red copy of K, or a blue copy of K;,. The smallest n such that K,
is (t1,t2)-Ramsey is called the Ramsey number r(t1,%2) (or 7(¢) in the diagonal case). A closely related
quantity is the size Ramsey number 7(t1,t2), defined to be the minimum number of edges contained in
a (t1,t2)-Ramsey graph. A classical observation by Chvétal gives the relationship between the usual
Ramsey number and size Ramsey number for complete graphs: For any tq,to > 1,

Pty t) = <7’(t12’ t2)>.

A recent paper of Fox, Tidor, and Zhang E] initiated the study of a new variant of the Ramsey number:
For a given graph F', the F-Ramsey number rp(t1,t3) is the smallest number of copies of F' contained
in a graph that is (¢1,t2)-Ramsey. This definition simultaneously generalizes the usual and size Ramsey
numbers: taking F' = K gives the usual Ramsey number, while taking ' = K5 yields the size Ramsey
number.

In B], the authors addressed a natural question of Sam Spiro asking whether an analogue of Chvatal’s
result holds for choices of F' other than Ks. They showed that

= (9

for all sufficiently large t. They conjectured that for all s < ¢,

rrc(t,t) = (T(t)>, Vs < t. (1)

S

Their conjecture naturally extends to the off-diagonal setting.
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Conjecture 1.1. For all positive integers s,ty,ts satisfying s < max(ty,ts),

r(t1, t2)>.

S

i, (t1,t2) = (

It is easy to see that the upper bound in the conjectured equality is true, since K, 1,) 18 (t1,t2)-
Ramsey. The conjecture is trivially true when s = 1, and the case s = 2 is Chvatal’s observation. The
main result of E] corresponds to the case where s = 3 and ¢; = {9 is sufficiently large, but the same
argument shows that is true for s = 3 in general. Unfortunately, their proof technique
cannot be directly extended to s > 4, and it appears that significantly different strategies would be
required to tackle the conjecture in full generality.

In this paper, we investigate in the simplest off-diagonal cases t; = 3 and ¢t; = 4 (the
cases t; < 2 are trivial). In these cases, the asymptotic value of the usual Ramsey number is almost
fully determined: for r(3,t), results of Ajtai, Komlds, and Szemerédi @] and of Kim E] combine to yield
7(3,t) = O(t?/logt) as t — oo; for 7(4,t), results of Ajtai, Komlés, and Szemerédi [1] and of Mattheus
and Verstraéte ﬂa] combine to yield

t3 t3

<r(4,t) < (14 o0(1)——,
10g4t_7’( ) < (1+o( ))10g2t

C -

for some absolute constant C' > 0 as ¢ — oo, determining the asymptotics of r(4,¢) up to logarithmic
factors. Using these known bounds on the usual Ramsey number, we obtain the following results indicating

that holds in these cases up to a lower order term in the exponent.

Theorem 1.2. For all s <t,
t2
TKS(?),t) = <Q <log2(t))>'

S

In particular,

S

ri.(3,t) = <7"(3,t)>1—o<1)'

Theorem 1.3. For all sufficiently large t and all s < t,

i) = (° (%)).

S

In particular,

S

ri.(4,t) = <7’(4,t)> 1—0(1)‘

In both of these results, the implicit constant in the £ notation is an absolute constant, and the o(1)
term in the exponent goes to zero as t grows, with no dependence on s.

Our results provide evidence towards being at least asymptotically true. In contrast
to the arguments in E], our methods work equally well for all s <.

Our arguments utilize the construction given in ﬂa] of a Ky-free graph H with few independent sets
of size roughly ¢ (and an analogous construction of a Ks-free graph). The key idea is to produce an
edge-coloring contradicting the Ramsey property for a given graph from a random homomorphism into
H, which then yields a lower bound on the number of copies of K; in the relevant Ramsey graph. The
Kruskal-Katona theorem then converts this into an appropriate lower bound on the number of copies of
K for each s <'t.

The paper is organized as follows. In [Secfion 2, we present the proofs of our main results on off-
diagonal K¢ -Ramsey numbers. We first prove [Iheorem 1.3]in [Section 2.1] then use a similar argument
in to prove [Theorem 1.2 Finally, in [Section 3] we discuss how our strategy can be applied to
the more general setting of F-Ramsey numbers of (Hy, Hy)-Ramsey graphs.




2 Off-diagonal K,-Ramsey Numbers

This section contains our proofs of the lower bounds on both rx,(3,¢) and rg,(4,t). While the arguments
for the two settings are of similar complexity, we will begin by considering the case of (4, t)-Ramsey graphs,
because the construction of Mattheus and Verstraéte that we will utilize for this case, while somewhat
moﬂrg intricate than the construction for the case of (3,t¢)-Ramsey graphs, is more explicitly described
in [6].

2.1 Asymptotics of rg_(4,1)

We use the following result of Mattheus and Verstraéte, which yields a construction of a family of Ky-free
graphs with few independent sets of size t, for all sufficiently large .

Theorem 2.1 (ﬂa]) For each prime power q > 2%°, there exists a K4-free graph H with ¢*(¢*> — q+ 1)
vertices such that for every set X of at least m = 2%4¢> vertices of H,

(X
L

e(H[X]) > 5564

The following result is used in ﬂa] to give an upper bound on the number of independent sets of a
fixed size t = 230glog? ¢ in the graph H given by [Theorem 2.1} We will use it to bound the number of
independent sets of a certain range of sizes.

Proposition 2.2 (ﬂa, Proposition 4]). Let H be a graph on n vertices, and let r,R € N, and a € [0, 1]
satisfy:
e “"n<R,

and, for every subset X C V(H) of at least R vertices,
2¢(X) > a| X2

Then for any t > r, the number of independent sets of size t in H is at most

()GE)

We also make use of the following form of the Kruskal-Katona theorem due to Lovész.

Lemma 2.3 (ﬂa, Exercise 31(b)]). Given a set X and positive integers s < t, let A be a set of t-element
subsets of X, and let B be the set of all s-element subsets of the sets in A. If |A| = (2’), then |B| > (2)

In the setting of graphs, the Kruskal-Katona theorem implies that if a graph contains (2‘) copies of
K, then it must contain at least (Z) copies of K, for s <t. Now we are ready to prove

Proof of [Theorem 1.3 We first prove the theorem for the case where s = t.

Let ¢ > 2% be a power of 2 such that t € [233¢log? ¢,2%3(2¢) log?(2¢)]. Such a choice of ¢ exists
because the union of the relevant intervals contains all sufficiently large integers.

Let H be the graph given by [Theorem 2.1 on n := ¢*(¢*> — ¢ + 1) vertices. Then we can apply
[Proposition 2.2] with R = 224¢%, r = 21%]logq, and o = 1/(28¢) to show that, for any ' € [t/8,t], the
number of independent sets of size ¢’ in H is at most

) < () <o () st

Here we have used the fact that by our choices of t,n, R,r,t', we have n < ¢*, r <t < R/2, ¢*" < 2t/,
and 2eR/t' < q/log? q.




Let G be a (4,t)-Ramsey graph containing exactly N := rg,(4,t) copies of K;. Our goal is to prove a
lower bound on N. We color the edges of G as follows: Take a uniformly random map 7 : V(G) — V(H).
For an edge (v,w) € G, color it red if (7(v), 7(w)) € E(H), and blue otherwise (including the case where
m(v) = 7(w)).

Since H is Ky-free by construction, there are no red K4’s in G. For any copy K of K; in G, it can
be monochromatically blue only if its image 7(K) is an independent set in H. The probability that this
occurs is bounded above by

t
pi= ZP[F(K ) is an independent set of size i
i=1

(1) (1) 3 wmeor (1)

t
< 2n—(t—t/8)tt + 2((]/ 10g2 q)t (E)
n
= O(t'q™> +t'(¢* log ) ™)
= O(t'(¢*log” ¢) ™).

To show the first inequality, we trivially bound the probability that |7(K)| < i for each i < ¢/8, then
use the upper bound derived earlier for the number of independent sets of each size i € [t/8,t]. The
second-to-last line uses the fact that n = O(q*).

The expected number of blue copies of K; in our coloring of G is at most Np. If Np < 1, then there
is such a coloring with no red K4 or blue K;, contradicting the fact that G is (4,¢)-Ramsey. So, since

t = O(qlog?q), and thus ¢ = @(bg%t), we have
t
Ugry)) 2
r 1737 9 \Wt _< log*t o Q(m)
Nz loa (@ o)) - s - (M),

using the estimate (}) < (%2)". This shows the desired lower bound on rg,(4,1).

By the Kruskal-Katona theorem, since G contains (Q(w{%)) copies of Ky, it must contain at least
(Q(W;@)) copies of K for each s < t.
), e have i, (4,8) = (i) > (140)1
Since K4y is (4,7)-Ramsey by definition, we have a trivial matching upper bound of rx,(4,1) < (T(i’t)).
This concludes the proof.

t3
log* ¢

Finally, since r(4,t) < (1 + 0(1))102—3% = (

O

2.2 Asymptotics of rg, (3,1)
The asymptotics for r(3,¢) have been thoroughly studied. It is known that

t2
T@ﬂ:@<ﬁﬁy

where the upper bound was shown by Ajtai, Komlds, and Szemerédi @] and the lower bound by Kim M]
This lower bound was initially proven by constructing triangle-free graphs on n vertices with chromatic
number Q(y/n/log n) using the Rodl nibble method. However, a different construction, given by Mattheus
and Verstraéte |6, Section 3| as an adaptation of their own construction for r(4,t), is more suitable for
our approach.



Theorem 2.4 (ﬂa]) There exists a constant C' > 0 for which the following holds. For each prime power
q > 2% there exists a triangle-free graph H with ¢®+q* +q+ 1 vertices such that for every set X C V(H)
of size | X| > C - ¢?,
I
=0

The proof of [Theorem 1.2 uses the same strategy as the proof of [Theorem 1.3l However, different
choices of parameters are used in this proof, so we include the full proof for the sake of completeness.

Proof of [Theorem 1.2, As in the proof of [Theorem 1.3] we first prove the theorem in the case s = t. Let C
be the constant from [Theorem 2.4] and let ¢ > 2% be a power of 2 such that t € [28Cqlog? ¢, 23C(2¢) log?(2q)].
Let H be the graph given by [Theorem 2.4l on n := ¢* + ¢ + ¢ + 1 vertices. Applying [Proposition 2.2]
with the parameters R = 2°C¢?, r = 2Cqlog g and o = 1/(C - q) gives that for any ¢’ € [t/8,t], the number

of independent sets of size ¢’ in H is at most

(:) <t/lj T> <n’ <‘§> < (2¢°) (i—?)tl < (q/log”q)".

Here we have used the facts that n < 2¢°, r <t/ < R/2, (2¢°)" < 2!, and 2eR/t' < q/log?q.

Let G be a (3,t)-Ramsey graph containing exactly N := rx,(3,t) copies of K;. Consider the following
coloring of G: Take a uniformly random map = : V(G) — V(H). For an edge (v,w) € G, color it red if
(m(v),m(w)) € E(H), and blue otherwise (including the case where 7(v) = w(w)).

Since H is taken to be triangle-free, there are no red triangles in G. For any copy K of K; in G, it
can be monochromatically blue only if its image 7(K) is an independent set in H. The probability that
this occurs is bounded above by

e(H[X])

t
pi= Z]P[T(’(K ) is an independent set of size 1

= 2 <7Z> <%>t+ Zt: (q/1og>q)’ <%>t

i=t/8+1
t
< 2n~ 8¢t 4 2(g/ 1og? q)! <£>
n
_ O(ttq—2lt/8 + tt(q2 10g2 q)—t)
= O(t'(¢* log® ¢) ™),

by the same reasoning as in the proof of [Theorem 1.3l Since the expected number of blue copies of K; in
this coloring is at most N p, we must have Np > 1 because otherwise there exists is a coloring with no red
K, or blue Ky, contradicting the fact that G is (3,¢)-Ramsey. So, by the same reasoning as in the proof

of [Theorem 1.3 we have

N >

= ((t7" (¢®10g%q))") = <Q(l°gt§(“)>,

showing the lower bound on rg,(3,t) as desired.

1
p

By the Kruskal-Katona theorem, since GG contains ( (1o§2(t))) copies of K;, it must contain at least

2
(Q(log:?(t))) copies of K for each s < t. Combining this with the fact that r(3,t) = ©(¢?/logt), as well as

the trivial upper bound K (3,t) < (T(z’t)), we arrive at the second equation in the Theorem statement as
before. This concludes the proof. O



3 Cycle-complete K,-Ramsey numbers

The notion of (¢, t2)-Ramsey graphs extends to a more general setting, where monochromatic subgraphs
other than cliques are considered: For any graphs H; and Hs, we say a graph G is (Hi, Hy)-Ramsey
if every 2-coloring of its edges in red and blue results in either a red copy of Hy or a blue copy of Hs.
The definition of the F-Ramsey number can likewise be generalized by letting rr(H;, H2) be the smallest
number of copies of F' contained in an (Hy, Hy)-Ramsey graph. The diagonal case of this more general
definition is briefly discussed in E] There, the authors point out that rr(H, H) = 0 in the following two
cases:

o ma(F) > my(H) (as shown in ﬂﬁ]), where we define mg(G) = maxgcg e‘(g,’%;
e The girth of F' is smaller than the girth of H (equivalent to a result in ﬂ])

One can ask whether an analogue of holds for rg, (Hy, Hs), for some choices of (Hy, Hs)
other than a pair of cliques. Namely, is it true that

ri, (Hi, Hy) = (r(Hl’H2)>,

S

for some appropriate range of values of s? (Here r(H7, Hy) denotes the usual Ramsey number.) In this
section, we study the case where only one of Hy, Hs is a clique. We obtain lower bounds on rg, (H1, K¢)
when t > 2 and s < t, under certain conditions on Hj.

In recent work of Conlon, Mattheus, Mubayi, and Verstraéte E], similar techniques as in ﬂa] are used to
show lower bounds for the cycle-complete Ramsey numbers r(C5, K;) and r(C7, K). They derived these
bounds through a more general result conditioned on the existence of a graph with certain properties.

Before stating this result, let us recall some definitions from ﬂa] Given a graph F, let £(F') denote the
set of sequences of edge-disjoint bipartite subgraphs Fi,..., F, C F such that the edges of the subgraphs
F; form a partition of the edges of I, each Fj has at least one edge, and each pair F; # I shares at most one
vertex. Given H = (Fy,...,Fy) € E(F), define J(H) to be the bipartite graph with parts [k] and V(F),
where each ¢ € [k] is adjacent to the vertices V(F;) C V(F). Then let L(F) = {J(H) : H € E(F)}U{C4}.
Finally, for m < n and a < b, define an (m,n, a, b)-graph to be a bipartite graph with parts of size m and
n such that every vertex in the part with size n has degree a, and every vertex in the part with size m
has degree b. Now we are ready to state the main result in [2].

Theorem 3.1 (ﬂa]) Let F be a graph and let a,b,m,n be positive integers with a > 2'2(logn)? such that
there exists an L(F)-free (m,n,a,b)-graph. If to = 28n(logn)?/ab, then

bty
T(F, Kto) =0 <10gn> .

Here, we obtain an analogous bound on rg_ (F, K;) in terms of the lower bound in [Theorem 3.11

Theorem 3.2. Let F be a graph and let a,b,m,n be positive integers with a > 2'2(logn)® such that there
exists an L(F)-free (m,n,a,b)-graph. If t = 2" n(logn)?/ab, then for all s < t,

ey =2 ((100)).

where g(F,t) = Q(:22-) with ty = t/8 is the lower bound from [Theorem 3.1l

logn

Similarly to the proof of [Theorem 1.3] we use the following technical result proven in E]




Lemma 3.3 (E, Lemma 2]). Let I be a graph and let a,b,m,n be positive integers with a > 2'2(logn)?
such that there exists an L(F)-free (m,n,a,b)-graph. Then there exists an F-free graph H on n vertices
such that each X C V(H) with | X| > 2'%(mlogn)/a has

a?

e(HIX)) = ¢

X[
Proof Sketch of [Theorem 3.9. As before, we first prove the case where s = t = 2!'n(logn)?/ab. Applying
[Proposition 2.2 to the graph H given by [Lemma 3.3 with R = 2%mn(logn)/a, » = t/(23logn), and

_a?
28m?

a= we conclude that for any ¢ € [t/8,t], the number of independent sets of size ¢’ in H is at most

n R - [ eR v 21%2m logn g
<n|—] <|——"—) ,
r)\t'—r) — t - at’

where the second inequality uses the fact that n” < nt'/logn — ¢t

Let G be an (F, K;)-Ramsey graph and suppose that G contains N copies of K; as subgraphs. Taking
the same uniformly random map 7 : V(G) — V(H) as before, we color an edge of G red if it gets mapped
to an edge in H, and blue otherwise. By the same argument and calculations as before, we can show that

v (SR ED)

Applying the Kruskal-Katona theorem then yields the desired bound on rg, (F, K;) for all s < t. O

Noting that the conditions of [Theorem 3.1] are satisfied for F' = C5 and F' = C7 for appropriate values
of (m,n,a,b), the authors of E] derive the following bounds on the cycle-complete Ramsey numbers in
those two cases.

Theorem 3.4 (ﬂa]) Ast — oo,

t10/7 t5/4
C5, K) =Q | ———— d Cr, Kp)=Q | ———~ | .
T( 5 t) (log t)13/7 ) an T( 75 t) (log t)3/2

In the same manner, [Theorem 3.2] yields the following bounds.

Theorem 3.5. Ast — oo, for every s <t we have

$10/7 15/4
7"8(057 Kt) = (Q <(10it)13/7>>, and TS(C'?,Kt) = <Q <(10§t)3/2)>.
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